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Abstract. We propose and objectively evaluate an inverse Monte Carlo model for estimation of absorption and
reduced scattering coefficients and similarity parameter γ from spatially resolved reflectance (SRR) profiles in the
subdiffusive regime. The similarity parameter γ carries additional information on the phase function that governs
the angular properties of scattering in turbid media. The SRR profiles at five source-detector separations were
acquired with an optical fiber probe. The inverse Monte Carlo model was based on a cost function that enabled
robust estimation of optical properties from a few SRR measurements without a priori knowledge about spectral
dependencies of the optical properties. Validation of the inverse Monte Carlo model was performed on synthetic
datasets and measured SRR profiles of turbid phantoms comprising molecular dye and polystyrene micro-
spheres. We observed that the additional similarity parameter γ substantially reduced the reflectance variability
arising from the phase function properties and significantly improved the accuracy of the inverse Monte Carlo
model. However, the observed improvement of the extended inverse Monte Carlo model was limited to reduced
scattering coefficients exceeding ∼15 cm−1, where the relative root-mean-square errors of the estimated optical
properties were well within 10%. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.9.095003]
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1 Introduction
Light that has propagated through a turbid medium carries an
abundance of information about the sample structure and chemi-
cal composition encountered along the path, which is especially
interesting when the turbid medium under investigation is
a biological tissue. Reflectance techniques utilizing integrating
spheres,1 hyperspectral imaging systems,2 and optical fibers or
optical fiber probes3–5 are all frequently used to conduct the
measurements. If the profile of the backscattered light is cap-
tured as a function of the distance from the illumination source,
the measurements are said to be spatially resolved. Spatially
resolved reflectance (SRR) measurements can be conducted
by optical fiber probes with multiple source-detector separations
(SDS). The captured SRR profile depends on the scattering and
absorption properties of the turbid medium and is consequently
frequently exploited for noninvasive determination of optical
properties in biological tissues and other turbid media.6–11

Furthermore, different SDS are associated with different sam-
pling depths. In general, a shorter SDS collects photons that
propagate nearer to the sample surface and experience fewer
scattering interactions with the turbid medium. The collected
reflectance signal is considered subdiffusive when the spatial
separation between the incident and the collected light becomes
comparable to the transport mean free path length.12 In contrast,
the diffusive photons experience many scattering interactions
and lose the information of the initial propagation direction.
SRR spectroscopy is said to operate in the subdiffusive regime,
when a significant portion of the acquired reflectance signal is
represented by the subdiffusive reflectance.

Due to fewer scattering events, the subdiffusive reflectance
largely depends on the scattering phase function of the turbid
medium.13–15 Since the scattering phase function is tightly
related to the medium microstructure (i.e., the microscopic fluc-
tuations of the refractive index16), the subdiffusive reflectance
has the potential to reveal structural characteristics of biological
tissues at a cellular level.

Many of the recent studies have focused on the reflectance
spectroscopy operating in the subdiffusive regime.16–19 Since
photons in this regime undergo only a few scattering interactions
with the turbid medium, the commonly used diffusion approxi-
mation of light transport in turbid media, which assumes
reflectance dependence only on the absorption μa and reduced
scattering μ 0

s coefficients, is insufficient. To overcome these lim-
itations and provide the means to account for the phase function
in the light propagation model, direct solutions of the radiative
transport equation20 or the Monte Carlo (MC) stochastic
method21 have to be used. However, the full potential of light
propagation models can be really appreciated when solving
the inverse problem, where the optical properties are estimated
from a set of reflectance measurements. In the most simplified
case, SRR spectroscopy offers a way to independently estimate
the absorption and reduced scattering coefficients for each spec-
tral band.8 Nevertheless, in the subdiffusive regime, the inverse
model parameters have to be extended to account for the phase
function dependence. The existing studies have shown that
extending the inverse model by an additional similarity param-
eter γ ¼ ð1 − g2Þ∕ð1 − g1Þ should improve the estimation of
optical properties.15,22 Here, g1 and g2 denote the first and
second Legendre moments of the phase function. Physically,
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γ represents the relative contribution of large-angle scattering
events and, for biological tissues, amounts to values between
1.6 and 2.4.16,22

In this paper, we propose and extensively evaluate an
extended inverse Monte Carlo (IMC) model that, in addition
to the absorption and reduced scattering coefficients, also
incorporates γ. First, we introduce a new cost function (CF)
that enables robust estimation of optical properties from the
SRR measurements at five SDS in the subdiffusive regime.
Subsequently, we examine the influence of the phase functions
on the MC computed SRR. Next, the basic and extended IMC
models are evaluated and compared on synthetic datasets of
SRR computed by various commonly used phase functions.
Finally, the extended IMC model is experimentally evaluated
on turbid phantoms comprising molecular absorbers and poly-
styrene microspheres.

2 Materials and Methods

2.1 Monte Carlo Simulations

The light propagation was modeled by an MC stochastic
approach derived from the code of Wang et al.21 and the
CUDA-based implementation of Alerstam et al.23 In our study,
two optical fiber probe geometries that included five SDS were
introduced.

