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Abstract. The goal of this study is to quantify the impact of the in vivo photochemical treatment of rats with
obesity using indocyanine green (ICG) dissolved in saline or dispersed in an encapsulated form at NIR
laser irradiation, which was monitored by tissue sampling and histochemistry. The subcutaneous injection of
the ICG solution or ICG encapsulated into polyelectrolyte microcapsules, followed by diode laser irradiation
(808 nm, 8 W∕cm2, 1 min), resulted in substantial differences in lipolysis of subcutaneous fat. Most of the mor-
phology alterations occurred in response to the laser irradiation if a free-ICG solution had been injected. In such
conditions, membrane disruption, stretching, and even delamination in some cases were observed for a number
of cells. The encapsulated ICG aroused similar morphology changes but with weakly expressed adipocyte
destruction under the laser irradiation. The Cochran Q test rendered the difference between the treatment alter-
natives statistically significant. By this means, laser treatment using the encapsulated form of ICG seems more
promising and could be used for safe layerwise laser treatment of obesity and cellulite. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.5.055008]
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1 Introduction
Diabetes, hypertension, heart disease, and early death are
obesity complications that are often connected with extra
abdominal fat.1–5 The fat cell destruction technologies are very
important not only to fight against obesity6–17 but also to treat
cancer (e.g., breast cancer).18–20 Adipose tissue usually sur-
rounds the tumor; therefore, it is important to remove fat tissue
accurately to ensure optical access to the tumor.21 Treatment of
breast cancer involves a multimodal approach incorporating sur-
gery (lumpectomy, mastectomy, and/or removal of axillary
lymph nodes), chemotherapy, and/or radiation therapy.22–28

One of the effective optical methods for the treatment
of tumors and other lesions is a combined use of dye such
as indocyanine green (ICG) and NIR laser irradiation.29–40

ICG is a cyanine dye widely applied in medical diagnostics
and surgery for imaging.29–31 It is used for determining cardiac
output, hepatic function, and liver blood flow and for ophthal-
mic angiography.31,32 It has a peak spectral absorption at 778
to 790 nm at the monomeric form with a molar absorption
coefficient of 10;800 M−1 cm−1, related to the π → π� transi-
tion.39,40 ICG is usually administered intravenously where it
binds tightly to plasma proteins and therefore is confined to the
vascular system. Depending on liver performance, it is eliminated

from the body exclusively by the liver to bile juice with a half-
life of ∼3 to 4 min.38

At topical application, the monomeric absorption band of
ICG is moved on ∼20 nm to the bigger wavelengths due to
binding to tissue proteins, to 805 to 810 nm.37,39,41 Therefore,
diode lasers with the wavelength of 805 to 810 nm are suitable
for heating and controlling photothermal injury of ICG-stained
tissue sites without impacting the surrounding unstained
tissue.34–36,42 In addition, at light exposure, ICG induces free
radicals such as singlet oxygen and end-products of photo-
chemical reactions, which also damage target cells.29,30,39

This works particularly well for tumors because they naturally
absorb more ICG than healthy tissue. When ICG is injected near
tumors, their response to laser light is 2.5 times as much as that
of the surrounding tissue.43 It is also possible to target specific
cells by conjugating the ICG to antibodies.44 This method was
used to destroy tumors and cancer cells.34,36,45–47 In particular,
the combination of ICG laser therapy with a triggered immune
response provides tumor destruction without future recurrences
of cancer.35,36

ICG is a problematic dye to work with due to its susceptibil-
ity to chemical degradation, nonspecific binding to blood and
tissue proteins, and rapid clearance from the body. Thus, it
needs to be localized in the target area to minimize these adverse
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effects. Therefore, improved delivery systems to stabilize
ICG, such as the use of phospholipid emulsions, polylactic
co(glycolic)-acid particles and diblock copolymer micelles,
were introduced.48–55 ICG-filled biocompatible polyelectrolyte
microcapsules are presumed to stabilize the dye and prevent
it from immediate interaction with tissue. Microcapsule shells
can be formed by a layer-by-layer electrostatic adsorption
method using biocompatible polymers.56–59

The goal of this work is to quantify the impact of ICG applied
in solution or encapsulated into polyelectrolyte microcapsules to
provide photochemical treatment of the subcutaneous adipose
tissue layer by NIR laser irradiation through rat skin in vivo
using follow-up tissue sampling and histology.

