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Abstract. Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially
when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of
light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm,
whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work
is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling frame-
work, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The
proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the
results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high
accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600;000
nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25 s∕excitation source.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.12.125001]
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1 Introduction
Functional neuroimaging provides an essential tool in the study
of the brain. It has been used to detect, localize, and classify
brain activations during physical and psychological events,
propelling applications in a myriad of areas, such as guiding
treatment and monitoring the rehabilitation progress in cases
of stroke, depression, or schizophrenia.1–3 Diffuse optical
tomography (DOT) is a soft tissue imaging technique based on
injecting near-infrared (NIR) light in a volume and measuring
the re-emerging light. In brain-related studies, the measured
alterations in the attenuation of the resurfacing NIR light reflect
changes in blood oxygenation and concentration induced by
tissue metabolism within the brain due to local neuron activa-
tions. Therefore, DOT has been used for functional brain
imaging4,5 and neonatal brain monitoring,6,7 as well as for meas-
uring absolute oxygenation values in the brain.8 NIR light is
nonionizing and requires relatively low-cost equipment, which
is wearable and, therefore, allows some movement of the sub-
ject. Additionally, DOT is relatively portable and can be used in
clinical applications where use of fMRI or PET is not possible,
for example as a bedside monitoring tool.

DOT specifically is concerned with tomographic
reconstruction of volumetric and spatially distributed optical
parameters from finite boundary measurements. This is com-
monly solved as an optimization problem using model-based
approaches, whereby accurate modeling of light propagation
within the volume, known as the forward model, is required.

Therefore, to allow a real-time parameter recovery from mea-
sured data, both fast and accurate forward modeling is essential.

The objective of this work is the acceleration of the forward
light propagation model, while maintaining numerical accuracy.
Specifically, the focus is on the application of DOT for func-
tional imaging on an adult human head, employing the finite-
element method (FEM) to solve the diffusion approximation
(DA) for modeling of light propagation as implemented within
the NIRFAST9 modeling and image reconstruction software
package.

The proposed acceleration approach relies on employing par-
allel computing to expedite the solution of the forward problem,
an option that has recently become popular due to the relatively
low cost of GPUs and that has attracted the attention of research-
ers for solving similar problems in medical imaging.10–12

In DOT, the acceleration of the forward model with GPUs has
been employed for Monte-Carlo algorithms,13–15 where simulat-
ing the behavior of each photon can be efficiently parallelized,
with reported accelerations in the scale of 102 to 103. However,
millions of photons must be simulated to achieve an accurate
solution, so modeling the total fluence for a geometrically large
volume and multiple excitation sources still requires time in
the order of tens of minutes.

Accelerating the forward model of DOT using GPU
parallelization has also been reported with FEM formulation.
Specifically, the acceleration of the forward model solution
has been proposed for frequency-domain (FD) simulations.16

Unfortunately, due to a lack of sparse arithmetic architecture,
computationally tractable mesh sizes have been limited to
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∼9000 nodes due to the excessive memory requirements.
Solving the forward model employing GPU parallelization, in
continuous wave (CW), with parallelization over the nodes
and over the excitation sources simultaneously, using a block-
based formulation of the forward linear system has also been
proposed.17 However, due to the size of the augmented block
matrix, this approach is only applicable in small size meshes,
with up to ∼2500 nodes. Using multiple GPUs to solve
the forward problem in CW, for infant brain studies has
been suggested18 but has been only evaluated qualitatively in
a homogenous phantom head model, again in meshes with
∼9000 nodes. An approach combining CPU and GPU paralle-
lization was proposed19 where the imaging domain is decom-
posed into overlapping subdomains, therefore, allowing a high
level of parallelization for the forward problem. However, this
approach was only evaluated in CW, on a simplified cylindrical
geometry with homogenous optical properties where the decom-
position in regular overlapping subdomains is a straightforward
procedure, while in the case of a complex volume, as the adult
head, such decompositions are not a trivial task. Finally,
a framework for the solution of the forward problem in CW
and FD, accelerated in the GPU, was proposed and evaluated
in homogenous cylindrical models with up to 330,000 nodes.20

It was shown that the relation between error of the iterative
solution and optical properties of the volume was identified
while the single precision numerical accuracy was found to
be insufficient for solving for a wide range of optical properties.
However, none of the previous work has evaluated the accuracy
and computational speed of iterative solvers on anatomically
realistic head models, with high-resolution meshes and the
high-density (HD) DOT system.

This work provides tractable solutions to overcome the cur-
rent computational time and memory limitations arising when
dealing with high-resolution FEM meshes and HD source–
detector (SD) pairs, both important features for high-quality
functional DOT (fDOT) brain imaging. Additionally, an
extended evaluation is performed on high-resolution meshes
with up to ∼600; 000 nodes, based on a realistic anatomical
head model, with five tissue layers, focusing on achieving
the desired numerical accuracy for functional brain imaging.
Furthermore, support for complex numbers for the cases of
FD simulations is incorporated. Specifically, Sec. 2 outlines a
DOT implementation using the NIRFAST package along with
details highlighting the computational complexity of parameter
recovery and the proposed parallelization approaches. In Sec. 3,
the results are presented and discussed in the context of employ-
ing iterative solvers for the forward problem in DOT. Section 4
concludes with the remaining challenges and opportunities for
further optimizations and applications.

