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Abstract. We propose a framework for automated detection of dry age-related macular degeneration (AMD) and
diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse
coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art
methods. First, our method presents a general approach to automatically align and crop retina regions; then
it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass
linear support vector machine classifier is employed for classification. We apply two datasets for validating
our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from
45 subjects—15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset,
consisting of 678 OCT retina scans acquired from clinics in Beijing—168, 297, and 213 OCT images for
AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%,
100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs
much better than the conventional method; for the latter dataset, our classifier leads to a correct classification
rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.1.016012]
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1 Introduction
Optical coherence tomography (OCT) has been widely adopted
in ophthalmology as a clinical aid for identifying the presence of
various ocular pathologies and their progression.1 The ability to
visualize the internal structure of a retina makes it possible to
diagnose diseases such as age-related macular degeneration
(AMD) and diabetic macular edema (DME) (the leading cause
of blindness of the elderly2 and the most common cause of irre-
versible vision loss in individuals with diabetes, respectively).

Over the past two decades in the field of OCT image inter-
pretation, a majority of the previous works on image processing
and computer vision have been dedicated to methods of
retinal layer segmentation,3–18 which we do not discuss in
this paper. Many papers have also investigated OCT image
classification.19–23 In addition, more methods have recently
been proposed to address the problems about OCT image clas-
sification between patients without retinal pathologies and
patients with retinal pathologies (especially AMD and DME).
In 2011, Liu et al.24 proposed a methodology for detecting
macular pathologies (including AMD and DME) in foveal slices
of OCT images, in which they used local binary patterns and
represented images using a multiscale spatial pyramid (SP)
followed by a principal component analysis for dimension
reduction. In 2012, Zheng et al.25 and Hijazi et al.26 proposed

a method for representing images based on the graph. First, they
decomposed images into a quad-tree collection; next, they
employed the subgraph mining technology to analyze these
quad-trees, and having the ability to distinguish subgraphs,
they selected common subgraphs to generate the global vector
for each image. Then they trained the classifier with the feature
vectors. Finally, a binary classification over normal and AMD
OCT images was performed. In 2014, Srinivasan et al.27 pro-
posed a detection method to distinguish normal OCT volumes
from DME and AMD volumes. In their work, a histogram of
oriented gradients (HOGs) was extracted for each slice of
a volume and fed to a linear support vector machine (SVM).
All the aforementioned approaches are methods for classifying
two-dimensional (2-D) OCT images, although the method in
Ref. 27 could classify three-dimensional (3-D) OCT retina
images. However, Albarrak et al.28 proposed a method that
could directly deal with a 3-D OCT retinal image by first,
decomposing the original 3-D OCT volume image into sub-
volume images and representing them with a tree structure;
then representing the tree with high-frequency occurrence sub-
graphs obtained by using the subgraph mining technology; next,
extracting the features of the subgraphs and concatenating them
as the representation of the entire volume; finally, performing
a binary classification with normal and AMD OCT images.

In works that related to us,24,27 Srinivasan et al.’s preprocess-
ing algorithm to align the retina region is suitable for the dataset
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that consists of OCT images with a clear or slightly distorted
retinal pigment epithelium (RPE) layer [Fig. 1(a)] because the
RPE layer estimation was used for alignment. Obviously,
the RPE segmentation method is not accurate for estimating
the RPE boundary with a severely distorted RPE layer as
shown in Fig. 1(b). That is to say, the preprocessing algorithm
in Ref. 27 is not suitable for more complex datasets that include
OCT images of a retina with a severely distorted RPE layer. In
the aspect of classification, the algorithm in Ref. 27 requires
input cropped OCT images to have the same resolution, and
it has a large memory requirement when the field of view,
defined by the cropped area, is large. In Liu et al.’s work,24

the retina aligning method flattens the retina region by fitting
to a parabola without segmenting the RPE layer, but our experi-
ments show that this method does not deal well with some OCT
images of retinas with severe diseases that make the lesion por-
tion of the retina swell up as shown in Fig. 2. This means that in
real applications the retina aligning algorithm in Ref. 24 could
not perform well for complex datasets that include OCT images
with aforementioned severe diseases, especially in a large
amount. In addition, Liu et al.24 adopted a nonlinear SVM29

for classification, so that their algorithm had a computational
complexity of Oðn2←n3Þ in training and OðnÞ in testing,
where n is the training size, indicating that it is nontrivial to
scale-up the algorithms to handle a large number of training
images.