The first geometry (SG) was based on a simple laterally uni-
form probe–tissue interface, which takes into account only the
mismatch between the refractive indices of tissue (nm ¼ 1.33)
and optical fibers (nfib ¼ 1.45). Each simulation included 108

photon packets, which were launched uniformly over the
fiber opening and the solid angle defined by the numerical
aperture (NA ¼ 0.22). Additionally, the detection scheme was
modified to account for the numerical aperture of the detector
fibers. Due to the uniformity of the probe–tissue interface, the
detection scheme around the source fiber was divided into
5-μm-thick concentric annular rings, from which the number
of detected photon packets through a particular detection
fiber was estimated in the postprocessing step. In this way,
a better signal-to-noise ratio was obtained compared to the
exact geometry of the individual detection fibers.

The second geometry (RG) was based on a realistic probe–
tissue interface that additionally considers (1) the reflections
from the stainless steel probe tip and (2) the refractive index
mismatch between the black epoxy resin (nepoxy ¼ 1.6) and
the tissue (Fig. 1). Stainless steel reflectivity was set to 57%
(measured value). Its effect on the SRR was already investigated
and found significant.24 The photon packets (109) were launched
following the scheme of the first (SG) geometry. In contrast,
the detection scheme was constrained to individual detection
fibers located at five different SDS.

The MC simulations were conducted using a semi-infinite
medium geometry. To speed up the simulations, all photon pack-
ets that drifted more than 0.8 cm laterally and axially from
the source center were terminated. The two termination criteria
were validated and proved consistent with the semi-infinite
medium geometry.

2.2 Scattering Phase Functions and Their
Implementation in Monte Carlo Simulations

Since the SRR in the subdiffusive regime significantly depends
on the phase function, several phase functions that have been

proposed for biological tissues were considered. In addition
to the common Henyey–Greenstein (HG) phase function pHG,
we used the modified Henyey–Greenstein (MHG) phase func-
tion, which also accounts for the angular dependence of the
Rayleigh scattering:12

EQ-TARGET;temp:intralink-;e001;326;538pMHGðxÞ ¼ βpHGðxÞ þ ð1 − βÞ 3
2
x2; (1)

where x represents the cosine of the scattering angle and β
adjusts the relative contribution of the HG phase function and
Rayleigh scattering. Another promising phase function for
describing scattering in biological tissues is the Gegenbauer
kernel (GK) phase function19,25,26

EQ-TARGET;temp:intralink-;e002;326;441

pGKðxÞ ¼ 2αGKgGK
ð1 − g2GKÞ2αGK

½ð1þ gGKÞ2αGK − ð1 − gGKÞ2αGK �
×

1

ð1þ g2GK − 2gGKxÞ1þαGK
; (2)

where αGK and gGK are the parameters of the GK phase function.
Additionally, we used phase functions for spherical particles
based on the Mie theory,27 which depend on the diameter and
the refractive index of the spherical particles, the refractive
index of the surrounding medium and the wavelength of the
incident light.

Existing MC light propagation simulations primarily use
the HG phase function to sample the scattering angles when
a photon packet undergoes a scattering event. In this aspect,
the HG phase function is convenient, since it allows analytical
expression of the cumulative probability distribution (CPD)
from which the scattering angles can be sampled. Analytical
expression for the CPD can also be obtained for the GK
phase function.28 In contrast, the CPD of MHG and Mie phase
functions can only be derived numerically, and thus, a lookup
table-based approach was used for sampling the scattering angle.29

2.3 Inverse Monte Carlo Model

The IMC model based on the lookup table approach introduced
by Palmer et al. and Hennessy et al.30,31 was used to estimate
the optical properties from the acquired SRR profiles R ¼
RðSDS1Þ; RðSDS2Þ; : : : ; RðSDS5Þ, where RðSDSiÞ is the reflec-
tance acquired at the i’th SDS. In both studies, the lookup
tables were introduced by only considering μa and μ 0

s . A similar
basic IMC (b-IMC) methodology was adopted in the initial
part of this study. In order to comply with biological tissue

0.
22

 m
m1.32 mm

Stainless steel

Black epoxy

Detector fiber

Source fiber

Fig. 1 Linear array optical fiber probe used to acquire the SRR pro-
files in the subdiffusive regime. The materials and source-detector
configuration of the probe are presented in different colors.
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characteristics32, the lookup table values for each SDS ranged
from 0 to 25 cm−1 for μa and from 5 to 70 cm−1 for μ 0

s

using 30 uniform steps. The b-IMC model was based on the
HG phase function with the anisotropy factor g set to 0.8.
A constant value of g was selected in accordance with the
first similarity relation for μ 0

s, which states that regardless of
the individual values of g and scattering coefficient μs, the
same values of μ 0

s result in the same reflectance.33–35

It has been shown, however, that higher similarity relations
are important when the SDS of the optical probe becomes com-
parable to the transport mean free path length.12 By following
the lookup table methodology, the b-IMC model was extended
(e-IMC) by an additional similarity parameter γ that was pro-
posed by Bevilacqua and Depeursinge.12 The e-IMC model
lookup tables included a third dimension for γ, which spanned
from 1.6 to 2.3 in 20 uniform steps, taking into account the bio-
logical variations.16,22 The e-IMC model was based on the GK
phase function that allowed the full span of γ values at g ¼ 0.8.
On the other hand, the MHG and HG phase functions are less
useful, since they only support γ values of up to 2, and HG phase
function does not allow independent selection of g and γ.