2 Methodology
The procedure followed in DOT image reconstruction can be
summarized by the following consecutive steps: modeling
the light propagation through the medium, also known as the
forward problem, and a parameter recovery process based on
the forward model and NIR measurements, also known as
the inverse problem. This section provides an overview of the
underlying mathematics that directly affects the computational
aspects of DOT and emphasizes the necessity of parallelization,
specifically considering the existing implementation within
NIRFAST. Currently, the most computationally expensive

procedure is the solution of large FEM sparse linear systems,
involved in estimating light propagation in the forward problem.

2.1 Forward Problem

The first step of the DOT algorithm, the forward problem, is the
basis for the application of model-based image reconstruction;
therefore, it must be as accurate as possible, numerically and
geometrically, as any errors will affect the formulation of the
inverse problem.

The accuracy of the numerical solutions of FEM is greatly
affected by the prior knowledge of the underlying tissue geom-
etry; therefore, the maximum potential is reached when FEM is
combined with input from other standard imaging techniques21,22

or generic atlas models.23 Mesh generation based on structural
images from other modalities, usually MRI, is a well-studied
problem. There are existing algorithms that automatically seg-
ment tissue layers and create surface-based meshes.24 When the
model volume remains constant but meshes with more elements
are created, what effectively changes is the resolution of the
mesh. Higher resolution meshes have elements with smaller vol-
ume and, therefore, minimize partial volume effects due to mesh
elements integrating over multiple segmented tissue regions.
The fine complex structures, such as the brain cortex in a head
model, can be modeled more accurately with a high-resolution
mesh, providing optical properties assigned to each node
(or element) that are more likely to represent the underlying
baseline optical properties of the tissue at each position.

When the volume is meshed, FEM is employed to formulate
a discretized weak form representation of the DA for each node
of the mesh. It follows that, as the volume of each element tends
toward zero (increasing the mesh resolution), the calculated
approximation becomes more accurate; therefore, in fDOT, very
high-resolution meshes with up to 600,000 nodes are used
(Table 1). This is a domain size-dependent problem; a smaller
volume, such as an infant’s head, will require fewer nodes to
achieve elements of sufficiently small volume. Additionally,
dividing the volume into a higher resolution mesh minimizes
the discretization error introduced by FEM. However, increasing
the mesh resolution results in the requirement of solving a big-
ger linear system to estimate the light fluence, which, until now,
has dramatically increased computational time. The focus of this
work is optimizing numerical approaches employing FEM-DA
to estimate light propagation—a well-studied problem that
assumes the DA is valid for all tissue properties used.9,25,26

However, the advancements described herein can be applied
to any models (e.g., radiative transport equation) based on
discretized approximations.

FEM is a numerical technique where a heterogeneous prob-
lem is divided into many smaller parts, creating a nonuniform
mesh, consisting of elements defined by connected nodes. The
diffusion equation can then be discretized and represented as
a set of linear equations, describing simultaneously all the nodes
and hence the entire medium. The problem thus reduces to
a sparse, well-posed linear problem of the form

EQ-TARGET;temp:intralink-;e001;326;151MΦ ¼ q; (1)

where M is a sparse matrix with dimensions N × N, with N
denoting the number of nodes, q represents the sources and
has dimension N by the number of sources Q of the DOT sys-
tem, and Φ is the photon fluence rate for all nodes for each
source, which has dimensions N ×Q.
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2.2 Inverse Problem

The second step of DOT image reconstruction, the inverse
problem, estimates tissue optical properties based on the
forward model and NIR boundary measurements. To acquire the
required measurements, NIR light is injected into the imaging
volume by optical fibers or LEDs positioned on its surface
(light source) while the transmitted and reflected diffused
light is measured using optical fibers or detector arrays (light
detectors), as it remerges from the surface of the volume in
nearby positions.

There are three categories of NIR measurement systems:
CW, FD, and time resolved (TR).27 TR and FD systems are
advantageous because the measured transient time or phase-
shift information allows the determination of scattering and
absorption simultaneously, while CW systems are unable to
make quantitative absorption measurements without a-priori
assumptions of the scattering.28 However, modeling of light
propagation in FD has increased computational cost due to com-
plex arithmetic, while TR requires multiple light propagation
models to be estimated for consecutive time instances.

DOT acquires boundary data from multiple and overlapping
SD pairs and, therefore, provides valuable spatial depth infor-
mation and improves lateral image reconstruction resolution.
Studies have shown that the density of the SD pairs can directly
affect the spatial resolution and localization accuracy of recon-
structed images.29,30 HD-DOT, an arrangement with dense
SD pairs, is considered to produce superior results and is
particularly effective in brain functional imaging.4,7,29,31–33

In fDOT, models of estimated light propagation based on
assumptions of the underlying tissue scattering and attenuation
are used to create a sensitivity matrix, also known as the
Jacobian. The Jacobian is the basis for solving the inverse

problem, allowing the recovery of spatiotemporal changes of
internal optical properties for the whole volume, using temporal
derivatives of measurements obtained on the surface of the
volume, known as boundary data, then performing single-step
(linear) reconstruction.

