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Abstract. Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low
levels of red to near-infrared light to measure changes in cerebral blood oxygenation. Spontaneous (resting
state) functional connectivity (sFC) has become a critical tool for cognitive neuroscience for understanding
task-independent neural networks, revealing pertinent details differentiating healthy from disordered brain
function, and discovering fluctuations in the synchronization of interacting individuals during hyperscanning
paradigms. Two of the main challenges to sFC-NIRS analysis are (i) the slow temporal structure of both systemic
physiology and the response of blood vessels, which introduces false spurious correlations, and (ii) motion-
related artifacts that result from movement of the fNIRS sensors on the participants’ head and can introduce
non-normal and heavy-tailed noise structures. In this work, we systematically examine the false-discovery rates
of several time- and frequency-domain metrics of functional connectivity for characterizing sFC-NIRS. Specifi-
cally, we detail the modifications to the statistical models of these methods needed to avoid high levels of false-
discovery related to these two sources of noise in fNIRS. We compare these analysis procedures using both
simulated and experimental resting-state fNIRS data. Our proposed robust correlation method has better per-
formance in terms of being more reliable to the noise outliers due to the motion artifacts. © The Authors. Published by
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1 Introduction
Spontaneous (resting state) functional connectivity (sFC) has
become a critical tool for cognitive neuroscience. Interest from
the neuroscientific community stems from understanding task-
independent neural networks in addition to comparisons of
healthy and disordered brain function.1,2 Recent studies have
provided convincing evidence that the activity from neural
regions that tend to correlate in response to a stimulus or task
also spontaneously correlate even while an individual is at rest.3

Studies have demonstrated that spontaneous activity has a
high degree of spatiotemporal organization1,3–13 with much of
this structure being remarkably consistent across time10,14 and
individuals.3 Such spontaneous activity is present in nearly all
brain states (including under anesthesia and some sleep states)15,16

and mostly follows known anatomical connections.17,18

A further application of sFC has been to investigate the neu-
ral coupling between two or more interacting individuals as a
method for probing social interaction and aspects of the inter-
personal relationship. Just as the relationship between fluctua-
tions in activation within regions of the individual brain, both at
rest and during tasks, may inform us of how these regions may
integrate their functions, so too can the co-ordination of the

neural time course between two individuals inform us of key
aspects of their joint experience. The emerging studies that have
examined synchronization of neural activation between two
individuals have done so using hyperscanning19 (i.e., measur-
ing the activation of interacting brains simultaneously). These
studies have found preliminary evidence for interbrain co-
ordination during regulated interactions20–22 and unrestrained
social discourse.23,24

Although sFC methods were first demonstrated, and are still
most widely employed, in functional MR BOLD imaging, sim-
ilar networks have also been observed in other modalities
including functional near-infrared spectroscopy (fNIRS).25–28

fNIRS is a noninvasive brain imaging technique that uses diffuse
optical measurements in the red to near-infrared range (650 to
1000 nm) to measure hemoglobin changes resulting from fluc-
tuations in cerebral blood flow and oxygenation.29 These signals
are recorded between optical sources and detectors positioned
on the scalp of a participant. Biological tissue is low absorbing
but highly scattering in this range of wavelengths, which allows
light from the source to penetrate through several centimeters of
tissue along a diffuse path. This allows near-infrared light from
sensors placed on the scalp to penetrate the outer layers of the
head and skull and into the first few millimeters of the cortical
surface. Changes to the optical properties along this diffuse vol-
ume between a source and detector position on the head alter the
detected light signal and are reported as a time course of optical*Address all correspondence to: Theodore J. Huppert, E-mail: huppertt@upmc

.edu

Journal of Biomedical Optics 055002-1 May 2017 • Vol. 22(5)

Journal of Biomedical Optics 22(5), 055002 (May 2017)

http://dx.doi.org/10.1117/1.JBO.22.5.055002
http://dx.doi.org/10.1117/1.JBO.22.5.055002
http://dx.doi.org/10.1117/1.JBO.22.5.055002
http://dx.doi.org/10.1117/1.JBO.22.5.055002
http://dx.doi.org/10.1117/1.JBO.22.5.055002
http://dx.doi.org/10.1117/1.JBO.22.5.055002
mailto:huppertt@upmc.edu
mailto:huppertt@upmc.edu


density (absorption) changes at each wavelength. Data at
multiple wavelengths are then converted into estimates of
oxy- and deoxyhemoglobin using the modified Beer–Lambert
relationship.30 The reader is referred to several reviews on
fNIRS theory,31 hardware,32,33 and applications34–37 for further
details. Although fNIRS has lower spatial resolution than func-
tional magnetic resonance imaging (fMRI) and only measures
the surface of the brain, this technique is more portable, less
costly, amenable to interactive paradigms, and more versatile
to allow brain imaging in unique situations, including field
testing, in-home, or clinical bedside studies due to its effective
use in populations in which other neuroimaging methods
are more challenging (e.g., infants, children, the elderly, or
psychiatric patients). Thus, optimization of the sFC technique
for fNIRS is critical for expanding the scientific and clinical
knowledge of a wider breadth of normative and clinical
populations.

The purpose of this paper is to describe the challenges to
sFC-NIRS as they pertain to the statistical models, assumptions,
and limitations of common analysis techniques for sFC. Specifi-
cally, there are several unresolved challenges to sFC-NIRS,
including sensitivity to spurious correlations due to the slow
hemodynamic signal, systemic physiological noise, and other
measurement artifacts, such as subject motion. We describe and
demonstrate how using an incorrect statistical model leads to
high false-discovery rates (FDRs) in fNIRS analysis in the pres-
ence of such noise. FDR is defined as the number of false dis-
coveries divided by the total number of discoveries (both true
and false). In this paper, we first present an overview of the prob-
lem of spurious correlations and motion artifacts on fNIRS sig-
nals in the specific context of statistical models and demonstrate
what effect these can have on the analysis and interpretation of
sFC-NIRS. We then discuss the generalization of these statistical
methods that make these models less sensitive to these sources
of noise. After outlining the mathematical method used in this
work, we provide quantitative comparisons of these approaches
using both simulation results and experimental data. In this
paper, we do not discuss preprocessing methods that may be
used to reduce this noise. Rather, we focus on the problem from
a statistical point of view in the context of generalized linear
models (GLMs). We demonstrate that, even in the absence of
spatially global systemic physiology, the autocorrelative struc-
ture of the hemodynamic signal results in substantial (>70%)
FDRs at typical fNIRS sample rates.

2 Theory
Analysis of resting state connectivity in fNIRS is based on the
statistical relationship of the spontaneous temporal fluctuations
between two or more parts of the head (or two or more regions
across subjects). Such analysis can be done in either the time
domain (TD), for example, using correlation or causality models
(e.g., Granger causality),38 or in the frequency domain (FD)
using spectral coherence39 or phase-locking measurements.40

Spectral coherence is a measure of the relatedness of the ampli-
tude and phase between two signals at specific frequencies or
ranges. Phase-locking coherence is a measure of relatedness as
a function of the phase (but not amplitude) information alone. In
general, time-series models (correlation or Granger causality),
which examine the relatedness of two slow hemodynamic
signals over time, have historically been more popular in the
sFC analysis of fMRI data.41,42 By contrast, the FD metrics of
coherence and phase locking have been more widely used in

electrophysiological recordings, such as electroencephalogra-
phy and magnetoencephalography, where the frequency-specific
values can provide insight into connections at specific neural
oscillatory bands (e.g., the so-called alpha or beta rhythms).7

In fNIRS research, which has a higher acquisition rate than
fMRI but still measures the slow hemodynamic signals, both TD
(e.g., Refs. 43–47) and FD (e.g., Refs. 22, 48–50) appro-
aches have been previously used.