The simplified geometry (SG) was utilized by the IMC mod-
els when applied to the synthetic R. In contrast, the realistic
geometry (RG) was used, when the IMC models were applied
to the measured R.

As the number of independent measurements used in this
study is relatively low (five different SDS), formulation of a
new CF is essential for robust estimation of optical properties.
In this study, two CFs were compared

EQ-TARGET;temp:intralink-;e003;63;433CF1 ¼
X5

i¼1

fRmeasðSDSiÞ − RsimðSDSiÞg2; (3)

and

EQ-TARGET;temp:intralink-;e004;63;372CF2 ¼
X5

i¼1

flog½RmeasðSDSiÞ� − log½RsimðSDSiÞ�g2; (4)

where Rmeas and Rsim are the measured and simulated reflec-
tance, respectively. The choice of the second CF is based on
the dependence of reflectance on the SDS, which decreases
with the SDS for a few orders of magnitude. Each CF was
minimized by a trust-region-reflective algorithm available in

MATLAB® (Mathworks Inc.) as a function lsqnonlin.36 Values
of each optimized parameter were constrained to the range
defined in the corresponding lookup table. An initial estimate
was obtained by an exhaustive search over all the lookup
table entries. Subsequently, the estimate was refined by optimi-
zation and spline interpolation of the SRR over the IMC model
parameters.

2.4 Synthetic Datasets of Spatially Resolved
Reflectance Profiles

To objectively evaluate the performance of the IMC models,
synthetic datasets R of SRR profiles R were computed accord-
ing to the parameters in Table 1. Additionally, the synthetic
datasets included computed R of turbid phantoms, later used
for validation (see Sec. 2.6, Table 2). Each phantom comprised
150 synthetic R for wavelengths from 450 to 800 nm.

It should be noted that an arbitrary combination of g and γ
cannot be obtained for all the used phase functions. For HG
phase function, the relation between g and γ (i.e., γ ¼ gþ 1)
results in only six valid combinations of g and γ (Table 1, second
line). In the case of MHG phase function, a mathematical
constrain (i.e., γ < 1þ g) leads to only 14 combinations
(Table 1, third line). Lastly, combinations of g and γ, (0.75,
2.25) and (0.95, 1.65), are not valid for the GK phase function.
Thus, only 18 valid combinations of g and γ can be obtained
(Table 1, fifth line). The datasets RHG-I and RGK-I were intro-
duced for the performance verification of the b-IMC and e-IMC
inverse models, respectively. For these datasets, the error of
estimated parameters should be close to zero, given a proper
formulation of the CF is employed.

2.5 Experimental Setup for Reflectance
Measurements

SRR profiles in the subdiffusive regime were acquired by a cus-
tom-made linear array optical fiber probe (FiberTech Optica
Inc., Ontario, Canada) with five SDSs (220, 440, 660, 880,
and 1100 μm) and an outer diameter of 6.0 mm (Fig. 1). The
diameter of the optical fiber cores and the numerical aperture
of the fibers was 200 μm and 0.22, respectively. The optical
fiber probe was placed in a holder, which enabled repeatable
repositioning of the probe within the cylindrical beaker contain-
ing the liquid turbid phantom. The cylindrical beaker with

Table 1 Optical properties used for synthetic datasets R of SRR profiles R.

Synthetic dataset Phase function μa (cm−1) μ 0
s (cm−1) g γ Number of R

RHG-I Henyey–Greenstein 0 to 25
(15 values)

5 to 70
(15 values)

0.8 1.8 225

RHG-II Henyey–Greenstein 0 to 20
(5 values)

10 to 60
(5 values)

0.7, 0.75, 0.8,
0.85, 0.9, 0.95

1.7, 1.75, 1.8,
1.85, 1.9, 1.95

150

RMHG Modified Henyey–Greenstein 0 to 20
(5 values)

10 to 60
(5 values)

0.75, 0.8, 0.85,
0.9, 0.95

1.65, 1.75,
1.85, 1.95

350

RGK-I Gegenbauer Kernel 0 to 25
(10 values)

5 to 70
(10 values)

0.8 1.65 to 2.25
(10 values)

1000

RGK-II Gegenbauer Kernel 0 to 20
(5 values)

10 to 60
(5 values)