The approach employed to form the Jacobian is the adjoint
method,34 where the direct fluence for each source and the
adjoint fluence for each detector must be calculated; then
the sensitivity is calculated as the product of the direct and the
adjoint field, with regard to the basis function for each element,
the result of which is a dense matrix. The construction of the
Jacobian, therefore, requires the forward problem to be solved
twice: once for all sources and once for all detectors.

2.3 Computational Problem

The solution of large sparse linear systems involved in the
forward model is currently the computational bottleneck of the
DOT algorithm. In this presented example, the fluence through-
out the volume must be calculated for all 158 sources and for all
166 detectors to create the Jacobian for the modeled DOT sys-
tem as shown in Fig. 1. To solve the linear systems arising in
the forward modeling, in the form Ax ¼ b, for x, where A has
dimensions N × N, where N is the number of unknowns, the
inverse of A must be calculated. However, calculating a matrix
inverse is computationally inefficient; therefore, a variety of
algorithms have been proposed that can solve linear systems
without explicitly calculating a matrix’s inverse. These algo-
rithms can be either direct, providing an exact solution, or an
approximate, usually employing an iterative algorithm. The stor-
age convention used in this work to represent sparse matrices
within memory is the compressed row storage, which requires
2NNZ þ N þ 1 space in memory for a N × N matrix with NNZ

nonzero entries.

Fig. 1 The modeled HD-DOT system with 158 sources (red) and 166
detectors (yellow) on an adult head model with 5 tissue layers.

Table 1 Different resolution meshes based on linear tetrahedral ele-
ments for an adult head model.

Number of
nodes

Number of
elements

Element volume average and
standard deviation (mm3)

50,721 287,547 9.26� 3.43

68,481 393,863 6.76� 2.29

101,046 589,658 4.51� 1.64

139,845 821,926 3.24� 1.18

205,568 1,215,434 2.19� 0.78

235,564 1,395,242 1.90� 0.68

271,135 1,609,152 1.65� 0.59

305,058 1,813,036 1.46� 0.52

324,756 1,931,374 1.37� 0.49

360,777 2,149,250 1.23� 0.43

411,567 2,454,350 1.08� 0.37

515,837 3,084,689 0.86� 0.29

610,461 3,656,890 0.72� 0.24
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2.3.1 Direct solvers

The most popular direct solver is the Gaussian elimination, also
known as row reduction, where the echelon form of A is calcu-
lated through row operations on the augmented matrix ðAjbÞ.
The echelon form of A is an upper triangular matrix, making
the solution of the linear system easy through backward substi-
tution. However, lower–upper (LU) factorization is considered
the standard efficient computational approach for direct solution
of a linear system. The LU factorization decomposes A into
lower (L) and upper (U) triangular matrices. Substituting
L and U in Ax ¼ b gives LUx ¼ b, and letting Ux ¼ Y,
then LY ¼ b. Now, it is trivial to solve LY ¼ b for Y through
forward substitutions and then solving Ux ¼ Y through back-
ward substitutions. The advantage of LU factorization over the
traditional Gaussian elimination is that decomposing A into
L and U is independent of b, also known as the right-hand
side vector. This allows L and U to be used for solving for
multiple right-hand side vectors. However, this approach has
very large memory requirements of N2 þ N and high computa-
tional cost, of 2

3
N3 floating point operations (FLOPS), to solve

a full linear system. A more efficient alternative, that can be
used only if A is Hermitian and, therefore, symmetric when real,
is the Cholesky factorization, where A is decomposed to LL�,
where * denotes the transpose conjugate operator, requiring
1
2
N2 þ N memory for a full system. The linear system can be

solved as with the LU method, substituting U ¼ L�, with com-
putational cost, for the solution of full systems, of N3

3
FLOPS.

However, in the case of sparse linear systems, such as resulting
from the FEM formulation, memory and computational costs are
related to the number of nonzero elements of A rather than the
size N; additionally, there are reordering strategies that when
applied on sparse matrices allow more sparse factorizations.
Specifically, in this work, the approximate minimum degree
permutation algorithm was found to produce the most sparse
factorizations and, therefore, was used for all the direct solvers.
Nevertheless, factorization approaches rely on forward and/or
backward substitutions to provide a solution; therefore, they
cannot be efficiently parallelized. In MATLAB®, when solving
linear systems invoking the backslash operator, the Cholesky
approach is used when the matrix is Hermitian; otherwise, the
LU approach is employed. The “spparams”35 command was
used to confirm that all the real-linear systems were solved
with the Cholesky solver and all the complex with the LU.
The MATLAB® backslash operator is considered the numerical
ground truth for the solution of linear systems throughout
this work.

2.3.2 Iterative solvers

To overcome the computational limitations of direct solvers,
a variety of approximate solvers have been proposed; they can
be classified into three general categories: iterative, multigrid,
or domain decomposition methods.36 Multigrid and domain
decomposition methods can be very efficiently parallelized,
with solving speed not greatly affected by the size of the linear
system. However, these methods require additional input param-
eters (e.g., the range of eigenvalues of the system, restriction
and prolongation parameters, and smoothing operators) that
might be difficult to define and may vary for different systems
to efficiently converge to adequate approximations. As such,
these methods work best when they are tailored to solve a very
specific problem. In contrast, iterative solvers are generic and

require little or no additional input from the user; thus, they
are traditionally chosen for the solution of linear systems
describing light propagation.