2.1 Challenges to sFC-NIRS Connectivity

Both TD and FD analysis approaches to connectivity metrics
typically make assumptions about the statistical properties of
the underlying signals and its noise. Specifically, most standard
analysis approaches, such as Pearson’s correlation, assume the
noise in the signal to be independent, not self-correlated (zero
autocorrelation), and normally distributed. As emphasized by
Granger and Newbold,38 the presence of self-correlations in
the signals can produce spurious correlations (false discoveries)
across two channels of data. Specifically, spurious correlation is
the concept that if two random signals that each have nonzero
autocorrelation are compared, then the expectation of the abso-
lute value of the correlation will be nonzero. Thus, it is essential
to characterize the noise in the data when selecting and interpret-
ing the results of a statistical analysis. In the context of fNIRS
data, there are two main sources of noise that violate these
assumptions of ideal noise structures—slow physiology and
motion-related artifacts.

2.1.1 fNIRS data exhibited autocorrelated, colored, noise
structures

Since fNIRS signals are sensitive to slow physiological and sys-
temic fluctuations due to cardiac, respiratory, and blood pressure
changes, the noise in fNIRS is often highly structured. This
physiological noise is structured and contains specific colored
noise patterns around the frequencies of these systemic fluctua-
tions (e.g., cardiac noise at 1 Hz, respiratory noise around
1∕4 Hz, and slower blood pressure fluctuations). These slow
physiological signals are present in both the superficial extrac-
erebral layers and within the brain itself. In addition, even in the
absence of global systemic physiological noise, the hemo-
dynamic response in the brain is a slow physiological process,
which takes time for the evolution of blood flow, volume, and
oxygenation changes (e.g., the so-called “balloon model”).51

The impulse response function for a change in underlying “neu-
ral” signal is on the order of 8 to 12 s. Thus, even with the most
sophisticated of preprocessing to remove nonbrain signals, the
sources of noise and slow signals within the brain are typically
still much slower than the sample rate of most fNIRS instru-
ments. As a result, the noise in fNIRS data exhibits serially cor-
related errors, which means that the time points of the data have
nonzero autocorrelation. For fNIRS, these vascular signals are
typically oversampled resulting in an overestimation of the
effective model degrees-of-freedom that often results in high
FDRs.

The issue of serially correlated noise is a related but separate
issue from the fact that much of this noise comes from global
systemic physiology. In particular, these errors can result in stat-
istical nonzero spurious correlations in the comparison of two
unrelated signals with similar slow frequency content. As we
demonstrate in this paper, there is a staggering 70% to 85%
FDR (at a threshold of p < 0.05 and 1-Hz sample rate) when
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calculating the correlations between two fNIRS time courses
from different subjects on different days. This effect is due
entirely to the slow nature of fNIRS noise and the resulting
nonindependence of sequential sample points. Previous publica-
tions52–54 note the importance of accounting for these correla-
tions in statistical modeling of evoked hemodynamic signals
(e.g., functional brain data), and, in this publication, we demon-
strate that these errors have a detrimental effect on sFC models
as well. Fortunately, we also show that there is a fairly straight-
forward approach to correct this.

2.1.2 Noise in fNIRS data exhibits temporal heteroscedas-
ticity due to motion artifacts

In fNIRS, measurements are made between sources and detec-
tors placed on the surface of the scalp. Although fNIRS mea-
surements can be made during subject movement if the head
cap is securely placed on the scalp (e.g., Ref. 55), motion-related
artifacts will arise when one or both of these optodes move rel-
ative to the scalp. Often, this is the result of the probe sliding,
releasing contact, or a change in the pressure applied to the
probe in some way. In some populations, such as children and
infants, where a looser fitting head cap is required for subject
comfort and compliance, motion artifacts often occur. When
the fNIRS probe transiently loses contact with the scalp, the sig-
nal may change by several folds beyond the normal level of
noise in the data. Thus, motion will produce nonuniform noise
distributions, which are often heavy tailed and contaminated by
large infrequent jumps in the signal. These can be either spike-
like artifacts, where the signal jumps but returns to the same
value, or shift-like artifacts, where the signal returns to a new
mean value. The variance of these data samples during and
around an artifact can often be an order-of-magnitude above the
variance of the regular noise in data. Thus, since the noise
appears to arise from different distributions, this data exhibits
heteroscedasticity.

Motion artifacts can lead to either high FDRs (type-I error) or
high false-negative rates (type-II error) in correlation analyses
depending on whether or not the motion artifact is co-occurring
across multiple channels. Figure 1 shows a simulation of fNIRS
data to demonstrate this property. In this demonstration, two

fNIRS channels were simulated with a correlation of R ¼ 0.5
[Fig. 1(a)]. During fNIRS data collection with larger probes
comprised of patches covering multiple regions of the brain,
it is not uncommon to see motion artifacts that occur at different
times for the different segments of the probe [Fig. 1(b)]. These
artifacts arise from changes in the position or contact of the
fNIRS probe. For example, facial muscles including the eye-
brows can often create motion artifacts in fNIRS measurements
over the forehead, which would not show up in measurements
over the occipital cortex. Because the artifact causes a large
jump in only some of the measurements, this dilutes the corre-
lation due to the brain signals. In the simulated example to dem-
onstrate this point, the correlation dropped from R ¼ 0.5 to 0.3
[Fig. 1(b)]. Other times, however, motion artifacts can co-occur
across channels, as is often the case of physical movement of
the subject, where the whole fNIRS probe shifts on the head
[Fig. 1(c)]. In this case, the artifact drives up the correlation
value; for this example, the correlation went from R ¼ 0.5 to
0.9 [Fig. 1(c)], which is an extremely significant but artificial
increase (in this case, p < 2 × 10−300) in correlation. This shared
artifact largely drives this high correlation, since motion artifacts
are often about an order of magnitude larger in variance than the
“brain” signals. Therefore, it is important to use statistical meth-
ods that discount outlier samples in the data. These outliers can
either be univariate [present in only one of the two channels;
Fig. 1(b)] or bivariate [present in both channels; Fig. 1(c)].
As described in this paper, the false significance can be correctly
eliminated using a robust correlation method. The correlation
for the data in this example is shown in Fig. 1 (R ¼ 0.50,
0.46, and 0.51), which, after the robust correlation method,
are no longer statistically different (p ¼ 0.9). These methods
are examined in a much more quantitative depth in this paper.