The rapid progress of image processing techniques brings
an idea to the study of retinal OCT image processing and clas-
sification. To our knowledge, classification techniques based
on image sparse representation are widely investigated and
have been successfully applied in scene classification and
face recognition fields. Linear SP matching (SPM) based on
sparse coding (ScSPM)30 is a representative dictionary learning

method for natural image classification. Its key idea is to
replace K-means vector quantization in Ref. 31 with sparse
coding. In addition, the original SPM spatial pooling is
obtained by calculating the histogram but ScSPM uses max
pooling. The advantage of this method is the feasibility of
employing a linear SVM model for classification, so that it
not only has a better classification accuracy compared to
the traditional method, but also remarkably reduces the com-
plexity of SVMs to OðnÞ in training and a constant in testing,
which provides a solution for large-scale image training and
classifying tasks. In recent years, sparse representation tech-
niques have been applied to OCT image processing, such as
denoising and compression.32–34 Fang et al.32,33 applied the
sparse representation to OCT image denoising and com-
pressing. Kafieh et al.34 employed dual-tree complex wavelet
transform instead of redundant discrete cosine transform as the
initial dictionary to perform multiscale dictionary learning,
whereby they proposed the complex wavelet dictionary learn-
ing method based on 2-D/3-D, which has been successfully
applied in the course of OCT image noise reduction. To our
knowledge, no works have been performed to use sparse cod-
ing and dictionary learning for detecting AMD and DME from
OCT images. This paper proposes a general framework for dis-
tinguishing normal OCT images from DME and AMD scans
based on sparse coding and dictionary learning. Here, a tech-
nique for preprocessing and alignment of a retina is proposed
to address the deficiency of the previous methods, which can-
not correctly classify a dataset that contains OCT images with
a severely distorted retina region. Additionally, sparse coding
and SP for preprocessing and an SVM for the classification are
used to improve the automatic classification performance of
the retina OCT images.

The paper is organized as follows. Section 2 demonstrates
our macular pathology classification method in detail. Section 3
presents our experimental results and analysis over two
spectral domain OCT (SD-OCT) datasets, and Sec. 4 outlines
conclusions.

2 Approach
Sparse representation of signals has been widely investigated in
recent years. Using an overcomplete dictionary that contains
prototype signal atoms, signals are described by sparse linear
combinations of these atoms. Here, the key problem is how
to learn a dictionary to get the best sparse representation of
signals. In practice, given a set of training signals, we search
the dictionary that leads to the best representation for each
member in this set under strict sparsity constraints. K-SVD is

Fig. 1 OCT images of retina: (a) the one with clear RPE layer and (b) the one with a severely distorted
RPE layer.

Fig. 2 OCT image of the retina with lesion location swelling up.
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a representative dictionary learning method.35 It is an iterative
method that alternates between sparse coding of examples
based on the current dictionary and a process of updating the
dictionary atoms to better fit the data. SPM is an SP image rep-
resentation. We employ a three-level SPM in our work as shown
in Fig. 3. The method partitions an image into 2l × 2l blocks in
three different scales (l ¼ 0, 1, 2) and then computes the local
image representation within each of the 21 blocks; finally,
it concatenates all the local representations to form the vector
representation of the image, i.e., the global representation of
the image. ScSPM is an SPM based on sparse codes (SCs) of
scale-invariant feature transform (SIFT) features.30 In this
method, an image is partitioned into many patches; the SIFT
feature descriptor of each patch is computed and its sparse rep-
resentation is obtained for a learned dictionary; then the local
representation of each block is obtained by max pooling all
the SCs within the block. This representation is good enough
for image classification by using a linear SVM classifier.
In this paper, we use two techniques for image classification:
SP with sparse coding as well as a multiclass linear SVM.

Our classification approach consists of several steps that are
illustrated in Fig. 4. First, we preprocess the OCT images to
reduce morphological variations between OCT scans. Second,
we fragment every cropped image in the training set into
small patches and train a sparse dictionary with all SIFT descrip-
tors extracted from the selected patches of the training images.
Third, for each OCT image, we obtain its global representation
by using an SP image representation, SCs, and max pooling.
Fourth, three two-class linear SVMs are trained for image
classification.

2.1 Image Preprocessing

OCT images are usually rife with speckles and the position of
the retina varies substantially among scans, which makes it
nontrivial to align all the retina areas into a relatively unified
position. Therefore, an aligning method for preprocessing is
necessary. However, considering the previous works, there
are three issues that we have taken into consideration. First,
Srinivasan et al.27 aligned retina regions by fitting a second-
order polynomial to the RPE layer and then flattened the retina.
However, their method is invalidated once the RPE layer of the
retina is too severely distorted to fit the curve of the RPE boun-
dary of the retina [as depicted in Fig. 1(b)]. Second, Liu et al.24

aligned retina regions by fitting a second-order polynomial to
the whole retina OCT image. Although their aligning method
could deal with retina images that contain distorted RPE layers,
the effectiveness of their method is seriously reduced when their
algorithm is employed on a certain type of diseased retina where
the lesion portion is swelling up as shown in Fig. 2. Third, there
are many OCT images in our datasets where the RPE layer of the
retina is straight but at a certain angle with the horizontal line as
shown in Fig. 5. In that case, fitting the retina with a straight line
might be better than with a parabola. To solve the three problems
listed above and align retinas in a more robust way, we propose

Fig. 3 Three-level SP.

