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Abstract. This article proposes a multispectral system that uses the analysis of the spatial distribution of color
and spectral features to improve the detection of skin cancer lesions, specifically melanomas and basal cell
carcinomas. The system consists of a digital camera and light-emitting diodes of eight different wavelengths
(414 to 995 nm). The parameters based on spectral features of the lesions such as reflectance and color,
as well as others empirically computed using reflectance values, were calculated pixel-by-pixel from the images
obtained. Statistical descriptors were calculated for every segmented lesion [mean (x̃ ), standard deviation (σ),
minimum, and maximum]; descriptors based on the first-order statistics of the histogram [entropy (Ep), energy
(En), and third central moment (μ3)] were also obtained. The study analyzed 429 pigmented and nonpigmented
lesions: 290 nevi and 139 malignant (95 melanomas and 44 basal cell carcinomas), which were split into training
and validation sets. Fifteen parameters were found to provide the best sensitivity (87.2% melanomas and 100%
basal cell carcinomas) and specificity (54.5%). The results suggest that the extraction of textural information can
contribute to the diagnosis of melanomas and basal cell carcinomas as a supporting tool to dermoscopy and
confocal microscopy. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.6.065006]
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1 Introduction
Globally, one in three cancers is a cancer of the skin. In Europe,
the United States, and Australia, the incidence of skin cancer is
increasing rapidly. Melanoma, which represents 4% of all skin
cancer lesions, is the most aggressive and lethal of all skin
cancer forms.1 Approximately 90% of skin cancers are caused
by ultraviolet (UV) light from daylight or tanning booths. The
World Health Organization estimates that 60,000 people die
every year from excess solar UV radiation: 48,000 from mela-
noma and 12,000 from carcinomas. Crucially, early detection
and treatment significantly increases the 5-year survival rate.

Currently, the technique most widely used by dermatologists
for the detection of skin cancer is visual inspection through a
dermoscope, a handheld device with a magnifying lens and a
white and uniform illumination field. The light is often polarized
to remove specular reflection from the skin surface to capture
information from deeper tissue layers. Dermoscopy allows
the identification of different structures, patterns, and colors in
skin lesions characteristic of malignant (melanoma and basal
cell carcinoma) and benign lesions (seborrheic keratosis, heman-
gioma, lipoma, and wart). Histological examination, which
requires the surgical excision of the tumor and is the clinical
gold standard, provides diagnostic confirmation. A limitation of

dermoscopy is that it produces a large number of false positives,
thus contributing to the high direct annual costs for the diagnosis
and treatment of skin cancer.2

Color and spectral imaging technology that enhance and ana-
lyze spectral properties of the skin are currently being explored
to improve early detection and diagnosis of skin cancer. Spectral
properties are caused by chromophores such as melanin, hemo-
globin, and water, which differ among skin lesions of different
etiologies.

In addition to the commercial devices, SIAscope,3 MelaFind,4

and prototypes such as those developed by Bekina et al.5 and
Kapsokalivas et al.6 have already been proposed as tools for
improving skin cancer diagnosis. Most devices only use three
spectral bands in the visible range (typically three-color RGB
channels), which limits their spectral resolution, and an additional
one located at the near-infrared (NIR) range. Notably, most
tools only analyze the averaged color and spectral properties.

This study presents a new handheld multispectral system
with spectral bands along the visible (VIS) and the NIR ranges
for the diagnosis of skin cancer that takes also into account
the distribution of color and spectral features of the skin lesion,
i.e., it includes texture or spatial information instead of just the
corresponding averaged values. We show the methodology per-
formed to setup and characterize the whole system, including
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the protocol followed to select the most suitable color and spec-
tral parameters to detect skin cancer lesions, specifically mela-
nomas and basal cell carcinomas, and to differentiate them from
nevi. The results of spectral and spatial properties corresponding
to real lesions analyzed at a clinical site are also presented.

This study participates in the European Project DIAGNOPTICS
“diagnosis of skin cancer using optics” (ICT PSP seventh call
for proposals 2013), with the objective to develop a multipho-
tonic diagnostic platform including multispectral and 3-D tech-
niques,7 blood flow analysis based on self-mixing,8 and
confocal microscopy9 for in vivo imaging of skin cancer lesions.
The aim of these new technologies is to achieve a higher detec-
tion ratio and better prognostic evaluation of skin cancer at ear-
lier stages when compared with current methods.