2.2 Generalized sFC Methods

To protect the sFC-fNIRS model from false-discoveries due to
violations of the statistical assumptions in correlation, the noise
model needs to be generalized to account for autocorrelative
errors and motion-related outliers from a normal distribution.
This is similar to the model generalizations needed for time-
series regression analysis of evoked signal changes, which

Fig. 1 Demonstration of the effect of motion on fNIRS correlation analysis. In this figure, we show an
example of simulated fNIRS data from two channels with a correlation of R ¼ 0.5 (panel a). If a motion
artifact appears in one of the two channels (e.g., simulating the case where only part of the fNIRS probe
moves), the motion dilutes the correlation and the connectivity is underestimated (panel b). However, if
the motion artifact is co-occurring in both channels (e.g., the artifact has high spatial covariance), this can
inflate the correlation and result in a high FDR (panel c) due to the strong leverage of the few affected
outlier time points. (a) No motion, (b) unshared motion, and (c) shared motion.
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are implemented in the so-called GLM (e.g., Refs. 53 and 54).
In particular, the term “general” in GLM refers to the generali-
zation of the statistical model to relax the assumptions of inde-
pendence, uncorrelated, and/or normally distributed properties
of the noise. The GLM approach should be considered a collec-
tion of methods rather than a specific algorithm as it depends on
specific statistical violations and properties that one is trying to
generalize the model to handle. In this sense, the methods used
for generalizing an fNIRS model require additional steps or
higher-order corrections than those often used in other modal-
ities, such as fMRI, because the properties of the noise in fNIRS
are different. We have detailed and compared these approaches
for evoked time-series analysis of fNIRS in a recent paper.53 In
this section, we describe the similar preconditioning of fNIRS
data for sFC connectivity. This section will briefly describe the
mathematical concepts that we then apply in Sec. 4 of this paper.

2.2.1 Prewhitening

Physiological noise results in temporally correlated (colored)
noise in the fNIRS signals. This results in a reduction in the
effective degrees-of-freedom of the data, since sequential sam-
ple points cannot be considered independent due to temporal
autocorrelation. Prewhitening removes this autocorrelation and
whitens the frequency content of the signal. The effect of this
approach on fNIRS signals is presented in depth by Barker
et al.52 In fMRI analysis, several papers have shown that pre-
whitening via autoregressive models is necessary to reduce
false-discovery and greatly reduces the appearance of spurious
global connectivity across the brain.56,57 A prewhitening filter
can be defined from an autoregressive model of the data, which,
once applied to the data, yields an uncorrelated innovations sig-
nal. The autoregressive model for a signal (Y) is defined as

EQ-TARGET;temp:intralink-;e001;63;392Yftg ¼
XP
i¼1

ai · Yft−ig þ ϵftg; (1)

EQ-TARGET;temp:intralink-;e002;63;344ϵftg ∈ Nð0; σ2Þ; (2)

where ftg indicates the sample point (time) and the set faig is
the autoregressive coefficients of the model, which need to be
estimated. P is the model order, which can be selected using an
information criterion, such as Bayesian information criteria
(BIC).58 Equations (1) and (2) say that the current sample point
(Yftg) can be predicted based on the last several time points in its
history (a1Yft−1g: : : apYft−1g) and newly added information at
that time point, which is called the innovations (εftg). The inno-
vations can be thought of as the new information that is added to
the total signal at each time point. The innovations time course is
a whitened signal with no autocorrelation representing the signal
information added at each time point. The innovations signal
can be estimated by first fitting the autoregressive coefficients
of the model and using them to filter the original signal.
Prewhitening is applied to both signals A and B to yield their
respective whitened innovations models Aw and Bw. Instead
of correlating the original signals, the two innovations (Aw and
Bw) are compared, which estimate the correlation of the addition
of only the new information being added to both signals at each
time point. The so-called Granger causality models38 are an
implementation of this concept that in particular look at the rela-
tionship of lagged cross-terms in the innovations (i.e., the history
of signalB predicts the current value of A). In the remainder of this
paper, however, we focus on the zeroth lag correlation terms.

Using the same simulated example from Fig. 1, Fig. 2 shows
the effect of autoregressive whitening on the two signals, as
shown in Figs. 2(c) and 2(d). In Fig. 2(e), the autocorrelation
function is shown for both the motion-affected and -unaffected
signals. The autocorrelation of the motion-affected data is con-
siderably higher, but, in both cases, it is well above random
chance for many tens of seconds of data. This means that the
data points within 10 to 20 s of each other are not independent.
After prewhitening using an appropriately high model order, the
autocorrelation of both motion-affected and -unaffected drops to
random chance within a single time point [Fig. 2(e)]. In real
fNIRS data collected at around 5 Hz, based on BIC (depending
on signal quality and sample rate), we found that autoregressive
model orders of up to P ¼ 10 to 20 are generally needed to
properly prewhiten the signals. We note that this is substantially

Fig. 2 Effect of signal prewhitening on fNIRS data. Prewhitening using an autoregressive filter removes
serially correlated errors in the signals. In panels (a) and (b), raw signals with no motion artifacts and with
artifacts are shown. After filtering, the innovation (prewhitened) versions of these signals is shown in
panels (c) and (d). This figure shows the same data presented in Fig. 1. (a) No motion (raw signal),
(b) motion affected (raw signal), (c) no motion (prewhitened), (d) motion affected (prewhitened), and
(e) autocorrelation.
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higher than the models typically used in fMRI versions of this
sort of analysis. In Sec. 4, we examine the effect of prewhitening
in depth and compare the analysis of whitened and original data.

2.2.2 Robust methods

Prewhitening via the autoregressive filter removes serial corre-
lations and autocorrelation between sample points, but the whit-
ened signals will still contain outliers (e.g., heavy-tailed noise)
due to motion artifacts (see Ref. 53). As shown in Fig. 1,
motion-related artifacts could be either co-occurring [Fig. 1(c)]
or independent [Fig. 1(b)]. In our previous work in Barker
et al.,52 we suggested that after prewhitening, both spike and
shift type motion artifacts appear as isolated outlier points in
the noise distribution. Figure 2 shows the same simulated sig-
nals shown in Fig. 1 after prewhitening. However, even after
prewhitening, motion artifacts in fNIRS are often statistical out-
liers to the normal distribution compared to the rest of the unaf-
fected data. The innovation signals during the motion artifacts
(indicated by the arrows) deviate from the normal distribution.
This can result in “high leverage” of these points in the math-
ematical model—a term that means that these outliers have a
greater contribution to the estimate than other points.