Iterative approaches approximate a solution vector xn and
then attempt to minimize the residual rn ¼ kb − Axnk through
n iterations, until rn is lower than a user-defined residual thresh-
old rth. However, in practice, the termination criteria are defined
relatively as tc ¼ rn

r0
, where r0 is the residual after the initial

guess, with the initial guess x0 set usually as a vector of
zeros. Using a relative threshold ensures that the iterations
will converge with a final rn usually within the same order
of magnitude as the tc, even when the number of unknowns
is very large. Iterative approaches usually work on a projection
space for increased computational efficiency. The most estab-
lished projection scheme is the Krylov subspace, which is
based on the Cayley–Hamilton theorem that implies that the
inverse of a matrix can be found as a linear combination of
its powers. The Krylov subspace generated by a N × N matrix
A and a vector b of dimension N is the linear subspace spanned
by images of b under the first α powers of A:

EQ-TARGET;temp:intralink-;e002;326;530KαðA;bÞ ¼ spanfb; Ab; A2b; : : : ; Aα−1bg: (2)

This formulation avoids matrix-to-matrix operations and instead
utilizes matrix-to-vector operations, which can be very effi-
ciently implemented in parallel architectures. The Krylov sub-
space is generated while the solver seeks to find the minimum of
the projection space. Usually least square or gradient-based
optimization techniques are employed to solve such problems.
There are many proposed algorithms to implement a Krylov
space solver, but there is no clear conclusion on which one
is fastest when the same termination criteria are required.37

The most popular approach for the Krylov space gradient opti-
mization is the conjugate gradient (CG), but it is not guaranteed
to work in non-Hermitian linear systems.38 However, there
are appropriate Krylov subspace solvers that can handle non-
Hermitian systems with relatively low additional computational
cost, such as the biconjugate gradient stabilized (BiCGStab).

2.3.3 Preconditioners

Iterative solvers do not have robust performance and can be very
slow, when the condition number of the system is very large. To
overcome this, preconditioned versions of the solvers have been
developed. Efficient preconditioning can largely reduce the
condition number of a linear system, leading to a dramatically
reduced number of iterations to convergence. The precondi-
tioner P, in effect is changing the geometry of the Krylov
subspace to a simpler one, making the solution of the system
much easier by providing an approximation of the matrix
inverse that is easy to compute and solve. Instead of trying
to minimize kb − Axnk, the expression to minimize becomes
kP−1Axn − P−1bk; to be effective, the preconditioner P must
be of much lower condition than A. In general, the P−1A product
should be as close as possible to identity matrix, in other words,
P−1 ≈ A−1.It is hard to theorize what consists a good precondi-
tioner, and the main diagonal of A, also known as Jacobi
preconditioner, can be very effective in diagonally dominant
systems; however, usually an incomplete factorization of A is
used as incomplete LU or incomplete Cholesky (IC) factoriza-
tion. Recent research on solving linear systems focuses mainly
on the choice of efficient preconditioners, emphasizing precon-
ditioners that can be implemented in parallel architectures,39
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rather than improving the solvers themselves. This happens
because the time within each iteration is greatly reduced
due to the high level of parallelism offered by GPUs,40 while
preconditioning reduces the number of iterations needed to
converge. Nevertheless, in practice, choosing the best pre-
conditioner is usually a trial-and-error procedure. There are
block-based preconditioners that are favorable for GPU
parallelization.41,42 In practice, the IC with no prior permutation
or pivoting scheme was found to be the best preconditioning
option for fast convergence of the MATLAB®-based iterative
solvers, while the factorized sparse approximate inverse
(FSAI)43 was found to be the option that produced the fastest
overall result with the CUDA and OpenMP implementations.
FSAI is constructed by solving local linear systems for each
column of A to approximate an A−1 with sparsity pattern defined
by powers of A. Additionally, a preconditioner inspired by
FSAI, where the local linear systems were solved in parallel
and only for the three larger values for each column, was imple-
mented; it achieved similar preconditioning effectiveness
while reducing the computational time for the construction of
the preconditioner. This preconditioner is referred to as “FSAIP”
for the rest of this work.

2.3.4 Numerical accuracy

The iteration residual rn, and to an extent the realization of the
termination criteria tc, is bound to the numerical binary repre-
sentation precision of numbers that the machine, the program-
ming language, and the employed libraries allow. In modern
systems, this is double precision, represented by 64 bits of
memory, which in practice can represent numbers with relative
differences no smaller than 2−52; this is ∼2.22 × 10−16, which is
the minimum value defined in MATLAB®. Any difference
smaller than this is lost due to the quantization involved in
converting a number that belongs to the real setR into the binary
set B64

2 , where B2 ¼ f0;1g. Therefore, requesting a termination
residual lower than a scale of 10−16 will not result in a more
accurate solution, since any additional variation would be
under the double precision quantization bin size of MATLAB®

and will be rounded to the nearest bin. Apart from the binary
rounding errors, when solving a linear system with an iterative
solver, the maximum solving precision that can be achieved is
analogic to the condition number of the system. The condition
number of a linear system A can be estimated as κðAÞ ¼
kAkkA−1k, where kk is a matrix norm (see Sec. 2.6). The

condition number of a linear system is large if there are big
differences in its eigenvalues; therefore, when solving large
condition linear systems with iterative solvers, good precondi-
tioning is essential to achieve convergence to low errors.