0.75, 0.8, 0.85,
0.9, 0.95

1.65, 1.85,
2.05, 2.25

450
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a diameter of 19.5 mm and a height of 30 mm was internally
coated with a black matte paint to reduce reflections from
the container walls and eliminate stray light pollution.
Additionally, the optical fiber probe was held at a position
far away from the beaker walls to satisfy the semi-infinite
medium assumption for the turbid phantoms. A broadband hal-
ogen light source (AvaLight-Hal LS, Avantes, The Netherlands)
was coupled to the source fiber. The collected light from each of
the five detector fibers was transmitted to a custom-made multi-
plexer, which comprised a motorized linear stage that aligned
the selected detector fiber with a fiber leading to the spectrom-
eter (AvaSpec-2048TEC-FT, Avantes). The recorded signal
from each detector fiber was corrected for the sensor dark cur-
rent and normalized by the Spectralon white signal (Avantes).
The SRR profiles were acquired in the wavelength range
from 450 to 800 nm.

2.6 Turbid Phantoms

Turbid phantoms with known optical properties are commonly
used to objectively evaluate experimental setups and computa-
tional methodologies in biomedical optics.37 In this study, we
prepared 24 water-based turbid phantoms comprising a mixture
of absorbers and scatterers. A green molecular dye found in
fountain pen inks (Live Line Green) was used as the absorber.
The molecular dye was thoroughly tested for its stability through
several weeks and proved to be stable even when exposed to
direct sunlight.38 The scattering component of the dye was neg-
ligible due to its molecular nature. A 1-mm cuvette and a cuvette
holder (CVH100/M, Thorlabs) were used to measure the
absorption coefficient μa of the molecular dye (without the scat-
terer) by observing the attenuation of a collimated light beam
through the cuvette. The absorption coefficient was computed
according to the Beer–Lambert law. Polystyrene microspheres

(diameter 0.51� 0.01 and 0.99� 0.03 μm, Polysciences Inc.)
were used as the scatterer. The respective μs and phase functions
were calculated according to the Mie theory and the narrow size
distribution of the microspheres (nearly monodisperse) provided
by the manufacturer. The wavelength dependence of the poly-
styrene refractive index was taken from Nikolov et al.39

The prepared turbid phantoms were divided into two groups.
The first group of phantoms P1 to P12 comprised only scatterers
(phantoms P1 to P6 comprised 0.51 and phantoms P7 to P12
comprised 0.99-μm microspheres, Table 2). The second
group of phantoms P13 to P24 comprised scatterers and green
molecular dye (phantoms P13 to P18 comprised 0.51 and phan-
toms P19 to P24 comprised 0.99-μm microspheres, Table 2). The
values of μa for the second group of phantoms ranged between
8.2 and 10.3 cm−1 at 630 nm (absorption peak). The micro-
sphere number density n and corresponding μa and μ 0

s for all
the prepared turbid phantoms are listed in Table 2.

3 Results and Discussion

3.1 Cost Function Evaluation

The performance and robustness of the proposed CFs were
evaluated on the synthetic dataset RHG-I by deploying the
b-IMC model. The b-IMC model was selected for its depend-
ence on only two parameters (μa and μ 0

s) and, hence, easier
visualization of the CF (Fig. 2). The presented example (R from
the dataset RHG-I with the true values of μa ¼ 12.5 cm−1 and
μ 0
s ¼ 18.9 cm−1) clearly shows that the CF significantly affects

the estimation of optical properties by the IMCmodels. The CF2
[Eq. (4)] exhibits improved localization of the minimum with
respect to the CF1. Moreover, the relative root-mean-square
(RMS) error obtained by the b-IMC model using the CF1
for the entire dataset RHG-I is 2.7% and 2.8% for μa and μ 0

s ,

Table 2 Microsphere number density n, reduced scattering coefficient μ 0
s and absorption coefficient μa at 630 nm for each phantom P comprising

0.51- and 0.99-μm diameter polystyrene microspheres and, for the absorbing phantoms, also green molecular dye.

0.51� 0.01 μm 0.99� 0.03 μm

P n (spheres∕ml × 1010)
μ 0
s (cm−1) @
630 nm

μa (cm−1) @
630 nm P n (spheres∕ml × 1010)

μ 0
s (cm−1) @
630 nm

μa (cm−1) @
630 nm

1 3.54 9.52 0 7 0.486 7.61 0

2 6.27 16.9 0 8 0.852 13.3 0

3 7.13 19.2 0 9 0.975 15.3 0

4 8.90 24.0 0 10 1.21 19.0 0

5 11.6 31.2 0 11 1.58 24.7 0

6 14.3 38.5 0 12 1.95 30.6 0

13 3.55 9.56 10.1 19 0.483 7.56 10.1

14 6.23 16.8 9.24 20 0.851 13.3 9.24

15 7.13 19.2 8.95 21 0.971 15.2 8.96

16 8.89 23.9 10.3 22 1.21 19.0 10.3

17 11.6 31.2 9.25 23 1.57 24.6 9.29

18 13.3 35.8 8.59 24 1.95 30.5 8.22
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respectively. In contrast, the relative RMS error obtained by the
CF2 was one order of magnitude lower, i.e., 0.32% and 0.33%
for μa and μ 0