The robust regression method (or preweighting) is an
approach for dealing with statistical outliers in a linear model
through iteratively estimating the residual noise of the model
using a weighted least-squares fit and computing the weight
based on outliers in the residual. Previously, this model was
applied to reduce the effect of motion in fNIRS functional
data.52 In this approach, the regression model is first solved
and the residual noise from the data is estimated. Each time
point of the residual is then studentized by normalizing to the
standard deviation of the whole time course of the residual, so
each time point can be assigned a probability of being an outlier.
For example, the motion artifact shown in Fig. 2 is around 4 to 5
standard deviations from the rest of the noise and therefore
associated with a low probability of belonging to the same dis-
tribution as the rest of the signal. A weighting function that
downweights the residual to create a more normal distribution
is then computed, this weight is applied to the original data,
and the model is resolved. This is repeated until convergence.
In MATLAB (Mathworks, Natick, Massachusetts), for exam-
ple, this is implemented using the built-in function called
“robustfit.” We have detailed the use of robust regression
for investigating evoked signals in fNIRS in several of our pre-
vious publications.52,53

In robust regression, however, one signal is considered the
data and the other is the regressor. Although correlation can
be implemented as a regression problem, this assumes indepen-
dent noise on the two channels. While this approach would
fix leverage from motion artifact-related noises that act inde-
pendently between channels [such as that in Fig. 1(b)], co-occur-
ring artifacts would still result in false-discovery [as shown in
Fig. 1(c)]. Therefore, we must introduce a bivariate version of
this robust concept. We propose a joint weighting matrix, which
is computed from the geometric length of both time courses, to
reduce outliers and normalize the noise distributions, in Eq. (3):

EQ-TARGET;temp:intralink-;e003;63;129rftg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
wftg þ B2

wftg
q

; (3)

where Aw and Bw are the innovation (prewhitened) time courses
of the data. This model can also be applied directly to the

original data (A and B). Similarly, this equation can be extended
in the case of multivariate models with three or more time
courses. Time dependence is again indicated with subscript ftg.
A weighting matrix (S) can be computed to downweight time
points that are statistical outliers from the normal distribution.
The same weight matrix is then applied to both of the data sig-
nals (AS;W ¼ SAW and BS;W ¼ SBW). Thus, we propose com-
puting the correlation between AS;W and BS;W , which are now
the two weighted and prewhitened signals, respectively. The
weighting function (S) used in this work is given by

EQ-TARGET;temp:intralink-;e004;326;642S

�
r
σ

�
¼

�
1 −

�
r
σ·κ

�
2 j rσ j < κ

0 j rσ j ≥ κ
; (4)

which is simply the square root of Tukey’s bisquare function59

and is the same model as used in Eq. (4) from Barker et al.52 The
tuning constant κ is typically set to 4.685, and σ is the standard
deviation of the model error, which is estimated from the median
absolute deviation (MAD) of the signal ½σ ¼ 1.4826MADðrÞ�.
The implementation of correlation estimates based on this
approach is detailed in Sec. 2.3.

2.3 Computation of Functional Connectivity Metrics

Robust correlation approaches are used to control for the lever-
age of outliers. The review paper by Pasman and Shevlyakov60

describes a number of different approaches for robust estimates
of correlation. In this work, we use a robust regression approach
to estimating robust correlation,60 which closely follows the
work we have previously proposed for analysis of functional
time-series fNIRS data in Barker et al.52

The linear regression form of the correlation model for esti-
mating functional connectivity between two measured signals
(AS;W and BS;W following the notation from the previous sec-
tion) is defined by the expression:

EQ-TARGET;temp:intralink-;e005;326;364AS;W ¼ b0 þ BS;W · b1: (5)

The two coefficients (b0 and b1) can be estimated by a least-
squares solution to Eq. (5), and the correlation coefficient (R) is
then given by

EQ-TARGET;temp:intralink-;e006;326;299R ¼ b1 ·
σA
σB

; (6)

where σA and σB are the standard deviations of the signals A and
B, respectively. Equations (5) and (6) are also true for the con-
verse of the model (regression of A onto B or B onto A should
produce the same estimate of correlation for normally distrib-
uted signals). As an aside, this linear regression formulation of
correlation for normally distributed errors is equivalent to the
expectation form as given by

EQ-TARGET;temp:intralink-;e007;326;181R ¼ CovðAS;W; BS;WÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðAS;WÞ � VARðBS;WÞ

p : (7)

In this paper, we use the regression model since we feel that
is easier to devise extensions needed to extend the mathematical
notation to cover multivariate models, including Grangers cau-
sality. However, the review by Shevlyakov and Smirnov60 offers
several other formulations to this robust correlation problem,
which could be explored in future work.
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The estimate of correlation by either Eqs. (5) or (7) assumes
normally distributed and uncorrelated noise in both AS;W and
BS;W , and, as we have previously stated, these assumptions
are often violated by systemic physiological noise and/or motion
artifacts. The prewhitening step reduces the autocorrelation in
the noise, and the preweighting step reduces co-occurring out-
liers from the distribution [e.g., the artifacts shown in Figs. 1(c)
and 2(b)]. However, independent artifacts can still exist sepa-
rately on each signal [Fig. 1(b)]; to compensate for this, we use
a robust form of the regression model (weighted least squares).
The matrix form of the regression–correlation equation [Eq. (5)]
is given by

EQ-TARGET;temp:intralink-;e008;63;620AS;W ¼ ½ 1 BS;W � ·
�
b0
b1

	
and RB→A ¼ b1 ·

σA
σB

; (8)

or it is equally valid as the converse

EQ-TARGET;temp:intralink-;e009;63;565BS;W ¼ ½ 1 AS;W � ·
�
a0
a1

	
and RA→B ¼ a1 ·

σB
σA

; (9)

where for the robust model, the standard deviation (σ) was esti-
mated from MAD of the signal. For ideal noise, both expres-
sions produce equal estimates of the correlation coefficient,
but, more generally, the correlation coefficient can be estimated
by solving both expressions and using a combined estimate
given by60

EQ-TARGET;temp:intralink-;e010;63;459kRk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RA→B � RB→A

p
; (10)

where the sign of the correlation is estimated by either model
(usually, they result in the same sign unless the correlation is
not statistically different from zero).

The two separate models given in Eqs. (8) and (9) can be
solved separately using an iterative robust regression algorithm
(e.g., Ref. 52). This is done using an iterative approach in which
the model Eq. (8) is first solved. For each model, the residual
error (r) from the model fit is then computed and used to define a
weighting matrix (S), which downweights time points that are
statistical outliers from the normal distribution. This is identical
to the step taken in preweighting but now is only based on one of
the signals (A or B). The weight matrix is then applied to both
sides of the model, yielding the expression:

EQ-TARGET;temp:intralink-;e011;63;282SA · AS;W ¼ SA · ½ 1 BS;W � ·
�
b0
b1

	
; (11)

with the equivalent form for the converse model [Eq. (9)]. The
weighting function (S) used in this work is given by the same
expression as in Eq. (4) with the standard deviation now defined
from the residual of the A → B model (or the B → A model).
Finally, the weighted model [Eq. (11)] is then resolved,
new weights are computed, and the process is iterated until con-
vergence. The two models are solved iteratively using this
approach, and the separate estimates of the correlation coeffi-
cient are combined via Eq. (10).

3 Methods
In this paper, we compare the various methods for calculating
functional connectivity described above and investigate the sen-
sitivity and specificity of the methods as well as the FDRs of the
models.

3.1 Numerical Simulations

We used three sets of simulations to look at FDR and sensitiv-
ity–specificity of these sFC-fNIRS methods. This section
describes those three types of simulations.