Fig. 4 Overview of our approach. Fig. 5 OCT image of a straight-strip shaped retina.
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a fully automated aligning method possessing three salient
characteristics. First, it perceives retinas without estimating
their RPE boundary. Second, it extracts two sets of data points
from a given image (for linear and curved fittings) and then
automatically chooses one set of data points that is more repre-
sentative of the retina morphology (in our paper, the two most
common morphologies of retina are considered: curved and
linear). Third, it automatically decides between a second-order
polynomial and a straight line to fit the set of data points being
chosen. Our aligning process is illustrated in Fig. 6, taking
the most common case as an example (using one of the two
sets of data points and the second-order polynomial fitting).
Furthermore, in Sec. 3.1, we will present and discuss more
cases that previous works24,27 have not taken into account.

We separate our aligning method into three stages: perceiv-
ing stage, fitting stage, and normalizing stage.

In the perceiving stage, our method detects the overall mor-
phology of a retina in the following steps. First, the sparsity-
based block matching and 3-D-filtering (BM3D) denoising
method36 are used to reduce noises of the original image
[Fig. 6(a)]. Second, the denoised image [Fig. 6(b)] is filtered
by a threshold value to perceive the structure of the retina
[Fig. 6(c)]. Third, a median filter is applied to remove detached
black dots inside the retina [Fig. 6(d)], especially dots near the
upper and lower edges of the white areas in Fig. 6(c), which
could hamper the aligning effect in the following steps.
Fourth, the morphological closing method is used to remove
large black blobs inside the retina, which cannot be removed
completely by the median filter [Fig. 6(e)]. Fifth, the morpho-
logical opening method is used to remove the detached white
dots (caused by large noise speckles existing in some OCT
scans, which are not presented in Fig. 6) outside the retina
[Fig. 6(f)].

In the fitting stage, our method automatically chooses the set
of data points and a fitting method, and the whole process for
decision making in this stage is illustrated in Fig. 7. It could
be described in two steps:

Step 1: Choosing the set of data points for fitting.
Our method extracts two sets of data points from Fig. 6(f):

middle data points [i.e., each point is chosen from a unique col-
umn in the white area in Fig. 6(f), whose x-coordinate is the
index of the column and y-coordinate is the arithmetic mean
of y-coordinates of all points in the column] and bottom data
points [i.e., each point is chosen from a unique column in
the white area in Fig. 6(f), whose x-coordinate is the index of
the column and y-coordinate is the y-coordinate of the corre-
sponding bottom point in the column]. When choosing the
sets of data points (the middle data points versus the bottom
data points), our method performs the second-order polynomial
fitting to the middle data points for judging, if the fitted parabola
opens upward [Fig. 6(g)], then the middle data points are
chosen; if the parabola opens downward, then the bottom
data points are chosen.

Step 2: Choosing the fitting method (linear fitting versus
second-order polynomial fitting).

In the case when the middle data points are chosen, our
method performs the linear fitting to the data points and then
calculates the correlation coefficients (calculated by using the
MATLAB® command corrcoef) between the middle data points
and the two sets of the fitted points (i.e., one is from the linear
fitting and another is from the second-order polynomial fitting);
then the fitting method corresponding to a larger correlation
coefficient is chosen [i.e., a parabola is finally chosen to fit
the middle data points in Fig. 6(g) because there is a larger cor-
relation coefficient between the middle data points and the data
points to the fitted parabola (as opposed to the fitted linear line)].
In the case when the bottom data points are chosen, our algo-
rithm performs the second-order polynomial fitting to the bot-
tom data points for judging, if the fitted parabola opens upward,
then the linear fitting is done and the fitting method with a larger
correlation coefficient is chosen; if the parabola opens down-
ward, then the linear fitting method is chosen directly.

In the normalizing stage, our method normalizes the retinas
by aligning them to a relatively unified morphology and crops
the images to trim out insignificant space. When the second-
order polynomial fitting is chosen, the retina is flattened by
moving each column of the image a certain distance according
to the fitted curve [Fig. 6(h)]. In the case of the linear fitting, the
retina is aligned by rotating the entire retina to an approximately
horizontal position according to the angle between the fitted line
and the horizontal line. When cropping the image, our method
first detects the highest and lowest points of the white area when
the retina region is flattened as shown in Fig. 6(h), and then,
according to the points detected, it generates two horizontal
lines to split the whole flattened image into three sections:
upper, middle, and lower; finally, it vertically trims out the
upper and lower sections (which are insignificant to the retinal
characteristics) to get the middle section with no margins left
(Fig. 8). In this way, our method could retain morphological
structures of the retina that are useful for classification and
leave out disturbances as much as possible.