2.3.5 Complex numbers support

The existing open-source libraries that provide low-level func-
tions and primitive data structures for parallel programming
support on CPUs and GPUs are the Open Multiprocessing
(OpenMP)44 language and Compute Unified Device Architecture
(CUDA).45 However, up to the current version of OpenMP4.5
does not provide native complex numbers support, and CUDA,
while providing support for complex numbers, does not come
with high-level mathematical functions, such as sparse iterative
linear solvers and preconditioners. Therefore, implementations
that allow complex support are not a trivial task. Additionally,
open-source mathematical libraries that provide iterative
solving of sparse linear systems on parallel architectures, such
as PARALUTION46 and ViennaCL,47 do not provide complex
numbers support. However, when formulating the forward prob-
lem for systems operating in the FD, the resulting linear system
consists of complex numbers. Nevertheless, there are algebraic
schemes that allow a linear system of complex numbers to be
represented as an equivalent system of real numbers, solved in
the real-number domain, and then the solution can be converted
back to a complex representation. There are four possible
formulations of equivalent real systems as described in Ref. 48;
the approach chosen for this work is the K1 approach, which is
formulated as

EQ-TARGET;temp:intralink-;e003;326;425Ac ¼ ðxþ yiÞ ↔
�
x −y
y x

�
¼ Ar; (3)

where Ac is the complex form and Ar is the equivalent real
representation. Generalizing, the n’th dimensional complex
linear system Acxc ¼ bc with entries
EQ-TARGET;temp:intralink-;e004;326;3540
BBBB@

a1;1 a1;2 · · · a1;n
a2;1 a2;2 : : : a2;n

..

. ..
. . .

. ..
.

an;1 an;2 · · · an;n

1
CCCCA

0
BBBB@

x1
x2

..

.

xn

1
CCCCA ¼

0
BBBB@

b1
b2

..

.

bn

1
CCCCA (4)

is equivalent to the real-linear system Arxr ¼ br with entries

EQ-TARGET;temp:intralink-;e005;63;2480
BBBBBBBBBBBBB@

Ra1;1 −Ia1;1 Ra1;2 −Ia1;2 · · · Ra1;n −Ia1;n
Ia1;1 Ra1;1 Ia1;2 Ra1;2 · · · Ia1;n Ra1;n
Ra2;1 −Ia2;1 Ra2;2 −Ia2;2 · · · Ra2;n −Ia2;n
Ia2;1 Ra2;1 Ia2;2 Ra2;2 · · · Ia2;n Ra2;n

..

. ..
. ..

. ..
. . .

. ..
. ..

.

Ran;1 −Ian;1 Ran;2 −Ian;2 · · · Ran;n −Ian;n
Ian;1 Ran;1 Ian;2 Ran;2 · · · Ian;n Ran;n

1
CCCCCCCCCCCCCA

0
BBBBBBBBBBBBB@

Rx1
Ix1
Rx2
Ix2

..

.

Rxn
Ixn

1
CCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBB@

Rb1
Ib1
Rb2
Ib2

..

.

Rbn
Ibn

1
CCCCCCCCCCCCCA

: (5)

The equivalent real system has the same sparsity pattern and
sparsity factor as the original complex system; however, the new
system has twice as many unknowns and, therefore, requires
double the computations. Additionally, FEM-DA linear systems

in FD are no longer Hermitian; therefore, the BiCGStab solver is
employed for FD simulations.

In addition, a BiCGStab solver, based in CUDA, operating
directly on the complex domain was implemented and used with
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the developed parallel constrained FSAI version (FSAIP) to
solve FD simulations.

2.4 GPU/CPU Parallelization

The proposed approach for accelerating fluence estimation
relies on employing efficient libraries for linear algebra opera-
tions and performs remarkably faster when GPU-based parallel
architectures are available. Over the last decade, the technical
advancements in GPUs and their relatively low cost have made
GPU computing a very attractive option. Specifically, many
linear algebra operations can be parallelized very efficiently in
GPU architectures49 while using sparse representations, result-
ing in massive reductions of computational time. This can be
applied on the solution of the forward model, dramatically
decreasing the computational time required to estimate the
Krylov subspace. Solvers based on libraries that can be used
both in CPU and GPU were implemented to guarantee acces-
sibility by all users. Additionally, the solvers were compiled
as MATLAB® executable files (mex files) for both Windows
and Linux 64 bit systems, to allow easy invocation from within
the MATLAB® environment where the NIRFAST package is
based. Specifically, to take advantage of the GPU computing
power, implementations based on CUDA45 were produced;
they require the CUDA runtime that is provided with the
NVIDIA drivers, and the CUDA Software Developer Kit that
is free to download. For CPU environments, the OpenMP back-
end was used, which is also publicly available with all standard
C/C++ compilers. The mathematical library employed to pro-
vide efficient implementations of high-level linear algebra
operations is PARALUTION;46 it offers a wide variety of linear
solvers and preconditioners, supports sparse matrix and vector
formats, and allows a high level of abstraction between code and
hardware, making the code highly portable and efficiently scal-
able to the available hardware. The produced CUDA-based
implementations will revert to OpenMP if there is no GPU avail-
able in the system.