2 Materials and Methods

2.1 Laboratory Animals

A group of 2-year-old female rats totally 20 animals were kept
14 days; besides the standard diet, the rats received 5 g each of
nutrients such as sugar, dry milk, sunflower oil, and egg powder
to induce alimentary obesity. Animals were divided into two
groups of 10 rats each. Hair was removed within the region
of ribs on the back, where treatment was carried out, by the dep-
ilation cream Veet (Reckitt Benckiser, France). All procedures
with animals were done in accordance with the European
Convention for the Protection of Animals used for experimental
and other scientific purposes.60 The experimental study was con-
ducted in the Centre of Collective Use of Saratov State Medical
University (Russia) and according to the guidelines of the
University’s Animal Ethics Committee (Russia) and the relevant
national agency regulating experiments with animals.

2.2 Agents

2.2.1 Dye

Saline solution of ICG (SIGMA-ALDRICH Co., Germany) of
concentration 0.5 mg∕ml was used for fat tissue staining. The
solution was kept for 1 to 2 h before use.

2.2.2 Capsule preparation and characterization

ICG (SIGMA-ALDRICH Co., Germany) was encapsulated into
degradable polyelectrolyte microcapsules fabricated by a layer-
by-layer assembly technique. There are a number of studies
indicating that degradable polyelectrolyte microcapsules them-
selves are suitable for subcutaneous drug delivery, since they
show a moderate tissue reaction after the injection in mice.61–63

The ICG-loaded calcium carbonate (CaCO3) microparticles
were fabricated using earlier designed technology.57 1-ml vol-
umes of 1 M Na2CO3 and 1 M CaCl2 water solutions were
quickly added to 5 ml of 1 mg∕ml ICG water solution in a
glass vessel at room temperature and then mixed using the mag-
netic stirrer Mini MR Standard (IKA, Germany) at 500 rpm. The
synthesized CaCO3 particles were washed twice with water and
then used as templates for microcapsule shell formation.
Polyelectrolyte shells were prepared by a self-assembly method
using biocompatible degradable polymers (chitosan and dextran
sulfate sodium salt) adsorbed layer-by-layer on the templates.
The polyelectrolytes were deposited from 1 mg∕ml solutions
in 0.15 M NaCl. After each deposition, the suspension was cen-
trifuged for 1 min at 5000 rpm to separate it into fractions and
remove supernatant liquid and then was triply washed with

water. After consequent deposition of the eight polyelectrolyte
layers, CaCO3 templates were dissolved in 2 M ethylenediami-
netetraacetic acid and the suspension of microcapsules were tri-
ply washed with water, centrifuged at 7000 rpm for 5 min, and
re-suspended in 1 ml of saline. Thus, ICG-filled biocompatible
degradable polyelectrolyte microcapsules were formed.

To study the morphology and microstructure, a drop of the
microcapsule suspension was put on the silicon wafer, dried, sput-
tered with gold, and imaged with scanning electron microscopes
(SEM), a MIRA II LMU (Tescan) at acceleration voltage of
20 kVand a Phillips XL 30 at 5 to 30 kV. Performed SEM images
of the ICG-loaded polyelectrolyte microcapsules are shown in
Fig. 1. The images demonstrate a spherical shape of the capsules
and their narrow size distribution of 3.5� 0.5 μm.

To estimate the ICG concentration in polyelectrolyte contain-
ers, the supernatant was collected at each polyelectrolyte
deposition and washing step, and the absorption spectrum
was examined with a Lambda 950 spectrophotometer (Perkin
Elmer). The total amount of loaded molecules was deduced by
subtracting the measured amount of unloaded and washed-off
molecules of the supernatant from the initial amount of
0.5 mg∕ml of ICG, which had been added to the system. As
a measure of the amount of ICG in solution, its optical density
spectrum was recorded in the spectral range of 300 to 1000 nm.
A calibration curve was obtained from the measurements of
known concentrations of ICG in saline.