Our method performs the linear or second-order polynomial
fitting of the middle data points in most common cases, which
means that our algorithm employs all pixels within the retina
[i.e., the white area in Fig. 6(f)] to compute and generate the

Fig. 6 Description of the image aligning process: (a) original image,
(b) BM3D denoising, (c) binarizing, (d) median filtering, (e) morpho-
logical closing, (f) morphological opening, (g) polynomial fitting, and
(h) retina aligning.
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input data points, whereby we perform the linear or curve fitting.
We do not adopt the points of the bottom edge of the white areas
[as shown in Fig. 6(f)] as our first choice for the fitting because
the bottom line is relatively hard to fit because of its irregularity
below the RPE layer. Moreover, based on our experience, the
bottom edge of a retina [as shown in Fig. 6(f)] is roughly either
straight or parabolic (opening upward)-shaped, which should
not be fitted to a parabola opening downward. The cases in
which the bottom data points are chosen and the fitted parabola
opens downward (very rare in our experiments) are due to
irregularities below the RPE layers, where the linear fitting
performs much better in our experiments. Therefore, as we
explain in Fig. 7, when the bottom data points are chosen and
the fitted parabola opens downward, our algorithm directly
chooses the linear fitting method (no longer considers the
second-order polynomial fitting).

2.2 Dictionary Learning

In this phase, first we partition all the aligned and cropped
images in the training dataset into small rectangular patches
with a fixed size, as Fig. 9 demonstrates, and mix all patches

from all the images in the training dataset randomly. Then we
extract SIFT descriptors of every single random patch, each of
which is a 1 × D (where D is 128) dimension vector xi; next we
build an SIFT descriptor set X (X ¼ ½x1; : : : ; xM�T ∈ RM×D),
where M is the number of patches selected for dictionary learn-
ing from a random collection of image patches partitioned
from the training set attained in the previous step to solve
following Eq. (1) iteratively by alternatingly optimizing over
V or U (i.e., U ¼ ½u1; : : : ; uM�T ) while fixing the other30,35

EQ-TARGET;temp:intralink-;e001;326;204min
U;V

XM

m¼1

kxm − umVk2 þ λjumj; s:t: kvkk ≤ 1;

∀ k ¼ 1; 2; : : : ; K;

(1)

where V ¼ ½v1; : : : ; vK�T is retained as the dictionary, K is the
number of bases chosen in the dictionary, i.e., the dictionary
size. A unit L2-norm constraint on kvkk is typically applied
to avoid trivial solutions. In the sparse coding phase, for an
image represented as a set of SIFT descriptors X, the sparse
coding U is obtained by optimizing Eq. (1) when the dictionary
V is fixed.

Fig. 8 Aligned and cropped OCT image. Fig. 9 Retina partitioning.

Fig. 7 Complete process of making decision on the data points and the fitting methods.
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In our experiments, we use 60,000 or more SIFT descriptors
randomly extracted from the patches from all the images in our
training set to train the dictionary by solving Eq. (1). Once
we obtain the dictionary V in this offline training, we can do
online sparse coding efficiently on each descriptor of an image
by solving Eq. (1) when the dictionary V is fixed.

2.3 Image Feature Representation

In this phase, we build a global feature representation for each
cropped OCT image. The constructing process is illustrated in
Fig. 10. First, each cropped OCT image is partitioned into
patches, and SIFT descriptors of all patches are extracted.
Second, SCs of all the patches of the image are obtained by
applying the prelearned and fixed dictionary. Third, we re-
present each image by employing a three-level SP with 21
blocks in total; for each block in level 2, we obtain its local rep-
resentation by max pooling the SCs of all the patches in the
block, and the local representation of each block in level 1 is
obtained by max pooling the corresponding four block represen-
tations in level 2. In a similar way, the local representation of
the block in level 0 can be acquired from level 1. Finally,
the global feature representation of the image is obtained by
concatenating all the local representations of all the blocks in
the three levels.

2.4 Multiclass Linear Support Vector Machine

In this stage, we train three two-class linear SVMs as our clas-
sifiers, so that we can classify an input image into one of the
three labels: AMD, DME, and normal. During the training
phase, we train a single classifier per class, with the training
samples of that class as positive samples and the others as
negative samples. Let image Ii be represented by zi, given
the training data fðzi; yiÞgni , yi ∈ f1; · · · ; Lg, where L ¼ 3

(because in our experiment, DME, AMD, and normal OCT
images are used in training and classification), we can obtain
three two-class linear SVMs: AMD-against-all SVM, DME-
against-all SVM, and normal-against-all SVM, each of which
produces a real-valued confidence score for its decision, rather
than just a class label. During the classification phase, for a
single testing sample, we apply all the three classifiers (AMD,
DME, and normal) to the sample and predict the label, for
which the corresponding classifier reports the highest confi-
dence score.