An algorithm to distribute workload between the CPU and
GPU was implemented, and the workload was distributed by
balancing the right-hand side input (sources) between the CPU
and GPU. Benchmarking tests were performed on all mesh
resolutions to define the best workload distribution in each case.
However, it was found that in all meshes above 70,000 nodes
the solely GPU-based solution was faster, while with meshes
with a smaller number of nodes (∼50; 000), the computational
time reduction was less than a second. On the other end, the
CPU implementation is faster than the equivalent GPU imple-
mentation in meshes with <15.000. This is primarily due to time-
consuming data transfer and device initialization procedures.
Nevertheless, this is dependent on hardware, the number of right-
hand side vectors, and the complexity of the imaging domain.

MATLAB® provides sparse linear solvers on the CPU, which
can be easily parallelized over the right-hand side vectors using
the parallel computing toolbox. However, there are overhead
data transfers between memories (RAM, CPU cache memory,
and GPU memory) and between computational threads and
memory that do not allow computational accelerations to scale
linearly with the number of available computational cores.

2.5 Experimental Setup

Data from MRI of an adult head were segmented and meshed
into 13 different resolution meshes using the algorithm proposed

by Jermyn et al.24 The modeled DOT instrument is a high-
density system with 158 NIR light sources and 166 detectors.
Each detector is related to sources in separation distance con-
figurations from 1.3 to 4.6 cm, resulting in 3500 associated
SD pairs. More details about the resolution of the meshes can
be found in Table 1, and the optical properties for each layer
of the anatomical model are described in Table 2.32

The light propagation model was calculated for all 158
sources in all experiments, in CW mode and in FD mode at
a modulation frequency of 100 MHz, for one NIR wavelength
of 750 nm. All the experiments were performed on a desktop
computer with 16 GB of RAM, an Intel Core I7-4790 CPU
with 4 physical cores, allowing 2 threads per core, resulting
in 8 logical cores at 3.6 GHz, and a NVIDIA GTX970 graphics
card with 1664 logical cores at 1050 MHz with 4-GB dedicated
memory.

2.6 Metrics

It is important to ensure that employing an iterative linear solver
will not increase the error of the solution. To this end, the
accuracy of the proposed solvers was compared against the
direct solution, calculated with the backslash operator in
MATLAB®. There is no standard way of comparing two matri-
ces,Φref , for the fluence calculated with a direct solver, andΦite,
for the fluence calculated with an iterative solver; however,
the first step for all approaches is taking the difference
Φdif ¼ jΦite −Φref j. The most common metrics to quantify
the difference Φdif are the ones induced from vector norms:
the 1-normkΦdifk1, which is the maximum of the column
sums of Φdif , the ∞-normkΦdifk∞, which is the maximum
of the row sums of Φdif , and the 12-normkΦdifk2, which is
the maximum singular value of Φdif , also known as the spectral
norm.

However, those metrics do not provide easily comprehen-
sible quantities; therefore, the relative error per node r was
calculated as

EQ-TARGET;temp:intralink-;e006;326;194εrelðrÞ ¼
jΦðrÞref −ΦðrÞitej

jΦðrÞref j
× 100%: (6)

This relative error representation is useful for visualization of
the error on the mesh nodes and boundary data and provides
more comprehensible numbers than the matrix norms.

3 Results and Discussion
The evaluation is performed on one adult head model using an
HD-DOT system with 158 sources and 166 detectors (Fig. 1).

Table 2 Optical properties of tissue layers at 750-nm wavelength.32

Tissue layer μa (mm−1) μ 0
s (mm−1) Refractive index

Scalp 0.0170 0.74 1.33

Skull 0.0116 0.94 1.33

Cerebrospinal fluid 0.004 0.3 1.33

Gray matter 0.0180 0.84 1.33

White matter 0.0167 1.19 1.33
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The behavior of the solvers is examined under varying error
demands and in different mesh resolutions, considering the
accuracy and the computational time. The focus is on the
relation between mesh resolution (and hence problem size),
termination criteria, computational time, and solution error.
The direct solutions are only able to calculate up to the
400,000 nodes mesh for CW and up to 200,000 nodes in FD
systems due to high-memory requirements, so all quantitative
comparisons are performed in the subset of the meshes
where a direct solution is available.

3.1 Qualitative and Quantitative Comparisons

Considering that there is already some error introduced by the
discretization of the DA within the FEM formulation, the error
from solving the linear systems should be kept at a minimum.

However, the amount of error that can be afforded in the
modeling procedure is dependent on the error tolerance for
the application. Figure 2 shows the surface fluence when utiliz-
ing the CUDA-based solver at different termination criteria;
the simulated light source is near the back of the head, indicated
by the blue dot and arrow.

When high-termination criteria are set, the fluence is not
estimated for the distant nodes as the solution iterates to a stable
solution quickly. The fluence approximately follows an expo-
nential decay through tissue; therefore, its value dramatically
decreases with distance from the source. Therefore, the required
termination criteria are reached while only partially calculating
the solution for the highest fluence values.