s , respectively. For the sake of completeness, the
performance of the two CFs was also compared by the e-IMC
model. As with the b-IMC model, the relative RMS errors
obtained by the e-IMC model based on the CF1 (5.6%,
4.4%, and 4.7% for μa, μ 0

s , and γ, respectively) were one
order of magnitude higher than the errors obtained by the
e-IMC model based on the CF2 (0.60%, 0.58%, and 0.76%
for μa, μ 0

s , and γ, respectively). The obtained results clearly show
the superiority of the CF2 over CF1. Consequently, CF2 was
used in all subsequent calculations involving the b-IMC and
e-IMC models.

3.2 Influence of the Phase Function on
the Subdiffusive Reflectance and on
the Inverse Monte Carlo Models

Subdiffusive reflectance is known to significantly depend on the
phase function. As explained in Sec. 1, the similarity parameter

γ has been suggested to account for some of the subdiffusive
reflectance variability that arises from the phase functions.
In other words, for a constant μa and μ 0

s , the phase function-
dependent changes in the subdiffusive reflectance should be
reduced when the additional similarity parameter γ is kept con-
stant as well.

In order to study the beneficial effect of γ, we introduced
relative variability maps of the subdiffusive reflectance as a
function of μa and μ 0

s at a particular SDS. The relative variability
maps were derived as a ratio between the standard deviation
and the mean of the reflectance maps across different phase
functions. Figure 3 shows the relative variability maps at
three SDS of 220, 660, and 1100 μm. In the top row (constant
g), the HG, MHG, and GK phase functions were used with
g set to 0.8 and γ varied from 1.7 to 1.9. In the bottom row
(constant γ), the HG, MHG, and GK phase functions were
used with γ set to 1.7 and g varied from 0.7 to 0.9. In comparison
to g, γ significantly reduces the variability of the reflectance for
μ 0
s exceeding ∼15 cm−1 when different phase functions are
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used. Moreover, although g is frequently described in the liter-
ature as an important observable of the angular scattering dis-
tribution in turbid media, the subdiffusive reflectance is more
dependent on the changes of γ than g. Similar conclusions
were recently made by Calabro and Bigio15 and Bodenschatz
et al.40 The reason for the increased sensitivity of the subdiffu-
sive reflectance to the phase function observed at the low
reduced scattering coefficients can be attributed to the longer
photon mean free path lengths. In this case, the photons that
contribute to the reflectance signal exhibit only a few scattering
events, with one of those events likely to be a large-angle deflec-
tion. Therefore, reflectance is highly dependent on the large-
angle section of the phase function, which is only approximately
accounted for by γ. The effect can be observed in the reflectance
variability map in Fig. 3 (bottom row) computed for phase func-
tions that despite having a common γ still exhibit significant
differences in the large-angle section. To account for this short-
coming, Bodenschatz et al.40 have proposed a parameter σ,
which reduced the variability of reflectance for a constant μa
and μ 0

s and different phase functions in the spatial frequency
domain. However, in the same study, σ was not found to signifi-
cantly reduce the variability in the spatially resolved domain in
comparison to γ. We believe that the performance of the e-IMC
model for μ 0

s below ∼15 cm−1 could be significantly improved
by introducing higher order similarity parameters beyond γ,41

e.g., δ ¼ ð1 − g3Þ∕ð1 − g1Þ,42 where g3 is the third Legendre
moment of the phase function. Keeping the values of γ and δ
constant should in principle significantly reduce the relative
variability of subdiffusive reflectance computed for different
phase functions at any given value of μa and μ 0

s .
Another interesting observation can be made at the smallest

SDS, where a region of significantly decreased relative reflec-
tance variability occurs. In this region, the reflectance seems
unaffected by the choice of the phase function as long as μa
and μ 0

s are kept constant. This observation, named as the “iso-
bestic point,” was also made by Calabro and Bigio,15 and it is

believed to occur at μ 0
s SDS ≈ 0.7. In this study, the SDS of

220 μm evaluates to an isobestic point of 32 cm−1, which is
consistent with the results in Fig. 3.

To evaluate the effect of the phase function on the estima-
tion of optical properties, the synthetic dataset RGK-I was ana-
lyzed by the b-IMC and e-IMC models. The RGK-I dataset is
based on the GK phase function with the value of g set to 0.8
and γ varied from 1.65 to 2.25, which is similar to the condi-
tions used for producing the results in the top row of Fig. 3,
where g was constant. Figure 4 (top row) shows the relative
errors obtained for the estimated μa and μ 0

s by the b-IMC
model from the dataset RGK-I. The values of μa and μ 0

s used
in RGK-I are color-coded and can be deduced from the corre-
sponding colorbars. It can be observed that the accuracy of the
estimated optical properties decreases significantly due to the
variations in γ. The relative errors are the lowest for γ ¼ 1.8,
where the GK phase function simplifies to HG phase function.
For all the other values of γ, the performance is significantly
degraded. In contrast, a significant improvement in the accu-
racy of the optical properties estimated by the e-IMC model
from the same dataset RGK-I can be observed in Fig. 4 (bottom
row). The relative errors of the estimated optical properties
obtained by the e-IMC model are mostly within 2% for all
of the selected values of γ.