3 Experiments and Results
In this section, we introduce two different datasets we applied in
our experiments, provide more cases in the image preprocessing
step and the way we address them, describe several experiments,
and present the experimental results over two datasets. In
addition to the results from our own implementations, we also
quote some results directly from the literature, especially those
from Ref. 27.

One of the datasets we applied for experiments is the Duke
dataset published by Srinivasan et al., which was acquired in
Institutional Review Board-approved protocols using Spectralis
SD-OCT (Heidelberg Engineering Inc., Heidelberg, Germany)
imaging at Duke University, Harvard University, and the
University of Michigan. This dataset consists of 45 OCT
volumes labeled as AMD (15 volumes), DME (15 volumes),
and normal (15 volumes). The number of OCT scans in each
volume varies from 36 to 97. We downloaded the full dataset
from Ref. 37.

The other dataset was obtained from clinics in Beijing, using
CIRRUS TM (Heidelberg Engineering Inc., Heidelberg,
Germany) SD-OCT device. The dataset consists of 168 AMD,
297 DME, and 213 normal OCT B-scans of a retina. All
SD-OCT images are read and assessed by trained graders.

Fig. 10 Approach of building the global feature representation of an image.
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For many images of a diseased retina with severely distorted
RPE layers [which is similar to the case shown in Fig. 1(b)]
in this dataset (roughly 27% for the AMD class and 6% for
the DME class), it is not feasible to flatten the retina region
by estimating the RPE boundaries.

Our fully automated classification algorithm was coded in
MATLAB® (TheMathWorks, Natick, Massachusetts) and tested
on a four-core PC with a Mac OS X EI Capitan 64-bit operating
system, Core i7-3720QM CPU at 2.6 GHz (Intel, Santa
Clara, California), and 8 GB of RAM. The ScSPM source
code was downloaded from website38 and adopted in our
own experiments.

3.1 Retina Region Aligning and Flattening

In this section, we describe more cases that previous works24,27

did not consider.
Figure 1 shows a severely distorted RPE layer of a retina that

cannot be easily segmented and flattened by segmenting its RPE
boundary as was done in Ref. 27. With our method outlined in
Sec. 2.1, we can easily find the entire retina area and fit it with
a second-order polynomial using its middle data points, as
depicted in Fig. 11(a); then we flatten the whole retina by
the fitted curve and trim out insignificant areas beyond the retina
to acquire the cropped image in Fig. 11(b).

Figure 12 demonstrated the retina flattening process with
linear fitting by using the middle data points of the retina
region. Figure 12(a) shows the original retina OCT image. In
this case, first the middle data points were employed owing
to the fitted parabola opening upward; then the linear fitting
method was selected [Fig. 12(b)] via correlation comparison,
which means that the linear fitting method had a better

representation of the overall morphology of the retina. Next,
the fitted line was used to align the retina regions [as
shown in Fig. 12(c)]. Finally, the cropped image is obtained
[Fig. 12(d)].

The following example is the case when our algorithm auto-
matically choses the lower edge of the retina to perform the lin-
ear fitting, as illustrated in Fig. 13. Figure 13(a) is the original
image sharing the same feature with Fig. 2, in which the retina
suffers local swelling in the lesion position. According to our
algorithm in Sec. 2.1 (Fig. 7), the middle data points were
first used to perform the second-order polynomial fitting. Since
the fitted parabola opened downward, the bottom data points
were chosen to perform the second-order polynomial fitting,
and the linear fitting method was chosen because the parabola
opened upward and the correlation coefficient corresponding to
the second-order polynomial fitting was smaller than that to the
linear fitting [Fig. 13(b)]. Finally, the fitted linear line was used
to align the whole retina to a relatively horizontal direction
[Fig. 13(c)]. Then we cropped the image to obtain the final
image [Fig. 13(d)]. In this example, when we used Liu et al.’s
method24 to align the same images [Fig. 13(a)], which means
employing the middle data points and flattening the retina
region according to the downward parabola, we finally obtained
Fig. 13(e), in which the retina was flattened in a reverse way and
the curvature of the retina became larger. There are many cases
like this one in our datasets, which Liu et al.’s preprocessing
method could not deal with well.

3.2 Classification Performance

We validated our classification algorithm by testing on the two
datasets mentioned above. In the experiments, we first obtained

Fig. 11 Curve fitting and flattening of the retina with a severely
distorted RPE layer.