As FD simulations provide amplitude and phase information,
the errors for each were examined separately. Figures 3 and 4
provide a quantification of the relationship between distance

Fig. 2 Visual comparison of surface fluence while using different termination criteria. Simulation in CW,
for one source indicated in blue, in a 400,000 nodes mesh, solving with CUDA CG.
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Fig. 3 Maximum relative amplitude errors per node [Eq. (6)] as a func-
tion of distance from source. Comparison between different termina-
tion criteria. Simulation in 100-MHz frequency, on a 200,000 node
mesh, solving with CUDA BiCGStab.
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Fig. 4 Maximum relative phase errors per node [Eq. (6)] as a function
of distance from sources. Comparison between different termination
criteria. Simulation in 100 MHz frequency, on a 200,000 node mesh,
solving with CUDA BiCGStab.

Journal of Biomedical Optics 125001-7 December 2017 • Vol. 22(12)

Doulgerakis et al.: Toward real-time diffuse optical tomography: accelerating light propagation modeling. . .



from the source and the relative nodal amplitude and phase
errors arising from solving with an iterative solver. The demon-
strated simulation is in the FD, at 100 MHz, for a mesh with
200,000 nodes, solving with a CUDA BiCGStab and FSAI.
In Figs. 3 and 4, the maximum relative error for all nodes as
a function of distance from the source is extracted for different
termination criteria.

As evident, the relative errors are small and located away
from the source with low-termination criteria of 10−16, but
they become larger and manifest nearer the source as the termi-
nation criteria rises. Similar results (not shown) were acquired
for amplitude errors from CW simulations.

Lower termination criteria will provide smaller numerical
errors but also slower solver convergence, as a larger number
of iterations is required. In the modeled DOT system, the maxi-
mum SD separation typically considered to acquire boundary
data is at 46 mm. The performed evaluation in Figs. 3 and 4
reveals that, for anatomically accurate adult head models,
the termination criteria can be selected in the range of 10−8

or lower, for CW and FD systems, to ensure that minimal
error is introduced in the parameter recovery, when acquiring
measurements from SD separation distances <46 mm. The sen-
sitivity matrix will have approximately square of the error of
the forward solution. Therefore, termination criteria chosen to
be large, a practise often employed to accelerate reconstructions,
while the boundary data are measured in large SD separations,
can lead to large errors in the sensitivity matrix and, conse-
quently, large errors in the parameter recovery and image
reconstruction.

3.2 Computational Time Comparisons

Three parameters mainly affect the computational speed of
iterative linear solvers: the size of the problem, which in our
case is the number of nodes; the number of right-hand side
vectors, which in our case is the number of excitation sources;
and the termination criteria. All the experiments were performed
10 times; the mean time is shown in all figures, while the
standard deviation in all cases was small, at around 1 s for
CPU implementations and 0.1 s for GPU and, therefore, is
not shown in the figures.

Figure 5 shows the computational time for fluence estimation
for 158 sources in a 400,000 node mesh as a function of

termination threshold. The direct solver provides an exact sol-
ution to the linear system and, therefore, does not introduce any
error. However, it is displayed as a horizontal line through all
the termination criteria in Fig. 5 to serve as point of reference.
The GPU-based solver yields the best termination criteria to
computational time ratio. Employing implementations that do
not require much additional time to converge to smaller errors
can increase the accuracy of the estimated light propagation
model while keeping the computational time low.

Each source is represented by one right-hand side vector in
the linear system resulting from the FEM Eq. (1), and the
fluence must be calculated for all sources. To achieve this,
the iterative solvers must create the Krylov space under the
projections of each right-hand side vector, which, as expected,
increases the computational cost and therefore the computa-
tional time required. Figure 6 demonstrates how the number
of sources (right-hand side vectors) affects the computational
time of the solution, showing that the computational time
increases linearly with the number of sources. It is interesting
to note that the direct solver, which yields the exact solution
relying on Cholesky decomposition followed by forward and
backward substitutions, is almost as efficient for each additional
source as the GPU-based solver. However, the time spent
initially for the factorization is very large, which, in combina-
tion with the very high-memory requirements as discussed in
Sec. 2.3.1, renders the direct solver impractical.

Nevertheless, the factor that affects computational time the
most is the resolution of the mesh. The more nodes a mesh con-
tains, the bigger the linear systems that needs to be solved is;
therefore, more mathematical operations have to be applied
to create the Krylov space. Figure 7 presents the computational
time needed as the mesh resolution increases. The fastest of
the solvers is the CUDA-based solver, which achieves computa-
tional time of ∼42 s for calculating the fluence for all 158
excitation sources in a 600,000 node mesh this is ∼0.25 s to
calculate the fluence for one source. The CUDA-based solver
performs almost 11 times faster than the MATLAB®-based
iterative solver without any parallelization, which takes ∼460 s
for the same calculation. The direct solver can only solve up
to systems with 500,000 nodes before the 16-GB hardware
memory availability becomes an underlying issue.

Figure 8 shows the computational time for different mesh
resolutions for FD simulations at a modulation frequency of

10–6 10–7 10–8 10–9 10–10 10–11 10–12 10–13 10–14 10–15 10–16 0

Termination criteria

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425

C
om

pu
ta

tio
na

l t
im

e 
(s

)

Direct solver
MATLAB CG with IC
MATLAB parallel CG with IC
OMP CG with FSAI
CUDA CG with FSAI

Fig. 5 Computational time as a function of termination criteria,
compared between different linear solvers. Simulation in CW, for
158 sources in a 400,000 node mesh.
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Fig. 6 Computational time as a function of excitation sources number,
compared between different linear solvers. Simulation in CW, in
a 400,000 node mesh, with 10−12 termination criteria.
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100 MHz. The direct solver can only handle up to 200,000
nodes due to the increased memory requirements for storing
complex numbers. The displayed computational time includes
the computations to create the equivalent real system and trans-
form the fluence back to complex after solving the system where
is necessary.