3.1.1 Investigation of false-discovery rates

In the first set of simulations, we looked at the FDRs of these
various connectivity metrics in the presence of serially corre-
lated error and/or motion artifacts. For these simulations, two
random (i.i.d.) normally distributed signals were simulated
using MATLAB (randn function). These two raw signals are
denoted nðtÞ and are intended to represent two completely in-
dependent “neural” processes in the brain. By design of the ran-
dom number generator, the two nðtÞ signals have zero expected
correlation between them, and thus any correlation found rep-
resents a false-discovery. More specifically, at a threshold of
p < 0.05, we expect no more than 5% of the simulations to
show correlation indicating proper control of type-I error.
The random number generator used by MATLAB is indeed suf-
ficient to satisfy this condition for these purposes. The two
neural signals ½nðtÞ� were then convolved with a canonical
hemodynamic model to generate simulated hemodynamic sig-
nals [denoted hðtÞ]:

EQ-TARGET;temp:intralink-;e012;326;484hðtÞ ¼ nðtÞ � hrf: (12)

We used the hemodynamic response function (hrf), used
commonly in the temporal linear regression model, for func-
tional analysis (e.g., Ref. 54), although we note that the
exact form of this hrf is not crucial to the interpretation of these
results, and our qualitative conclusions are true for any low-pass
filter (LPF) acting on the neural signals. After going through the
hemodynamic response, the simulated data are temporally
smooth and the noise within each channel is no longer uncorre-
lated. The sFC between these two simulated hemodynamic
models ½hðtÞ� is estimated by various algorithms detailed in the
next section. These signals were simulated at different sample
rates from 0.01 to 100 Hz while keeping the number of sample
points (3000) constant between simulations. Simulations were
repeated 2000 times for each condition.

To look at the effect of noise heteroscedasticity (motion arti-
facts) on the correlations, we ran a set of simulations, where
additional normally distributed random noise with 10-fold
higher variance was added to 5% of the samples of the neural
signals ½nðtÞ�. That is, 5% of the randomly selected sample
points had additional noise added that was taken from a normal
distribution with a variance of 10× the variance of the base sim-
ulation. This was based on the experimental data (described in
Sec. 3.1.3) and reflects the simulations shown in Figs. 1 and 2.
This created a heavy-tailed noise distribution in nðtÞ. The same
5% subsample for both channels was used (case of co-occurring
outlier “motion” noise), although the noise added to the two
channels was independently distributed. That is, the higher level
of noise was added to the same time points in both traces but was
generated from independent samples of the distribution. Thus,
the “motion” noise on the two channels had an equal chance of
going in the opposite or the same directions. Similar to the other
simulation, the neural signals were then convolved with the
canonical hemodynamic model. The same numbers of simula-
tions were performed as the nonmotion simulations.
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3.1.2 Investigation of sensitivity–specificity (simulation)

Sensitivity and specificity examine both the true-positive and
false-negative discovery of the models. Receiver operator char-
acteristic (ROC) curves were generated by simulating correla-
tion in exactly half of the comparisons and computing the
false-positive and true-positive rates for the various methods
for comparison. In this second set of simulations, two random
signals ½nðtÞ� were generated from a multivariate normal distri-
bution, where correlation is introduced from off-diagonals in the
covariance model. Thus, half of the channel pairs had an
expected nonzero correlation (positives). Like the previous sim-
ulation, the simulated “neural” signals ½nðtÞ� were convolved
with a canonical hemodynamic model to generate autocorrelated
signals ½hðtÞ� and resampled to 4 Hz. Sensitivity–specificity
(ROC) curves were then calculated from the false-positive
and true-positive rates of the models. We also estimated the con-
trol of the type-I error from the ROC curves by plotting the
actual FDR extracted from the ROC curve against the reported
p-value (expected FDR) reported by the algorithm (e.g., the
number that “MATLAB reports” without correcting for the
reduced degrees-of-freedom of the serially correlated data).
Specifically, when there are violations to the statistical model,
we expect the reported p-value to be less accurate and under-
estimate the false-positive rates leading to an uncontrolled type-
I error.

3.1.3 Investigation of sensitivity–specificity (experimental)

Finally, we examined sensitivity and specificity in experimental
data to demonstrate that our simulations of motion and physio-
logical noise in the previous simulations were experimentally
appropriate. In the third set of simulations, experimental data
from a separate study performed in children (ages 3 to 7
years old) were used. The collection of this data is described
in Perlman et al.61 and contained 12 fNIRS source–detector
channels of oxy- and deoxyhemoglobin from bilateral measure-
ments of the forehead on 121 different subjects. This data con-
tained both physiological noise and motion artifacts.

To examine the performance of the methods, a pair of chan-
nels was selected from either the same data file or different data
files. Although the expected true correlation is unknown, we
only expect nonzero correlations between data traces collected
on the same subject at the same time. In other words, any cor-
relation between two traces from different subjects (recorded on
different days) would be a false-discovery. In each simulation,
two data traces were randomly selected from the same subject’s
data (nonzero correlation expected) or two different data files
(null data). ROC analysis was performed to quantify the ability
of the various models to differentiate between data that came
from the same file and the data from different files (null distri-
bution). Since, unlike the numerically simulated datasets, we
were able to completely control the true-positive samples (e.
g., some of the samples from the same file might not have actual
experimental correlation and thus would be reported as a false-
negative rather than a true-negative), this set of simulations
allows us to look at the relative performances of the various
methods but, due to the additional type-II error in the simula-
tions, will underestimate the absolute sensitivity and specificity.

3.2 Comparison of Correlation Models

The three types of numerical simulations described in Sec. 3.1
were used to test the performance of several variations of the

correlation models and preprocessing procedures. We then com-
pared the results of several of the approaches outlined in
Sec. 2.3. The analysis models that were used for comparison
are listed below:

3.2.1 Standard correlation model

In the standard model, we computed the Pearson correlation
value by the standard equation. The correlation (COR) between
two signals (A and B) was calculated without any preprocessing.
This is the traditional estimate of correlation that does not
include any corrections for serially correlated noise or motion
artifacts (“corrcoef” function in MATLAB).

3.2.2 Low-pass filtered correlation model

In previous work, analysis of the sFC network for fMRI or
fNIRS has often been restricted to low frequencies (<0.1 Hz) by
low-pass filtering the data prior to computing a correlation. In
this analysis model, the data were first low-pass filtered using a
backward/forward procedure (“filtfilt” function in MATLAB)
and then the correlation was computed using the standard
model.

3.2.3 Preweighted correlation model

In the robust model, a preweighted regression model was used to
estimate the robust correlation coefficient [preweighted correla-
tion model (W-COR)]. However, no prewhitening was applied.
This model uses Eqs. (8), (9), and (10) acting on the origi-
nal data.

3.2.4 Preweighted/prewhitened correlation model

In the AR-filtered model, serial correlations were removed with
an AR filter for prewhitening and then the correlation was
estimated using the standard model (“corrcoef” function in
MATLAB). Finally, in the robust AR-filtered model, the full
procedure (steps 1 to 7) was performed.

3.2.5 Wavelet coherence model

Wavelet coherence (wCOH) was performed following the pro-
cedure described by Ref. 50 and using a modified version of the
MATLAB toolbox developed by Grinsted et al.39 Cross-wCOH
is given by the expression39

EQ-TARGET;temp:intralink-;e013;326;262R2
nðsÞ ¼

jWAB
n ðsÞj2

jWA
n ðsÞj2 · jWB

n ðsÞj2
; (13)

EQ-TARGET;temp:intralink-;e014;326;217S½WX
n ðsÞ� ¼ SscalefStime½WX

n ðsÞ�g; (14)

where Sscale and Stime denote smoothing operations along the
wavelet scale (e.g., frequency) and time dimensions, respec-
tively, of the wavelet transform and are given by the convolution
of the wavelet matrix and smoothing operator (see Ref. 39).