Fig. 12 Linear fitting and flattening of a retina image.

Fig. 13 Case of preprocessing, in which the bottom data points of the
retina were employed to fit with a straight line. (a) The original OCT
image. (b) An intermediate result in our preprocessing process when
the bottom data points were fitted with a straight line. (c) An intermedi-
ate result in our preprocessing process when the retina was aligned
according to the fitted line. (d) The preprocessed result with our
method. (e) The preprocessed result with Liu et al.’s method.

Journal of Biomedical Optics 016012-7 January 2017 • Vol. 22(1)

Sun, Li, and Sun: Fully automated macular pathology detection in retina optical coherence. . .



the cropped retina images. The parameters selected for prepro-
cessing are listed below: 45 and 35 for sigma for the Duke
dataset and the Beijing clinical dataset, respectively, while
denoising images with the BM3D method; binary threshold
selected from Ostu’s algorithm39 for each image automatically;
35 × 35 median filter, disk-shaped structure element with
size 40 for morphological closing and size 5 for opening. We
observed that our aligning method with these parameters
could roughly align all the retinas to a horizontal and unifying
state with a little morphological variance and insignificant area.
We chose different parameters for sigma for two datasets
because their average noise levels of OCT images are different,
and we chose these parameters by constantly fine tuning them to
make the aligning effect best for each dataset. In real applica-
tions, we would suggest choosing a sigma parameter that is
suitable for the images in the corresponding dataset as much
as possible. The average preprocessing time per image was
about 9.2 s. In the dictionary learning phase, the SIFT descrip-
tors (with 1 × 128 dimensions for each of them) were extracted
from 16 × 16 pixel patches, which were densely sampled from
each training image on a grid with step-size eight pixels; 60,000
SIFT descriptors extracted from random patches in the training
images were used to train dictionary; the dictionary size was set
to be 1024, where each visual element in the dictionary was of
size 128; 0.3 for one free parameter λ in Eq. (1) was set when
sparse coding. The number of iterations (1, 5, 10, and 15) and
their influences on the experimental results were tested. For each
training set, dictionary learning was just done once and was
done offline. These parameters may be not optimized, but the
following experimental results show them to be excellent.

We first conducted our test on the Duke dataset (experiment
1). To compare our algorithm with that in Ref. 27 fairly, we
used leave-three-out cross-validation for 45 times as was
done in Ref. 27. For each time, the multiclass linear classifier
was trained on 42 volumes, excluding one volume from each
class, and tested on the three volumes that were excluded from
training. This process resulted in each of the 45 SD-OCT
volumes being classified once, each using 42 of the other
volumes as the training data. Since a volume contains many
OCT images of a specific person, we appoint a volume to a
class (AMD, DME, or normal), into which the most images
in the volume have been classified. We used our proposed pre-
processing method without RPE layer boundary segmentation,
and the iteration times in dictionary learning were set to be 1 for
saving the dictionary learning time. The actual dictionary learn-
ing time is approximately 763 s for each leave-three-out cross-
validation. The cross-validation results are shown in Table 1.
As can be seen from Table 1, 100% of 30 OCT volumes under
the AMD and DME classes were correctly classified, being
equal to that in Duke; and 93.33% of 15 OCT volumes under
the normal class were correctly classified with our method,

which is higher than that with the method proposed in Duke27

(86.67%). This shows that our proposed classification method
using sparse coding and dictionary learning for retina OCT
images performs much better than that in Ref. 27, which adopts
HOGs as feature descriptors and a linear SVM for classification.

By analyzing our experimental results in detail, we found
that, among the 15 OCT volumes under the normal class, 14
volumes were correctly classified and 1 volume (i.e., normal
volume 6) was misclassified into the DME class. Next, we
try to find reasons why normal volume 6 was misclassified.
Figure 14(a) is a typical case of images, not from normal volume
6, being correctly classified, from which we can see that the
cropped image retains only the areas between the upper layer
and the RPE layer of the retina, which contains only the
most useful information of image classification. In contrast,
Fig. 14(b) is a typical case of images, from normal volume 6,
being misclassified, from which we can see that its large portion
of insignificant area below the RPE layer visually resembling
the pathological structures presented in the DME cases was
retained. Since these insignificant areas widely exist in normal
volume 6 but not in other volumes after our preprocessing, we
speculate that the insignificant areas below the RPE layer of the
retina led to normal volume 6 being misclassified into the DME
class. To further prove our speculation, we excluded 45 rows
starting from the bottom of each aligned and cropped image in
normal volume 6 to roughly trim out the insignificant areas
below RPE layers; then we conducted experiment 1 again with
the slightly modified dataset, and the fraction of volumes for
each category (AMD, DME, and normal) correctly classified is
100%. This justified our speculation and showed a good perfor-
mance of our algorithm.