The resulting concentration of ICG in the saline suspension
of obtained microcapsules was found to equal 0.5 mg∕ml,
meaning 1 pg of ICG per one polyelectrolyte microcapsule.

2.3 Protocol of Experiment

The skin sites for each rat with obesity were demarcated into
four zones. Each sampling zone was about 1 cm in diameter.
Zone 1 was kept as a control zone without any staining or radi-
ation. For zone 2, subcutaneous dye injection (free ICG or
encapsulated ICG, 0.5 mg∕ml) was performed: the ICG solution
was applied to the rats of the first group, while the encapsulated
ICG was injected into the rats of the second group. Zone 3 was
exposed to radiation from a diode NIR laser (wavelength
808 nm, power density of 8 W∕cm2, exposure of 1 min). For
zone 4, free ICG or encapsulated ICG injection of the same
volume and concentration was followed by light irradiation.
Anesthesia of rats was carried out with Zoletil (Vibrac, France).
After 1 h elapsed since the 1-min light exposure, the rats were
decapitated. The design of the experiment was compiled on the

Fig. 1 Scanning electron microscopy images of ICG-loaded polyelec-
trolyte microcapsules at different magnifications. The microcapsules
have a narrow size distribution of 3.5� 0.5 μm.
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basis of the Guide for the Care and Use of Laboratory
Animals.64

2.4 Histology

For histological studies, samples of skin with subcutaneous tis-
sue of thickness 1.5 to 2.5 mm were taken by surgery from rats
within the marked four-zones of the skin site. For histological
examination of excised tissue samples, fixation was carried out
by a 10% solution of formaldehyde. After fixation, the 5- to
7-μm-tissue slices across all layers of subcutaneous tissue
were made, stained by hematoxylin-eosin using a standard tech-
nique, and then analyzed.65 Morphological study was conducted
independently by two experts in the field of pathological
anatomy: one is a well-experienced postgraduate student and the
other is a professor, doctor of medical sciences. Thus, the study
was suited to a double-blind manner.

2.5 Statistical Data Analysis

Statistical data analysis was performed using the “Statistics 6.0.”
In the cases where the indication under study is not character-
ized by quantitative and qualitative variables, such as serial
numbers, indices, signs “+” or “−” (binary scoring system),
and so on, only nonparametric methods are possible. The scale
of evaluation was dichotomous: any changes in subcutaneous
adipose tissue were either present (¼ 1) or not (¼ 0) in the his-
tological samples. The Cochran Q-test, a nonparametric test
usually applied to the analysis of two-way randomized block
designs where the response variable can take only two possible
outcomes (coded as 0 and 1), was used.66 The test provides a
quick recognition of whether k treatments have identical effects.
It shows that the empirically found difference between the treat-
ment alternatives is statistically significant.

3 Results and Discussion

3.1 Histological Analysis of Control Samples

The samples were skin slices with a layer of subcutaneous adi-
pose tissue. In the control samples (zone 1), no changes in the
epidermis, dermis, and subcutaneous adipose tissue [Fig. 2(a)]
were found. The epidermis is normally thin, and its cells do not
have any degenerative changes. The dermis is represented by
collagen fibers distributed in different areas and located close
to each other. The contours of the fat cells are distinct. Muscle
fibers with distinct cross striation are seen. Skin appendages are
not changed.

3.2 Histological Analysis of the Samples after the
Injection of Agent

For the first group of rats, free ICG dissolved in saline was
injected subcutaneously, while for the second group encapsu-
lated ICG was applied. In the samples corresponding to zone 2,
i.e., the subcutaneous injection of free-ICG [Fig. 2(b)] or encap-
sulated ICG [Fig. 2(c)], no essential morphological changes of
epidermis and dermis were observed. No destruction of adipose
tissue, even weakly expressed, was found. For the first group of
rats, fat tissue was presented by cells with thinning and split
boundaries of the external environment—the cell membrane-
cytoplasm-fat drop. In the case of encapsulated ICG injection,
no damage was noticed either. However, for some samples,

delamination of cell membranes was found. This could be
explained by the mechanical stress on cells caused by swelling.