3.2.6 Prewhitened wavelet coherence model

In the prewhitened coherence model (AR-wCOH), the power
spectrum of the data was whitened using an autoregressive
filter prior to the continuous wavelet transform. wCOH was then
computed between the two whitened signals, as given by
Eqs. (13) and (14).
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3.3 Implementation of Proposed Method

Our proposed robust correlation and FD methods were imple-
mented in MATLAB 2015b as part of a toolbox for fNIRS
research. This toolbox is currently available online and has
been released open source at Ref. 62 or by request to the cor-
responding author. A demonstration script generating the figures
shown in this work is included with the toolbox. wCOH models
were based on modified versions of the models used in the
MATLAB toolbox developed by Grinsted et al.39

4 Results
In this section, we present the results of the various versions of
the analysis models applied to the three types of numerical sim-
ulations outlined in Sec. 3.1.

4.1 Investigation of False-Discovery Rates of fNIRS
Correlation Methods

To begin looking at the problem of correlation in fNIRS, we first
performed a simple simulation. Two normally distributed inde-
pendent random variables were simulated at a sample rate of
0.01 to 50 Hz (3000 total sample points for each simulation),
as detailed in Sec. 3.1.1. These two signals represent uncorre-
lated “neural activity,” which we denote nðtÞ. The “hemo-
dynamic” activity ½hðtÞ� was then calculated by convolving nðtÞ
with a linear canonical hemodynamic response [e.g., hðtÞ ¼
hrf � nðtÞ]. The standard, robust, AR, and AR-robust models
were then applied to compute the correlation between the two
simulated “hemodynamic” signals ½hðtÞ�. The AR-model order
(up to ten times the sample rate in hertz) was determined by a
BIC. In addition, we also looked at a bandlimited model in
which the “hemodynamic” signals were low-pass filtered at
0.1 Hz using a fourth order Butterworth filter. This is a common
procedure in fMRI and fNIRS to limit the calculation of corre-
lation to only the low frequencies of the hemodynamic signal.
As a negative control, we also computed the correlation for the
original “neural” signals ½nðtÞ�. This procedure was repeated
2000 times.

Figure 3 shows the FDR of the various correlation models as
a function of the sample rate of the simulated data. Since all
simulations had the expectation of zero correlation (since
they were generated from independent random variables), the

FDR was calculated as the fraction of simulations, where the
calculated probability was below p < .05.

Starting with the “neural” signals in the simulations without
“motion” artifacts [Fig. 3(a)], both the robust and standard cor-
relation models performed exactly as expected. At all sample
rates, the FDR was around 5% at the p < 0.05 threshold. By
contrast, however, the simulated “hemodynamic” signals had a
huge FDR introduced by the serial correlations from the canoni-
cal model acting as a LPF. At a sample rate of 1 Hz, the standard
correlation model had a frightening FDR of 50% at the p < 0.05

threshold. As the sample rate was decreased, the FDR went
down but did not drop to 5% error until the sample rate was
lower than the characteristic frequency of the canonical model
(∼0.1 Hz). Low-pass filtering the “hemodynamic” signals prior
to calculating correlation had very little impact on the model, but
if a filter with a lower cutoff frequency was used (e.g., 0.05 Hz
instead of 0.1 Hz), the FDR does not return to the 5% threshold
until an even lower sample rate. The low-pass filtered signals are
only shown at about a 0.2-Hz sample rate (since lower than this
causes the passband to exceed the Nyquist frequency).

The proposed AR-filtered versions of the correlation model
removed most of the serial correlations introduced by the
canonical filter and produced FDRs close to the true value of 5%
up to a sample rate of about 4 Hz for an AR-model order of up to
P ≤ 40 (determined by BIC). Above this sample rate, a higher
model order was needed to remove the correlated temporal
errors; however, this became computationally prohibitive above
about 10 Hz for these simulations. For the simulations with no
motion artifacts, the robust weighting had no effect on the
results, although this also implies that it did not hurt the models
to include this weighting even when it was not needed.

In Fig. 3(b), we show the results for the simulations with the
addition of the 5% heteroscedastic noise to simulate motion arti-
facts in the “neural” signal. For the robust correlation methods,
the results were similar to the simulations without motion arti-
facts. However, for the standard correlation model, the “motion”
artifacts had a huge effect on the FDR. The standard model
applied to the “neural” or raw “hemodynamic” signal had the
largest errors with almost a 90% FDR. Thus, in the presence of
motion artifacts, the robust procedures produced much more
reliable control of type-I errors and insensitivity to the outlier
noise due to the artifact.

Fig. 3 Comparison of FDR in simulated data as a result of sample rate. This figure shows the FDR for
simulated “neural” ½nðtÞ� and “hemodynamic” ½hðtÞ� signals at different sampling rates and for the various
correlation models described in Sec. 3.2. The expected FDR (α ¼ 0.05) is shown in the dotted red line.
Estimates above this line are considered uncontrolled type-I errors. These simulations are described in
Sec. 3.1.1. The abbreviations of the methods are defined in Sec. 3.2. (a) Without motion artifacts and
(b) with motion artifacts.
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4.2 Sensitivity and Specificity Analysis of the
Models

In this second set of simulations, we looked at the model per-
formance of various approaches using numerically simulated
data at 4 Hz. An equal number of numerically simulated signals
was generated with and without correlation and was used to gen-
erate ROC curves to compare the various analysis models, as
described in Sec. 3.1.2. Similar to the previous example, sim-
ulations were performed with or without the addition of 5% het-
eroscedastic noise (motion artifacts). The true-positive and
false-positive rates were computed from these simulations to
generate the ROC analysis (Fig. 4).

In the simulations without additional motion noise [Fig. 4(a)],
the preweighting (robust correlation) and nonweighted (ordinary
least squares) models had similar performance, which is consis-
tent with the FDR results shown in Fig. 3. The prewhitened
models have much better performance than the nonwhitened
versions and were similar to the direct analysis of the neural
signals ½nðtÞ�. The nonwhitened procedure had about a 25%
reduction in the area-under-the-curve of the ROC plots. Margi-
nally, analysis of the 0.1 Hz low-pass filtered “hemodynamic”
signal ½hðtÞ� had slightly worse performance than the nonfiltered
version and in both cases worse than the prewhitened or “neu-
ral” signals. Figure 4(b) presents the results from the signals
simulated with additional 5% heteroscedastic noise to simulate
motion artifacts. The addition of motion artifacts substantially
decreased the sensitivity of both the “neural” and “hemo-
dynamic” model but was recovered by the additional preweight-
ing (robust correlation) procedures. Most affected was the
analysis of the direct “neural” signal, which was reduced to
near random chance using the nonweighted model but had sim-
ilar performance to the simulations without motion if the robust
correlation model was used. The prewhitened/preweighted
model had similar performances with and without motion arti-
facts. The sensitivity of the model with motion artifacts was
slightly decreased due to the additional noise added in these sim-
ulations. Preweighting (without additional prewhitening) did not
improve the performance of the “hemodynamic” models and
was actually worse than the standard correlation model. Low-
pass filtering the “hemodynamic” response in the presence of
motion artifacts also decreased the performance of the models.