We further performed an experiment (experiment 2) on the
clinic dataset. Here, we employed our preprocessing method to
obtain the aligned and cropped OCT images and classify them.
We used a leave-three-out cross-validation on images, where the
multiclass linear classifier was trained on 675 OCT B-scans,
excluding one OCT B-scans randomly selected from each
class, and tested on the three scans that were excluded from
training. We did 300 times cross-validations, so that this process
resulted in each of the 678 OCT B-scans being roughly classi-
fied once. The correct classification rates of normal, AMD, and
DME subjects are presented in Table 2. In this test, the iteration
times in dictionary learning were also set to be 1 for saving the
dictionary learning time.

Table 1 Fraction of volumes correctly classified with the twomethods
on the Duke dataset.

Class Experiment 1 Duke27

Normal 14∕15 ¼ 93.33% 13∕15 ¼ 86.67%

AMD 15∕15 ¼ 100.00% 15∕15 ¼ 100.00%

DME 15∕15 ¼ 100.00% 15∕15 ¼ 100.00%

Fig. 14 Retina OCT images under the normal class in the Duke data-
set flattened and cropped by the aligning method proposed in this
paper. (a) A typical case from normal volumes except from normal
volume 6, which was correctly classified. (b) A case from normal
volume 6, which was misclassified.
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As shown in Table 2, the correct classification rates for
the AMD and DME classes are 99.67% (299∕300) and 100%
(300∕300) for the normal class. To fully evaluate our aligning
method, we considered the clinic dataset preprocessed by Liu
et al.’s preprocessing method and conducted the exact same
experiment (300 times leave-three-out cross-validations), and
the results are as follows: 100% (300∕300) for both normal
and DME classes and 97.67% (293∕300) for the AMD class.
In experiment 2, one DME scan was misclassified during
leave-three-out cross-validations performed 300 times as
shown in Table 2; however, the misclassified DME scan was
coincidently not chosen during leave-three-out cross-validations
performed 300 times when we perform the classification with
Liu et al.’s aligning method (i.e., in each cross-validation
loop, one OCT scan of each of three classes is randomly chosen
for testing). Thus, we conducted one more classification on the
clinic dataset preprocessed by Liu et al.’s aligning method, and
this time we chose the misclassified DME scan on purpose, and
it turned out that the DME scan was misclassified (into the
normal class) anyway. Hence, our aligning method promises
a better performance during classification.

In the above-mentioned experiments, the iteration times in
dictionary learning were set to be 1, and the dictionaries
were trained with 60,000 SIFT descriptors. It can be seen
from Tables 1 and 2 that the experimental results are excellent
for the two datasets. However, the learned dictionary is obvi-
ously not optimal for one iteration, the more iterations, the better
the representation of the dictionary. In addition, the total number
of SIFT descriptors selected from the training set should be
determined by the image dimension and the total number of
images fed for training; for a given dataset, the more descriptors
selected, the better the representation of the dictionary. More
iteration times and employed descriptors in the dictionary-
learning phase mean higher computational cost.

In the following, we conducted more experiments (experi-
ment 3) on the clinic dataset with different training sets and
iteration times. To obtain reliable results, we repeated the exper-
imental process by 10 times with different randomly selected

images in the clinic dataset for training and the rest for testing.
The correct classification rates of normal, AMD, and DME sub-
jects were recorded for every time. We reported our final results
by the mean and the standard deviation of the classification rates
of AMD, DME, and normal, respectively.

Here, we first chose half of the AMD, DME, and normal
images (84 AMD images, 148 DME images, and 106 normal
images) for training (simply called 1∕2 dataset training) and
the rest (84 AMD images, 149 DME images, and 107 normal
images) for testing. Then we chose two-thirds of AMD, DME,
and normal images (112 AMD images, 198 DME images, and
142 normal images) for training (simply called 2∕3 dataset train-
ing) and the rest (56 AMD images, 99 DME images, and 71
normal images) for testing.

In this experiment, the dictionaries are trained for 5, 10, and
15 iteration times, where the number of SIFT descriptors is fixed
to be 60,000. The experimental results are given in Table 3.

Several characteristics can be concluded here:

1. For the normal label, the correct classification rate is
always 100% in all our experiments.

2. For the AMD label, the correct classification rate
increases with the iteration times; for the same itera-
tion times, the bigger the training size is, the higher
the correct classification rate is.

3. For the DME label, the correct classification rates are
almost the same for 1∕2 dataset training and 2∕3 data-
set training when the iteration times were fixed.