According to the literature, a moderate tissue reaction is
observed after subcutaneous injection of unloaded degradable
polyelectrolyte microcapsules in mice.61,62 An acute phase is
characterized by recruitment of polymorphonuclear cells, and
a more chronic phase is marked with environing of the injection
site by fibroblasts during the microsphere phagocytosis.

3.3 Histological Analysis of the Samples after
Irradiation

For the samples corresponding to zone 3, after NIR diode laser
irradiation (power density of 8 W∕cm2 and the exposure of
1 min), no significant changes were observed: just a little
thinned out areas were found for the epidermis, while edema
of the dermis was discovered. The irradiation leads to hyperemia
in the hypodermis [Fig. 2(d)] of irradiated sites. Moreover, the
signs of damage in adipose tissue were found: the boundary
thinned and partly disrupted membranes [indicated by arrows
in Fig. 2(e)] had a stretched shape, and membrane delamination
was observed in some cases [Fig. 2(e)]. Changes of fat cells dur-
ing 1 h of observation were characterized as a destruction proc-
ess, which could potentially lead to lipolysis or necrosis.67,68

NIR laser irradiation may stimulate an increase of permeability
of fat cell membranes resulting in release of intracellular fat. The
fatty triglycerides may flow out through the disrupted cell mem-
branes into the interstitial space where they gradually pass
through the lymphatic drainage system.69

3.4 Histological Analysis of the Samples after the
Dye Subcutaneous Injection and Irradiation

In the samples with subcutaneous injection of the ICG solution
and subsequent laser irradiation, definite signs of damage in adi-
pose tissue were observed [Fig. 2(f)]. The epidermis was in a
normal state, while a local hemorrhage in the dermis and a mod-
erate infiltration of neutrophils and eosinophils in the hypoder-
mis took place. Edema with swelling of certain muscle fibers
was observed in the muscle tissue [Fig. 2(g)]. Adipose tissue
had pronounced signs of damage seen as strongly stretched
cells. Disrupted membranes [indicated by red arrows in
Fig. 2(f)] were also found. The ICG tissue staining via subcuta-
neous injection and subsequent laser irradiation at a physiologi-
cal constant temperature lead to the generation of oxygen
radicals (superoxide and hydroxyl radicals) that causes a modi-
fication of fat cell phospholipid membranes and transmembrane
cell lipolysis coming out as cell shape transformations.

In the case of encapsulated ICG-injection, we observed
similar changes, but with weakly expressed cell destruction
[Fig. 2(h)]. In the course of the photochemical/photothermal
reaction, in addition to direct cell lipolysis, cell apoptosis can
be induced when the microdamages of the cell membrane
reach a critical value or strength.70,71 Encapsulated ICG tissue
treatment rendered a smaller damaging ability. However, such
damages could also lead to cell lipolysis and/or apoptosis.72,73

It is important to note that, for the samples used to demon-
strate posteffects 2-weeks after laser irradiation of the stained
tissue sites, significant changes were observed. Intact adipocytes
were not found at the site. The fat tissue layer was completely
destroyed, partly eliminated with some remaining necrotic
masses, and replaced with connective tissue.
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In our previous work, we investigated photochemical treat-
ment using an ICG solution with a concentration of 1 mg∕ml

dissolved in alcohol and 808-nm laser irradiation (power density
of 16 W∕cm2 and the exposure time 1 min), which caused the
pronounced changes in ex vivo adipose tissue accompanied by
cell apoptosis and/or necrosis depending on the level of tissue
damage.74 It was established that application of the free ICG-
water solution (1 mg∕ml) or encapsulated ICG-water solution
(2 mg∕ml) as a photochemical dye in the ex vivo experiment
increased the cell membrane permeability leading to lipolysis.75

For tissue stained by the ICG-water solution, a total lipolysis
was seen after 295 min of observation, while for tissue stained

by an encapsulated ICG it happened much earlier, after 165-min
elapsed.75

In our previous work, we found that photochemical treatment
in rats in vivo at subcutaneous injection of the ICG solution
(0.5 mg∕ml in saline or in alcohol mixture) and follow-up
808-nm-diode laser irradiation (16 W∕cm2 and 1-min exposure)
caused the development of pronounced changes in tissue
morphology.76