2 Material and Methods

2.1 Equipment

Figure 1 shows the multispectral system developed; it consists of
a handheld ergonomic cylinder of ∼10 cm in length, 7.5 cm in
diameter, and a weight of 0.5 Kg. The cylinder contains a CCD
monochrome camera (Sony ICX445ALAwith 1280 × 960 pixels
of sensitive area and 12-bit depth of digitalization) and a lens
(Cinegon 1.8/16-0901) that can record skin lesions focused at
4 cm with 15 × 20 mm field of view; moreover, a set of 32
light-emitting diodes (LED) of eight different wavelengths
(414, 447, 477, 524, 671, 735, 890, and 995 nm) was chosen
in accordance with the absorption curves of the principal chro-
mophores of the skin, especially taking into account their most
representative minimums and maximums and the spectral bands
with considerable differences among them allowing characteri-
zation of the tissue constituents. Commercial availability of
LEDs in the analyzed range (400 to 1000 nm) was also consid-
ered as a limiting factor. Table 1 contains information of the
relationship between the peaks of the LEDs chosen and the rea-
son for selection.

In addition, the system contains two rotating polarizers
located in front of the LEDs and the lens, respectively, which
allow the removal of the specular reflection from the skin if
desired.

Figure 2 shows the spectral emission of the LEDs included in
the ring of the multispectral system. Measurements were per-
formed with a commercial scanning spectrometer model Spectro
320 R5 of Instrument Systems. As can be seen, their full width

Fig. 1 Different views of the multispectral system developed.

Table 1 Reason of wavelengths selection.

Wavelength (nm) Reason of selection

414 Hba and HbO2
b peaks of maximum absorption

Melanin maximum absorption

447 Bilirubin peak of maximum absorption

477 Hba minimum absorption

524 Intermediate wavelength allowing a complete
spectral sampling

671 HbO2
b minimum absorption

735 Typical wavelength used in pulse oximetry
(allowing differentiation between Hba and HbO2

b)

890 Typical wavelength used in pulse oximetry
(allowing differentiation between Hba and HbO2

b)
Information from deeper layers of the skin

995 Information from deeper layers of the skin

aHb, deoxyhemoglobin.
bHbO2, oxyhemoglobin.

Fig. 2 LEDs included in the ring of the multispectral system: (a) spec-
tral emission and (b) front picture of the ring.

Journal of Biomedical Optics 065006-2 June 2017 • Vol. 22(6)

Delpueyo et al.: Multispectral imaging system based on light-emitting diodes. . .



at half-maximum ranged from 15 to 40 nm, which was consid-
ered enough to analyze the spectral features of lesions due to the
fact that they are linked to rather smooth absorption curves as
other authors have previously reported.10–12 The four LED units
for each wavelength are distributed over a ring with an angular
separation of 90 deg, generating a uniform and diffuse illumi-
nation on the skin.

To facilitate its use, the clinicians can place the head of the
system on a base between measurements. In addition to its stor-
ing function (the power supply and electronic boards are inside),
the main function of the base concerns calibration. To this
end, the base incorporates a reference sample (Neutral 6.5
from XRite ColorChecker® Classic CCCR) used in the daily
calibration of the system, which is carried out before starting
measurements.

2.2 Collection of the VIS-NIR Spectral Images and
Parameters Analyzed

Spectral images for the eight wavelengths (or spectral bands)
available were obtained through an automated and sequential
process of acquisition. A complete acquisition for all wave-
lengths lasted about 40 s. Each lesion was only measured once
as the repeatability achieved with the system was very good:
a percentage of variation (standard deviation∕mean × 100) of
less than 2.5% was registered for all wavelengths when 15 dif-
ferent acquisitions were made for 3 consecutive days (5 acquis-
itions per day).