4.3 Experimental Data (Time-Domain Models)

In this example, experimental fNIRS data were used, as
described in Sec. 3.1.3. Two time traces were randomly selected
from either the same data file (nonzero correlation expected;
positive distribution) or different data files (no correlation
expected; null distribution). The correlation between these two
traces was computed using the standard correlation model, a
0.1-Hz LPF and then the standard correlation model, the robust
model, and the AR-robust correlation model. The true-positive
(correctly identified as coming from the same experimental data
file) and false-positive (unexpected correction from two data in
two different files) rates were determined for the four models.

Figure 5(a) shows the ROC curve for the four correlation
models. In agreement with the simulation results, the robust AR
model performed the best. In this example, we defined a true
positive as correctly identifying that two channels came from the
same file under the assumption that these two signals would
have some nonzero correlation. Of course, not all channels from
the same file will have strong correlation; this contributes to a
less than perfect sensitivity (e.g., even under the best case, the
true-positive rate will be less than 100%).

In this data, the true-positive rate controlled at a 5% false-
discovery threshold was about 55% for the robust AR correla-
tion model and only 20% for the standard and robust correlation
models, meaning the ARmodel was more than twice as sensitive
compared to the standard model.

Based on the ROC curve, we can also compute the true level
of type-I error compared to the estimate provided by the model
(p-hat; Fig. 6), namely, serially correlated error results in a
decrease in the effective degrees-of-freedom of the data com-
pared to the sample rate. This results in the reported p-value
(p-hat) being artificially more significant than expected and
uncontrolled type-I errors. In practical terms, this means that the
value MATLAB reports (p-hat) using the standard correlation
model can be substantially off from the actual false-positive rate
because the serial correlations violate the assumption of inde-
pendent uncorrelated noise in the data. In Fig. 6, the true false-
positive rate is plotted against the reported value (p-hat). The
robust-AR correlation model is very close to the ideal case
(e.g., the reported value is correct). However, with uncontrolled
serially correlated noise, the reported p-value of the model is

Fig. 4 Comparison of sensitivity–specificity in simulated data. This figure shows the sensitivity–speci-
ficity (receiver operator curves) for the various correlation models applied to the simulated “neural” ½nðtÞ�
and “hemodynamic” ½hðtÞ� signals. Curves that are closer to the upper left corner have better model per-
formance. Panels (a) and (b) show simulations in the absence and presence of motion artifacts, respec-
tively. These simulations are described in Sec. 3.1.2. The abbreviations of the methods are defined in
Sec. 3.2. (a) Without motion artifacts and (b) with motion artifacts.
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extremely high. In particular, at a reported value of p-hat <0.05,
the actual FDR is around 0.70 for the standard model and 0.85
for the 0.1 Hz bandlimited (low-pass filtered) correlation model.
Without controlling for these serial correlations, this means that
the p-value reported by the standard correlation method is com-
pletely inaccurate (wrong 70% to 85% of the time when dis-
played at a threshold of p < 0.05). Note further that this is not
a multiple comparisons issue since this inaccuracy applies to a
single statistical test. For example, a Bonferroni correction
adjusts for multiple comparisons; however, it assumes that the
value for the single comparison test is valid, which is shown to
not be the case for many of these correlation models. In the case
of multiple comparisons (e.g., to form an all-to-all connectivity
network), these type-I errors are even more greatly magnified.

Figure 7 compares the sensitivity–specificity and control of
type-I errors for FD coherence and TD correlation models from
simulations based on the experimental data described in
Sec. 3.1.3. For both the TD and FD models, autoregressive pre-
whitening had a substantial improvement on the control for

type-I error rates. Similar to the previous finding, the (unwhit-
ened) correlation model had about 75.2% false-discovery (at the
20 Hz sample rate with a p < 0.05 threshold) while the wCOH
model had an even higher false-discovery of 92.5% [Fig. 7(b)].
After autoregressive prewhitening, the false-discovery was con-
trolled to 4.1% and 4.7% (expected 5%) although the coherence
model deviated slightly from ideal at p-values greater than about
30% to 40% [Fig. 7(b)]. Likewise, autoregressive prewhitening
improved the performance of both methods in analysis of the
ROC curves [Fig. 7(a)]. The true-positive rate (at p < 0.05) was
29.6% and 37.8% for the correlation and coherence models in
the unwhitened case, respectively. This improved to 54.8% and
45.1%, respectively, with prewhitening. The area under the
curve for the ROC plots was 59.6% (correlation) and 61.4%
(coherence) for the unwhitened case and 64.5% (correlation)
and 65.3% (coherence) for the prewhitened case. In both
cases, prewhitening had a beneficial effect on performance, but
both the correlation and coherence models appeared to have
similar performances after whitening. Thus, we did not find

Fig. 5 Comparison of sensitivity–specificity and type-I error control in experimental data. (a) The sensi-
tivity–specificity (receiver operator curves) for the various correlation models applied to the experimental
data described in Sec. 3.1.3. (b) Control for type-I errors for the same data and methods. The abbrevia-
tions of the methods are defined in Sec. 3.2.

Fig. 6 Comparison of control type-I errors in simulated data. This figure shows control for type-I errors for
the various correlation models applied to the simulated “neural” ½nðtÞ� and “hemodynamic” ½hðtÞ� signals.
The y -axis indicates the level of true false-discovery and the x -axis shows the reported probability
(p-hat). An ideal curve would be along the diagonal (slope ¼ 1), where the reported and actual
FDRs would be the same. Panels (a) and (b) show simulations in the absence and presence of motion
artifacts, respectively. These simulations are described in Sec. 3.1.2. The abbreviations of the methods
are defined in Sec. 3.2. (a) Without motion artifacts and (b) with motion artifacts.
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any evidence to favor either of the correlation or coherence mod-
els over one another.

5 Discussion
In this work, we demonstrated [Fig. 5(b)] that, when we ran-
domly selected two experimental time courses of fNIRS data
from different subjects collected at different times, we found
that 70% to 80% of the samples were falsely correlated at better
than p < 0.05. This is an indication of a clear problem with
uncontrolled type-I error in the standard analysis methods,
which have previously been used for sFC-fNIRS. Although
this is a well-known problem that Granger described in 1974 as
spurious correlations in signals with temporal self-correlation,38

this problem has been almost entirely neglected in fNIRS analy-
sis. It is important to note that these high FDRs are not specifi-
cally the result of uncontrolled systemic physiological signals,
but rather they occur because the hemodynamic signal of inter-
est in the brain is inherently much slower than the typical sample
rate of fNIRS instruments. For both evoked and spontaneous
fluctuations in cerebral hemodynamic signals, the impulse
response of the vascular system (the response to a negligibly
short change in “neural” signals) is expected to be around 8 to
12 s long. This slow response is the result of the biomechanical
expansion of blood vessels and oxygen transport dynamics (see
Ref. 51). The presence of additional slow blood pressure, res-
piratory, and cardiac fluctuations further increases the level of
serial correlations in the data; however, such a high false-discov-
ery would be found even if these sources of additional noise
were removed by preprocessing methods.