In the current study, the biopsy specimens for histology were
taken 60 min after light exposure when only the first signs of cell
damage and lipolysis occurred. This experiment rendered the
encapsulated form of ICG more effective (see Table 1) and

Fig. 2 Histological (H&E staining) images of subcutaneous adipose tissue samples taken from in vivo
treated rats (magnification 246.4×): (a) no treatment (control); (b) after injection of free-ICG solution
(0.5 mg∕ml in saline); (c) after injection of encapsulated ICG (0.5 mg∕ml in saline); (d) hyperemia in
the hypodermis in zone 3; (e) after 1-min 808-nm diode laser irradiation (8 W∕cm2); (f) after free-ICG
injection (ICG 0.5 mg∕ml in saline) and 1-min 808-nm diode laser irradiation (8 W∕cm2); (g) edema
with swelling of the certain muscle fibers in zone 4; (h) after encapsulated ICG injection (encapsulated
ICG 0.5 mg∕ml in saline) and 1-min 808-nm-diode laser irradiation (8 W∕cm2). Blue arrows—changed
(thinned) membranes; red arrows—disrupted membranes.
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promising due to the ability to control cell lipolysis more
smoothly and to avoid the unwanted effects of necrosis.

The Cochran Q test can be used to evaluate the relation
between two variables that are measured on a nominal scale.
One of the variables may consist of only two possible values
(dichotomous scale). In our case, six different treatments for
10 laboratory animals were evaluated. The scale of evaluation
was dichotomous: any changes in subcutaneous adipose tissue
either were present (¼ 1) or not (¼ 0) in the histological
samples.

The value of Q becomes greater if there is a statistical asso-
ciation between the variables. If there is no association and only
chance is operating, Q reaches exactly the same values as Chi
squared (χ2-distribution). The degree of freedom equals (k − 1),
where k is the number of cases or treatments; thus, for our study
we have the degree of freedom ¼ 5. On the basis of data pre-
sented in Table 1, the Q value of 27.6 was calculated using the
“Statistics 6.0” program. It is known that results would be sig-
nificant when Q has a higher value than 15.09 for a significance
level p ¼ 0.01.66 Therefore, the Cochran Q test shows that the
empirically found difference between the treatment alternatives
is statistically significant because in our case Q > 15.09.

Thus, the combined treatment with the encapsulated ICG dye
and the 808-nm laser (last column in the Table 1) is more effec-
tive in comparison with the other treatments. The level of
significance of such a conclusion is rather high, p ¼ 0.01.

4 Conclusion
Based on the analysis of the results of the histology of tissue
samples taken from the in vivo ICG-stained subcutaneous tissue
after NIR laser treatment, we came to the following conclusion.
The greatest changes without necrosis were observed in the case

of combined action of the injection of the free ICG and 808-nm
laser irradiation. For some cells, the membrane was partly dis-
rupted, the cells had a stretched shape, and cell membrane
delamination was observed in some cases. For the encapsulated
ICG application, we observed similar changes with weakly
expressed destructive changes of tissue structures and forms
of adipocytes without disruption of the cell membrane. The
Cochran Q test showed that the empirically found difference
between the treatment alternatives is statistically significant,
since Q > Qcritical (Q ¼ 27.6,Qcritical ¼ 15.09). Therefore, laser
treatment using the encapsulated ICG came out as a more effec-
tive method in comparison with the free-ICG injection protocol.
The significance of the conclusion is rather high, p ¼ 0.01.

We hypothesize that light irradiation of ICG-stained cells
may lead to an increase of fat cell lipolytic activity (the enhance-
ment of lipolysis of cell triglycerides due to the expression of
lipase activity and cell release of free fat acids due to temporal
cell membrane porosity), and cell elimination due to apoptosis is
caused by the induced fat cell stress and/or limited cell necrosis.
The obtained data can be used for safe laser treatment of obesity
and cellulite.
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