Next, eight reflectance and eight absorbance images were
computed considering the spectral images of the aforementioned
reference sample as well as dark current images, taken without
ambient light and for any skin sample placed in front of the
system; the reflectance and absorbance at each pixel ði; jÞ for
a given wavelength λi were then calculated as follows:

EQ-TARGET;temp:intralink-;e001;63;381Reflλnði; jÞ ¼ Reflrefλn ·
DLλnði; jÞ − DL0λn

ði; jÞ
DLrefλnði; jÞ − DL0λn

ði; jÞ ; (1)

EQ-TARGET;temp:intralink-;e002;63;336Absλnði; jÞ ¼ − log½Reflλnði; jÞ�; (2)

where Reflλnði; jÞ is the reflectance, DLλnði; jÞ is the digital
level of the acquired raw image of the lesion, DL0λn

ði; jÞ is
the digital level of the current dark image, DLrefði; jÞ is the dig-
ital level of the reference, i.e., the calibrated sample, Reflrefλn is
the calibrated reflectance of the reference provided by the manu-
facturer, and Absλnði; jÞ is the absorbance. All images were
acquired with the same offset, gain, and exposure time camera
parameters as those used for the analyzed lesion.

Three different groups of parameters were calculated from
the reflectance images of a lesion. The first group consisted
of the pixel-by-pixel spline interpolation values (from 415 to
995 nm with steps of 10 nm) of the eight previous reflectance
and absorbance images to obtain more accurate information.
Additionally, differences between normal skin and the lesion
were also computed in reflectance and absorbance terms to pre-
vent the patient’s skin from influencing the results.

Additional images containing a second group of parameters
were computed to look for color features of skin lesions; color
coordinates of standard color representation spaces were used,
such as those of the CIELAB color space13 in which color is
represented with lightness (L�), red-green (a�), and yellow-
blue coordinates (b�); alternatively; chroma (C�

ab) and the

hue angle can also be used (hab). More complex parameters
based on CIELAB color coordinates were also considered
such as color differences (ΔE) between each pixel of the lesion
and the averaged color of the whole lesion and between each
pixel of the lesion and the averaged color of the surrounding
healthy skin or the individual typology angle (ITA),14 which
is related with the hue angle and is commonly used to classify
different kinds of skin.

The interpolated reflectance values (see above), illuminant
CIE D65 and CIE 2 deg standard observer were used to compute
the color data in all cases.15,16

The third group consisted of what we considered “empirical
parameters,” i.e., parameters empirically computed by operating
with reflectance values at different wavelengths to enhance any
particular spectral feature potentially different in healthy and
malignant tissues that might be useful in discriminating among
different types of skin lesions

EQ-TARGET;temp:intralink-;e003;326;565Parmði; jÞ ¼ f½Reflλnði; jÞ�; (3)

where Parmði; jÞ is a particular parameter and f½Reflλnði; jÞ� is a
function of the reflectance images computed from several wave-
lengths (they can be added, subtracted, multiplied, etc.) to high-
light subtle differences among lesions of different etiologies.
Various authors have suggested that some of these parameters
can be useful to map a particular skin chromophore. For in-
stance, Diebele et al.10 and Bekina et al.5 proposed the following
parameters to account for bilirubin (B) and erythema (E),
respectively:

EQ-TARGET;temp:intralink-;e004;326;435B ¼ I450ði; jÞ∕I660ði; jÞ; (4)

EQ-TARGET;temp:intralink-;e005;326;405E ¼ I660ði; jÞ∕I545ði; jÞ; (5)

where Iλ is the intensity of diffuse light reflected from the skin at
a specific wavelength of a multispectral system composed of
four different spectral bands—three in the visible (450, 545,
and 660 nm) and one in the infrared ranges (940 nm).

The same authors also proposed a melanoma index (p) as
follows:

EQ-TARGET;temp:intralink-;e006;326;313p ¼ k · fI540ði; jÞ∕½I650ði; jÞ � I950ði; jÞ�g; (6)

where k is the intensity coefficient that describes the white eta-
lon reference used for the calibration of the system.

In particular, the eight wavelengths available in our system
without interpolation were used to compute the former param-
eters. To resemble those proposed by other authors, the closest
available wavelengths were chosen.

Similarly, Emery et al.3 suggested that the SIAscope com-
mercial system could contribute to the management of pig-
mented skin lesions. SIAscope maps the dermal melanin of
lesions, and melanomas usually have more dermal melanin
than other skin lesions. Specifically, the system also captured
four different images17 (three in the RGB channels and one
in the infrared), and, to avoid calibration, the ratio images of
green over red and blue over red were calculated pixel-by-
pixel to account for the concentrations of blood and melanin,
with the help of a conversion table.