Our work in this paper is similar to previous reports for fMRI
resting-state studies.56,57 In the paper by Christova et al.,57 they
reported about a 20% FDR for fMRI at a 0.5-Hz sample rate,
which is consistent with data presented in our Fig. 3. For fNIRS
data, the typically higher sample rates of instruments make these
false discoveries even more pronounced. For experimental data
collected at 4 Hz, we found that FDRs as high as 70% at an
expected level of p < 0.05 indicated highly uncontrolled
type-I errors in these estimates. These errors became worse if the
signals were low-pass filtered as part of a preprocessing step and
we found that the practice of low-pass filtering the data at 0.1 Hz

produced uncontrolled errors as high as 90% in experimen-
tal data.

Importantly, this finding of high false-discovery is not spe-
cifically an artifact of the well-known global superficial con-
tamination in fNIRS recordings. Rather, this is in addition to
these global artifacts and should not be expected to be corrected
by preprocessing methods. As evidence of this point, Christova
et al.57 found the same result in fMRI. In addition, our simula-
tions took experimental data from two different subjects col-
lected on different days, so there is no expectation of a shared
global systemic response. Thus, our conclusions that >70%
FDR is serial-correlations that are not properly accounted for is
expected to be a lower bound on FDR and the presence of uncor-
rected global and superficial signals would further increase this
value.

Although this work focused specifically on continuous-wave
(CW) fNIRS, these conclusions are based on the high FDR
resulting from slow, autocorrelated errors general to the hemo-
dynamic signal found both inside the brain (e.g., also seen in
fMRI57) and from superficial contamination. Therefore, we feel
that these results extend to both FD and TD variations of fNIRS
as well. However, we note that with FD- and TD-fNIRS, the
sampling rate of the instruments is generally lower; thus, serial
correlations will have a lower but still significant effect on FDR
for these modalities (refer to Fig. 3). This is also true of fMRI,
which generally samples around 0.5 to 1 Hz. In addition, we
note that as the relative contribution of random instrument
noise to physiological signals increases, for example, due to
poor coupling of sensors on the head or instrument design, the
FDR from spurious correlations will decrease along with true-
positive rates and sensitivity. Thus, FD- and TD-fNIRS may also
have lower FDR rates then CW-fNIRS since the overall sensi-
tivity of the methods and instruments is often lower. In addition,
for TD-fNIRS, the use of “early photons” to provide information
from the superficial skin layers can also provide a partial cor-
rection for systemic physiological signals. However, this does
not correct the deeper noise signals from the brain. Similar
corrections from multidistance source-to-detector pairs allow
separation of skin and brain signals for CW- and FD-fNIRS
methods. Even with these corrections, FDR rates similar or
higher to those found in brain only regions with fMRI (20%

Fig. 7 Comparison of sensitivity–specificity and control type-I error in experimental data. (a) Comparison
of the performance of the unwhitened and prewhitened COR and wCOH models using the experimental
data described in Sec. 3.1.3. (b) Control for type-I errors for the same data and methods. In panel (b),
idealized control for type-I error is indicated by a line of unity slope (red dotted line). The abbreviations of
the methods are defined in Sec. 3.2.
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for p < 0.05 at 0.5 Hz)57 would be expected for all forms of
fNIRS.

In our opinion, the methods proposed in this work should be
considered as required steps in addition to any preprocessing
methods to remove global nonbrain signals. Isolating the signals
from the brain from these superficial fluctuations is a challenge
and area of open investigation. Several methods have been pro-
posed to address this issue, including the use of static-63,64 or
dynamic-regression63,65 methods and independent66 or princi-
pal-component analysis.66 Some have suggested that short-sep-
aration measurements67 are the most direct approach to isolating
skin and brain signals, and several recent publications have col-
lected data using this method.68,69 This approach is based on the
principal that the penetration of light into tissue is less for short-
separation measurements; thus, measurements at distances of
only 5 to 10 mm are used to capture the time-course of the skin,
which is then regressed as covariate of no interest from the
longer measurements that sense both brain and skin. How-
ever, there are several questions about how dense these measure-
ments need to be and the optimal distance of these measure-
ments, which has been examined by a few groups.68,69 The
work by Brigadoi and Cooper70 used simulations from anatomi-
cal images to optimal separation distances and found that really
short (∼2 mm) distances were recommended for infants, whereas
longer distances (∼8 mm) could be used for adults. In practice,
however, these really short distances (<1 cm) are often harder to
obtain. Although really short measurements are sensitive
entirely to skin, these measurements are more sensitive to
motion of the fNIRS cap on the head because the light signal is
typically brighter and more sensitive to the pressure of the
fNIRS sensor. These are also affected by local heterogeneity in
the vasculature of the skin (e.g., larger blood vessels), and the
brightness of the light from short distances can often exceed the
dynamic range of the photon detectors, particularly when trying
to record both short and longer distances concurrently. Ideally,
for these short-separation regression methods to properly clean
the superficial noise, the short-distance measurement should be
free of artifact and at least as high quality in terms of the signal-
to-noise ratio as the longer distance measurement to be cleaned.
When a short-separation regressor/data is noisy, this can actually
transfer some of the noise into the signal of interest. Thus, using
short-distance measurements that contain artifacts or high levels
of noise as regressors can actually introduce additional error.
Using short-separation measurements to remove physiology-
based artifacts assumes that the same components are found in
both the skin and brain. In a recently published paper,71 we
found up to a 7-s delay between different measurements sites;
this delay might be found between the skin and brain regions.
Therefore, a simple regressor may not be efficient enough to
remove the physiological noise. Secondly, we found that global
changes in slow varying fluctuations accounted for only 25% of
the spectral power in the low frequency band at the cortical level.
In other words, main changes in low frequency fluctuations
were related to the brain autoregulatory activities as well spatial
variability due to vasculature differences. Therefore, short-sep-
aration measurements will not be that useful for removing physi-
ology at the cortical levels.

6 Conclusion
Based on the simulations and analysis presented in this work, we
conclude as follows:

• The slow evolution of the hemodynamic response results
in spurious correlations, particularly at sample rates about
0.1 Hz, and results in uncontrolled type-I errors in the esti-
mates of sFC.

• Autoregressive filtering to prewhiten the signals followed
by correlation estimates of the innovations models pro-
vided control of these type-I errors and improved the sen-
sitivities of the models in ROC curve analysis.

• We found that robust correlation of the innovations mod-
els provided more reliable estimates in the presence of
motion-related artifacts.

• Prewhitening and robust methods improved the perfor-
mance of both time series (correlation) and FD (wCOH)
methods.

• We failed to find any strong evidence to suggest that TD
or FD methods would be preferred and found similar per-
formances of the two methods when compared in ROC
analysis.

In conclusion, our results strongly suggest that accounting
for both serially correlated errors and statistical outliers due
to motion-related artifacts is essential to proper analysis and
interpretation of resting state sFC-fNIRS signals.
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