The results of b-IMC model presented in Fig. 4 clearly sug-
gest that using only the first similarity relation will lead to large
relative errors of the estimated optical properties. For example,
although the dataset RGK-I is simulated using a phase function
with a constant g, the changes in the reflectance due to changes
in phase function arising from γ cannot be sufficiently accounted
for by the first similarity relation. This observation could explain
one of the possible sources of errors in studies that utilized
b-IMC-like models for optical fiber probes with similar SDS
as used in this study.31,43,44 We believe that the listed studies
could be improved by using additional parameters such as γ
in addition to μa and μ 0

s in the IMC models to account for
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some of the phase function variability that influences the reflec-
tance at small SDS.

3.3 Performance of the Basic and Extended Inverse
Monte Carlo Models on Synthetic Datasets of
Spatially Resolved Reflectance Profiles

To further examine the effect of γ on the estimated optical prop-
erties, the b-IMC and e-IMC models were extensively evaluated
and compared on synthetic datasets of R (Sec. 2.5, Table 1).
The variability of phase functions captured by the synthetic
datasets should account for the variability observed in biological
tissues. Consequently, similar errors can be expected for mea-
sured R of biological tissues.

Figure 5 shows the values of μa and μ 0
s estimated by the

b-IMC and e-IMC models with respect to the true values
used to compute the synthetic datasets. The performance of the
e-IMC model is evidently superior to the b-IMC model, since
the values obtained by the b-IMC model are significantly more
dispersed along the ideal relationship line between the true and
estimated parameter values. Moreover, the e-IMC model offers
an additional estimate of the similarity parameter γ [Fig. 5(e)].

Quantitative results obtained for each synthetic dataset in
terms of the two IMC models are summarized in Table 3.
As expected, both IMC models performed with relative RMS
errors well below 1% when tested on the datasets RHG-I and
RGK-I, respectively. The two datasets were obtained by the
same phase functions that were used to create the lookup tables.
The performance of the b-IMC model clearly degrades for the
dataset RHG-II with g varying between 0.7 and 0.95. In contrast,
the e-IMC model does not seem to be significantly affected
by the variation in g, which is in agreement with the results in
Fig. 3 (bottom row). The e-IMCmodel performs similarly on the
RGK-II dataset. However, the RMS errors of the IMC models
further increase when applied to the MHG and Mie phase
function-based datasets (RMHG, pure scattering P1 to P12, and
scattering and absorbing P13 to P24 datasets). Once more, the
b-IMC model is much more affected by the changes in the
phase function and exhibits twice the relative RMS error of
the e-IMC model. The quantitative advantage of the e-IMC
model over the b-IMC model can be observed in Table 3 that
summarizes the results across all the datasets (all datasets).

Despite the improved result, the performance of e-IMC
model on the dataset of scattering and absorbing phantoms
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P13 to P24 is still significantly degraded. Previous results (bottom
row in Fig. 3) point out that γ does not fully eliminate the vari-
ability of reflectance for low reduced scattering coefficients
(especially below ∼15 cm−1), when different phase functions
are used. Since Fig. 3 only includes HG, MHG, and GK phase
functions, we also constructed similar relative subdiffusive
reflectance variability maps that depend only on the GK and
Mie phase functions. Specifically, Fig. 6 shows the relative vari-
ability map for three different phase functions with γ set to
2.1. The first-phase function was GK with g ¼ 0.8, which was
also used to create the e-IMC lookup table. The second-phase
function was Mie for 0.51-μm polystyrene spheres at 705.8 nm,
which yields g ¼ 0.79. Finally, the third-phase function was
Mie for 0.99-μm polystyrene spheres at 499.5 nm, which yields
g ¼ 0.93. Figure 6 highly resembles the bottom row of Fig. 3,
thus again suggesting that γ cannot fully account for the vari-
ability of the phase function for low μ 0

s. Moreover, since the
GK phase function is used in the e-IMC model, an SRR profile
simulated by a different phase function with the same value of γ
could be different due to the phase function properties that

cannot be accounted for by the first two Legendre moments
encapsulated in γ. These differences between the e-IMC model
and the SRR profiles then propagate into errors of the estimated
μa, μ 0

s , and γ. The observation is further confirmed by removing
the phantoms P1, P7, P13, P19, that exhibited μ 0

s below 15 cm−1

over the majority of the wavelength range, from the summarized
RMS errors (All − fP1; P7; P13; P19g; Table 3). As a result,
the summarized RMS errors drop significantly and are now
0.12 cm−1 (3.2%), 0.56 cm−1 (2.0%), and 0.049 (2.3%) for
μa, μ 0

s , and γ, respectively.