Once all images including parameters from the three groups
were obtained, a mask was created to segment the lesion from
the skin. The segmentation algorithm used was based on the
Otsu method18 and consisted of maximizing the between-class
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variance of the lesion and the skin pixel values to define a
threshold based on the intensity of the histogram at the bluest
reflectance image (414 nm). This image was used as it provided
information from the most superficial layer of the skin, allowing
for a better discrimination between the lesion and the surround-
ing healthy skin. Furthermore, for those lesions that were not
homogeneous, the reflectance image was divided into four
different subimages, allowing different thresholds adapted to
the different areas of the lesion to be calculated.

Next, statistical descriptors were obtained for every seg-
mented lesion for all parameters, i.e., mean (x̃), standard
deviation (σ), maximum, and minimum. As a first approach
to the extraction of textural information, we used the analysis
of the statistical properties of the histogram for any of the
parameters calculated, also known as first-order statistics.19,20

This analysis includes the study of some features such as
entropy (Ep), a well-known statistical measure of randomness,
energy (En), a numerical descriptor of the image uniformity
having 1 as its maximum value for a constant image, and the
third central moment (μ3), which accounts for the skewness
of the histogram. The mathematical descriptions of these fea-
tures are:

EQ-TARGET;temp:intralink-;e007;63;510Ep ¼ −
Xn−1

i¼0

Pi log2ðPiÞ; (7)

EQ-TARGET;temp:intralink-;e008;63;463En ¼
Xn−1

i¼0

P2
i ; (8)

EQ-TARGET;temp:intralink-;e009;63;419μ3 ¼ −
Xn−1

i¼0

ði −mÞ3Pi; (9)

where n is the number of bins or intervals into which the histo-
gram is divided, Pi is the relative frequency of the bin i of the
histogram, and m is the mean of the parameter.

2.3 Classification Algorithm

A classification algorithm was developed to decide which
lesions were malignant (melanomas and basal cell carcinomas).
To this end, the data were split into a training set and a validation
set of the same size including half of the nevi, basal cell carci-
nomas, and melanomas. Using the training set, upper and lower
thresholds were first defined for each parameter as the interval
limits that included all nevi. The upper (lower) threshold was
chosen as the value of the nevus with the highest (lowest)
value after some nevi were discarded according to

EQ-TARGET;temp:intralink-;e010;63;214Nevi outliers ¼ x̃nevi � 2 · σnevi; (10)

where x̃nevi and σnevi are the average and standard deviation,
respectively, in terms of each parameter calculated from all seg-
mented nevi lesions in the training set. For instance, x̃nevi and
σnevi can be those corresponding to the energy of the reflectance
at 995 nm or to the maximum lightness (L�) of all pixels belong-
ing to a lesion diagnosed as nevus.

All lesions above or under the upper and lower thresholds for
at least one parameter were classified as malignant.

The classification algorithm worked as follows: after
calculating the thresholds of all parameters, they were ordered
according to the number of malignant lesions they allowed

classifying. Accordingly, the first parameter on the list was
that allowing the greatest number of malignant lesions in the
training set to be classified, the second one was that allowing
the second greatest number, and so forth. The algorithm then
started from the first of the list alone and calculated the corre-
sponding sensitivity, i.e., the percentage of malignant lesions
classified as such. The second parameter of the list was then
chosen to perform the classification together with the first one,
and the sensitivity was computed again. If the second parameter
did not allow improving the classification with at least one more
malignant lesion detected, it was discarded as it was considered
to be redundant. Otherwise, it was included. Next, the third
parameter on the list was added to the first two and the sensi-
tivity was calculated again, repeating the described process until
the addition of more parameters did not improve the sensitivity
of malignant lesions of the training set. The sensitivity and
specificity values achieved with the formerly chosen parameters
were then calculated for the validation set exclusively.

Finally, the same analysis was carried out again but without
including basal cell carcinomas in the training and validation
sets to be able to compare the obtained results in terms of sen-
sitivity and specificity with those from other studies that only
tested melanomas and nevi and to not artificially inflate the sys-
tem accuracy.