4. Overall, 15 iterations is the best in terms of classifica-
tion performance.

The computational performances in experiment 3 are as
follows: the dictionary learning times are approximately 3400,
6700, and 10,000 s for 5, 10, and 15 iteration times, respectively.
For the 1∕2 dataset training, the average SVM training on 338
examples is 2.3 s, and the average classification time for each
cropped image is 3.0 s. For the 2∕3 dataset training, the average
SVM training on 452 examples is 2.8 s, and the average clas-
sification time for each cropped image is 3.1 s.

To evaluate the influence of the number of SIFT descriptors
on the learned dictionary and the correct classification rate when
the iteration times are fixed, we have conducted more experi-
ments using the aforementioned 2∕3 dataset training under
the condition on 80,000 SIFT descriptors randomly extracted
from the training image with 5 iteration times. The final correct
classification rates (%) for normal, AMD, and DME are
100.00� 0.00, 97.86� 1.84, and 100.00� 0.00, respectively.
The result is the best in all the experimental results that is

Table 2 Correct classification rate (%) during cross-validation on the
clinic dataset.

Class Experiment 2

Normal 300∕300 ¼ 100.00%

AMD 299∕300 ¼ 99.67%

DME 299∕300 ¼ 99.67%

Table 3 Correct classification rate (%) comparison of different proportion images for training on the clinic dataset.

Class

1∕2 dataset training 2∕3 dataset training

5 10 15 5 10 15

Normal 100.00� 0.00 100.00� 0.00 100.00� 0.00 100.00� 0.00 100.00� 0.00 100.00� 0.00

AMD 95.24� 1.86 95.36� 3.52 97.02� 1.40 96.79� 2.20 96.61� 1.32 97.32� 1.26

DME 99.87� 0.28 100.00� 0.00 99.87� 0.28 99.90� 0.32 100.00� 0.00 99.90� 0.32
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presented in Table 3. This shows that the dictionary learned from
80,000 descriptors is better than that trained from 60,000
descriptors. We did not conduct experiments with bigger itera-
tion times due to the relative high computational cost of diction-
ary learning.

4 Conclusion
In this paper, we propose a method for OCT image classification
between AMD, DME, and normal retina OCT scans. This
method was successfully tested in different datasets for the
detection of AMD and DME. The proposed method does not
rely on the segmentation of retina layers. This is a significantly
important feature when dealing with retina diseases that alter
retinal layers and thus complicate the layer boundary segmen-
tation task. Moreover, a multiclass linear SVM classifier based
on SCs and dictionary learning of the preprocessed OCT images
are used to detect AMD and DME diseases. This method has
a much better performance in the Duke dataset than the conven-
tional method in Ref. 27 and possesses an excellent classifica-
tion performance on our clinical dataset. Our algorithm is a
potentially impactful tool for the computer-aided diagnosis
and screening of ophthalmic diseases.

The preprocessing method for retina OCT images in our
algorithm has many advantages, including (1) input OCT
images could have different resolutions, which means that
our input data could be captured with different scanning proto-
cols, which is often the case in real-world clinical practice;
(2) it does not rely on any retina layer segmentation algorithms,
hence, it is suitable for OCT images with severe retina diseases;
(3) it provides linear or second-order polynomial fitting method
to flatten retina region, therefore, variations between OCT
images in morphologies could be reduced greatly; and (4) the
cropped OCT images obtained are data relative, which could
have different image sizes. The latter three features are different
from those in Ref. 27.

The classification method based on dictionary learning is
introduced to successfully classify the above-processed OCT
images. Its classifier training time complexity is OðnÞ when
the dictionary has been prelearned and its image classification
time is a constant for every image, where n is the number of
training samples of OCT images. Compared to the algorithm
in Ref. 27, which has a large memory requirement when the
field-of-view defined by the cropped area is large, the memory
requirement of our algorithm is independent of the field of view.

In our experiments, algorithm parameters for preprocessing
are given. Some parameters for dictionary learning and classifier
training are used according to ScSPM’s code implementation
for natural image classification. Although they are not optimal
for OCT images, their performance is excellent for our
experiments.

The limitation of our algorithm is the efficiency of the dic-
tionary-learning phase, which prevents us from doing further
validation during cross-validation with a larger dictionary,
more iteration times, and a larger number of training patches.
To our knowledge, the computational time in the learning dic-
tionary by solving Eq. (1) increases rapidly with the iteration
times and the number of the training patches selected to train
the dictionary. In our experiments, for a fixed number of
SIFT descriptors, different iteration times were set and their in-
fluence on the computational cost and classification rate were
tested. To solve the problem of the computational efficiency
of dictionary learning for large training examples, some

processing techniques, such as double sparse model40 and online
dictionary learning,41 have been developed. These methods
could solve our problem to some extent, and the development
of such methods for OCT image classification is part of our
ongoing work. In addition, deep learning has been proven to
be a good method in medical imaging,42 so the development
of the deep learning method for OCT image classification is
another part of our ongoing work.
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