3.4 Performance of the Extended Inverse Monte
Carlo Model on Measured Spatially Resolved
Reflectance Profiles

Finally, we evaluated the e-IMC model on measured R acquired
from turbid phantoms (Sec. 2.6). To compare the measured
reflectance to the MC simulated reflectance at a particular
SDS, a calibration procedure was required. Briefly, the MC
simulated reflectance is normalized against the initial number

Table 3 The RMS errors of the estimated optical properties obtained by the b-IMC and e-IMC models on synthetic datasets of SRR profiles R.

Synthetic datasets of R

b-IMC e-IMC

RMS error μa RMS error μ 0
s RMS error μa RMS error μ 0

s RMS error γ

RHG-I 0.030 (0.32%) 0.11 (0.33%) 0.073 (1.0%) 0.21 (0.70%) 0.013 (0.74%)

RHG-II 0.32 (3.4%) 0.68 (2.6%) 0.12 (1.2%) 0.39 (1.3%) 0.029 (1.6%)

RGK-I 0.95 (9.7%) 2.3 (6.8%) 0.066 (0.60%) 0.23 (0.58%) 0.015 (0.76%)

RGK-II 1.24 (13.6%) 2.5 (10%) 0.16 (1.7%) 0.51 (1.8%) 0.034 (1.6%)

RMHG 0.60 (6.6%) 1.4 (6.1%) 0.29 (3.0%) 1.04 (3.3%) 0.062 (3.5%)

Pure Scat. P1 − P12 0 (NA) 0.86 (4.1%) 0 (NA) 0.49 (1.6%) 0.071 (3.3%)

Scat. and Abs. P13 − P24 0.91 (42%) 1.8 (13%) 0.35 (14.8%) 0.74 (6.1%) 0.10 (4.5%)

All datasets 0.75 (21%) 1.7 (8.7%) 0.22 (7.4%) 0.59 (3.6%) 0.071 (3.3%)

All − fP1;P7;P13;P19g 0.68 (16.4%) 1.7 (6.5%) 0.12 (3.2%) 0.56 (2.0%) 0.049 (2.3%)
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of launched photon packets, while the measured reflectance is
normalized against a reflectance standard. Consequently, to
account for the reflectance properties of the standard, the reflec-
tance of the turbid phantoms with known optical properties is
measured and simulated. The calibration factor is introduced
as the ratio between the MC simulated and measured reflec-
tance. Ideally, the calibration factor for a given wavelength
and SDS should remain the same across all the turbid phantoms.
In this study, the purely scattering phantoms P1 to P12 were
used for computing the calibration factors. The variations of
the calibration factors at all spectral bands and SDS were within
2%, and mostly arising from the variations in the measurements.

The performance of the e-IMC model was evaluated on the
remaining turbid phantoms P13 to P24 with nonzero μa. The esti-
mated values of the optical properties with respect to the corre-
sponding true values are shown in Fig. 7 and are similar to those
in Figs. 5(c)–5(e). Moreover, the RMS errors of μa, μ 0

s , and γ
obtained for the turbid phantoms are 0.38 cm−1 (15.6%),
0.71 cm−1 (5.8%), and 0.10 (4.8%), respectively, and tightly
follow the results obtained for the corresponding synthetic
datasets (Table 4). In addition, by removing the turbid phantoms
P13 and P19 (μ 0

s below 15 cm−1) from the summarized RMS

errors, nearly a twofold improvement in terms of relative RMS
error is attained. Consequently, the RMS errors stay within the
10% margin, however, only for a subregion of optical properties
where μ 0

s exceeds ∼15 cm−1. The obtained results in this section
are consistent with the results shown in Figs. 3 and 6, where γ
accounts for the phase functions variability only for μ 0

s values
exceeding ∼15 cm−1.

The related studies from Hennessy et al.31 and Rajaram
et al.43 estimated μa and μ 0

s with relative RMS errors of 0.74%
and 1.74%, and 11.6% and 5.9%, respectively. Both studies used
optical fiber probes with small SDS between 250 and 300 μm.
According to these results, the proposed e-IMC model gives
slightly higher relative errors for the turbid phantoms P13 to
P24. The results by Hennessy et al. are especially surprising
since the employed IMC model was based on the HG phase
function at a constant g ¼ 0.85 (similar to our b-IMC model),
while the validation was performed on turbid phantoms contain-
ing polystyrene microspheres that follow the Mie phase func-
tion. We have shown that the reflectance at small SDS and
constant g can vary significantly, if different phase functions
are used (Fig. 3). Moreover, we have observed a significant deg-
radation of the b-IMC model on synthetic datasets (Table 3).
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Table 4 The RMS errors of the estimated optical properties obtained by the e-IMC models on synthetic (left) and measured (right) SRR profiles of
turbid phantoms.