The direct solver takes 4612 s to calculate the fluence for the
200,000 node mesh; however, Fig. 8 was limited to 1100 s to
provide a better scale. The direct solver becomes intractable due
to the increased memory requirements for complex arithmetic
storage and because of the non-Hermitian nature of the FEM
matrix, which is also reflected as increased memory and
computational requirements for the required LU decomposition
(in comparison with the Cholesky for the real cases). A linear
system resulting from an FD FEM mesh does not have the same
condition number as the same mesh in CW due to different
attenuation coefficients for frequency modulated light, which
makes the FD problem harder to solve. Therefore, there is not
a direct analogy between their computational costs. However,
one can roughly assume that for a given mesh if a CW solution
requires O operations the FD will require 2O. This is confirmed
by our demonstrated results in Figs. 6 and 8.

Furthermore, the “OMP BiCGStab with FSAI on K1” oper-
ates on the complex-to-real transformed (K1) matrix, resulting
in double computations in comparison to the “MatlabBiCGStab
with IC,” which operates directly on the complex domain. As an
approximation, one could assume that if a mesh in CW requires
O number of operations, it requires 2O in the complex domain
but 4O when the complex-to-real transformation is used. Also,
the MATLAB® parallel version requires almost half the compu-
tational time of the nonparallel MATLAB® version, and the
OpenMP version is slightly faster than the MATLAB® parallel
version when operating in the same space (O). Then it is pos-
sible to observe the following: a solution on CW would take
T seconds for MATLAB® nonparallel, T∕2 for MATLAB®

parallel, and slightly faster than T∕2 for OpenMP (note that
all these cases do O operations). In contrast, a solution on
FD would take 2T for MATLAB® nonparallel (operates in 2O),
T for MATLAB® parallel (operates in 2O) and slightly faster
than 2T for OpenMP (operates in 4O). Furthermore, the imple-
mented complex CUDAversion, which operates in 2O, requires
approximately half the computational time in comparison with
the CUDA in the K1 (4O) space.

4 Conclusion
DOT is a promising imaging modality, steadily gaining ground
among the established imaging techniques. The harmless
and patient-friendly procedure enables use in applications
where other techniques are inadequate. However, the DOT
reconstruction algorithm, especially when employed for func-
tional brain imaging, suffers from large computational time,
mainly due to solving large sparse linear systems. This work
provides fast GPU and CPU implementations of efficient and
stable linear solvers, based on CUDA and OpenMP, respec-
tively, compiled as mex files to be directly accessible from
MATLAB®. It will become publicly available in the next
release of the NIRFAST package. It is shown that numerical
errors introduced by iterative solvers are spatially located
away from the excitation source. However, the distance of
the numerical errors from the excitation source is related to
the termination criteria, indicating that choosing large termina-
tion criteria to accelerate the modeling procedure could nega-
tively affect the quality of the reconstruction, dependent on
the application. Nevertheless, if the application allows, the com-
putational time of any iterative solver can be greatly reduced by
increasing the termination criteria. For example, for the models
examined in this work, increasing the termination to 10−16 from
10−12 will reduce the computational time by half but will
increase the modeling error above 1% for the farthest SD sep-
aration. Therefore, the underlying physics and the modeling and
reconstruction procedure must be considered before attempting
to solve with higher termination criteria. However, it is now
computationally feasible to select lower termination criteria
for the iterative solvers, practically eliminating any error
induced by the approximate solving or the complexity of the
volume, as the GPU parallelized approach has overly signifi-
cantly lower computational time. Furthermore, the proposed
approaches can be very efficient for systems with a large number
of sources and detectors since the computational time is not
greatly affected by solving for multiple sources and, in addition,
can be employed in FD simulations. Based on the performed
experiments, the fastest approach is to parallelize the matrix-
to-vector operations involved in iterative solvers in GPU
architectures.
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Fig. 8 Computational time with respect to mesh resolution, compared
between different linear solvers. Simulation in 100 MHz frequency, for
158 sources with 10−12 termination criteria.
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Fig. 7 Computational time with respect to mesh resolution, compared
between different linear solvers. Simulation in CW, for 158 sources
with 10−12 termination criteria.
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The produced solvers allow researchers to explore
approaches in DOT that, until now, were out of reach due to
the slowness of the algorithm. Simulations of light propagation
that would take a long time, now, can be done in a few minutes,
forging a path toward real-time DOT. The work presented here
is based on systems with one GPU node; however, the same
philosophy can be applied in systems with multiple GPUs and
extended to cloud computing to achieve real-time solutions.
Parallelization approaches can also be applied for the optimiza-
tion of the inverse problem of DOT, where the creation and the
inversion of the Jacobian are currently the most computationally
expensive parts of the algorithm, especially when recovering
absolute optical parameters. In functional brain imaging, creat-
ing sparse Jacobians enables solving the linear inverse problem
directly in the GPU in real-time speed for each temporal set of
measurements.
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