Phantoms

e-IMC, synthetic e-IMC, measured

RMS error μa RMS error μ 0
s RMS error γ RMS error μa RMS error μ 0

s RMS error γ

Scat. and Abs. 0.35 (14.8%) 0.74 (6.1%) 0.10 (4.5%) 0.38 (15.6%) 0.71 (5.8%) 0.10 (4.8%)

Scat: andAbs: − fP13;P19g 0.14 (6.3%) 0.63 (2.7%) 0.066 (3.0%) 0.21 (8.4%) 0.59 (2.5%) 0.072 (3.3%)
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Naglič et al.: Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime



One of the possible causes for a better performance of the IMC
models in the related studies is the use of spectral constrains in
terms of tissue chromophore concentrations and spectral
dependence of the μ 0

s . Spectral constrains were required because
only one SDS was utilized, thus the full reflectance spectrum
was used to estimate only a few parameters. This, however, sig-
nificantly reduced the number of optimized parameters in com-
parison to the number of available measurements. It is important
to note that unlike the IMC models presented in the related stud-
ies, the e-IMC model does not require spectral constrains. In this
way, the e-IMC model requires no prior knowledge of the chro-
mophores and scatterers in the turbid medium to estimate μa, μ 0

s ,
and γ. As such, the e-IMC can be utilized only at particular
wavelengths. In addition, spectral constrains can be easily intro-
duced into the e-IMC model. We believe that this should in prin-
ciple further reduce the relative error of the estimated quantities
since there would be significantly more measurements and less
parameters to optimize. For human tissues, this would most
commonly include modeling μa by the absorption spectra
of chromophores, such as oxygenated and deoxygenated hemo-
globin, melanin, carotenoids, while μ 0

s can be modeled as
μ 0
sðλÞ ¼ Aðλ∕λ0Þ−B.32 The spectral dependence of γ in tissue is

close to constant across the visible spectrum and could thus be
adequately modeled by a linear or quadratic function.16,45

Finally, the turbid phantoms used in this study to experimen-
tally test the e-IMC model were based on polystyrene micro-
spheres, which follow the Mie phase function. Polystyrene
microspheres are very practical to use since they are available
in standardized nearly monodisperse suspensions. In this way,
the scattering coefficient and the phase function can easily be
calculated. However, monodisperse solutions do not exactly
mimic the tissue optical properties in terms of the shape of
the phase function. As a result, the accuracy of the estimated
optical properties for tissues can somewhat differ from the accu-
racy obtained for such turbid phantoms. Since biological tissues
exhibit phase functions similar to GK or MHG, more accurate
results can be expected by the e-IMC model (similar to the syn-
thetic dataset RGK-II or RMHG in Table 3).

4 Conclusion
This study offers a simple yet effective approach for estimation
of optical properties in the subdiffusive regime where the reflec-
tance significantly depends on the phase function. The subdif-
fusive reflectance variability due to the phase function can be
reduced by taking into account an additional similarity param-
eter γ, which carries additional information about the turbid
medium phase function. Although γ did not guarantee reduced
reflectance variability for reduced scattering coefficients under
∼15 cm−1, it has proved beneficial when used in the IMC
model. In comparison to the b-IMC model that depends only on
the absorption and reduced scattering coefficients, the e-IMC
model extended by γ showed increased accuracy when used
on synthetic datasets and measured SRR profiles of turbid
phantoms. For a subset of optical properties where the reduced
scattering coefficients exceeded ∼15 cm−1, the relative RMS
errors of the estimated absorption and reduced scattering coef-
ficients, and the similarity parameter γ for measured SSR pro-
files were 8.4%, 2.5%, and 3.3%, respectively.

The main advantage of the e-IMC model is that in conjunc-
tion with the proposed CF, the absorption and reduced scattering
coefficients and γ can be estimated from SRR profiles acquired
at only five SDS. This can reduce the acquisition time and, due

to the fast estimation of optical properties by the lookup table
approach, potentially offer a faster and a more detailed insight
into human tissues in a clinical setting. Moreover, the e-IMC
model, unlike many other proposed IMC models, offers estima-
tion of optical properties without any prior knowledge of the
tissue chromophores or the spectral dependence of the reduced
scattering coefficient or γ. Consequently, the e-IMC model can
be used for analysis of turbid media that have not yet been exten-
sively studied. While the e-IMC model presented in this study is
intended for semi-infinite media, multilayered models can be
supported by extending the lookup tables. Likewise, the e-IMC
model can be extended to estimate similarity parameters beyond
γ, which could further improve the accuracy of the inverse
model, or any of the additional parameters of the turbid medium
or biological tissue, provided that the correlations among the
free parameters are small. The main concern with the e-IMC
model is its limited use for reduced scattering coefficients below
∼15 cm−1. Since many of the studies to date have used γ,
we believe they might have suffered from similar limitations.
By considering higher order similarity parameters in addition
to γ, this limitation might be overcome. With this study, we
attempted to point out the advantages and the limitations of
the e-IMC model for estimation of optical properties by SRR
spectroscopy in the subdiffusive regime. The fact that γ has a
limited use requires further investigation for a new or additional
parameters that would better encapsulate the phase function
information.
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