3 Results
The developed system was used to analyze 564 pigmented and
nonpigmented skin lesions at the Hospital Clínic i Provincial de
Barcelona (Barcelona, Spain) and the Università di Modena e
Reggio Emilia (Modena, Italy). All patients provided written
informed consent before any examination and ethical committee
approval was obtained. The study complied with the tenets of
the 1975 Declaration of Helsinki (Tokyo revision, 2004). The
lesions were diagnosed by dermatologists (SP and JM in
Barcelona, GP and SB in Modena) using a commercial dermo-
scope and the confocal laser scanning microscope VivaScope®

1500 fromMAVIG. When malignancy was suspected, the lesion
was excised and a histological analysis was carried out.

From the 564 lesions measured, 11% could not be properly
segmented: 4.4% had low pigmentation, 3.2% had no well-
defined borders, 1.6% were bigger than the field of view of
the system, 0.9% presented misalignments along the spectral
images taken at different wavelengths due to the patient’s breath
movement, 0.6% presented artifacts such as hairs, and 0.3%
many different colors making the segmentation difficult.

From the remaining 502 lesions that could be segmented, 73
were excluded as they were diagnosed as seborrheic keratosis,
squamous carcinomas, and other benign lesions such as angio-
mas or dermatofibromas. However, there were not enough sam-
ples in each category to be included in the study.

Finally, 429 skin lesions were included in the analysis: 290
were benign lesions classified as nevi (melanocytic, dysplastic,
blue, junctional, and Spitz nevi) and 139 were malignant (95
melanomas and 44 basal cell carcinomas). It is also worth noting
that the limitation of most studies is the inclusion of preselected
lesions according to the histopathological diagnosis whereas our
study was a prospective study including consecutive lesions that
could enter in the differential diagnosis of melanoma. In general,
some basal cell carcinomas can be easily diagnosed clinically
but dangerous melanomas, such as amelanotic melanoma or
nodular melanoma, can be easily misdiagnosed as basal cell
carcinomas. Therefore, the approach used in our study is more
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approximate to what happens in real life, where basal cell car-
cinomas are at least 10 times more frequent than melanomas and
can be misdiagnosed if not considered.

Figure 3 shows representative VIS-NIR reflectance images
of a nevus, a melanoma, and a basal cell carcinoma. The figure
shows that nevi are usually more homogeneous at all wave-
lengths. Furthermore, the infrared light, which penetrates deeper
in the skin, shows that melanomas generally grow deeper.

The averaged reflectance (�σ, standard deviation) of nevi,
melanomas, and basal cell carcinomas can be seen in Fig. 4.
In agreement with previous publications,11,12 the averaged
reflectance of melanomas (or equivalently absorbance) is gen-
erally lower (higher) than that of nevi. However, this difference
decreases when considering the great variance among lesions of
the same type, which makes it difficult to classify them if only
averaged values are taken into account.

To overcome this limitation, histograms for the whole lesion
with all parameters were also plotted. Figure 5 shows specific
examples of histograms of a nevus and a melanoma in terms of
reflectance at 415 and 675 nm. The averaged spectral reflectance
(x̃), the standard deviation (σ), maximum, minimum, and cor-
responding Ep, En, and μ3 are also shown.

The results show that the averaged reflectance, the standard
deviation, and the maximum and minimum at 415 nm for both
lesions are very similar. In contrast, the histograms look com-
pletely different; the nevus is linked to a higher En and a lower
Ep since its pigmentation is more uniform than the melanoma.
With regard to the skewness (μ3), the nevus presents a practi-
cally symmetrical distribution and, thus, a lower value than
the melanoma. On the other hand, both lesions have enhanced
spectral differences at 675 nm, as expected from Fig. 4, and,
thus, the averaged reflectance is clearly different; however,
the En and the Ep remain more similar in this case in compari-
son with 415 nm, whereas the melanoma is skewed to the left
(negative) in terms of the third central moment, contrary to what
was obtained for the nevus.

In summary, we might conclude that the texture information
might allow the differentiation between nevi and malignant
lesions (melanomas and basal cell carcinomas).

From all the parameters calculated, only 15 were not redun-
dant and finally selected for use in the classification algorithm.
As formerly described, only those that detected a larger number
of malignant lesions were chosen, until the addition of more
parameters did not improve the results in terms of sensitivity
in the training set, i.e., the detection of malignant lesions.

• Eight were spectral reflectance and absorbance of the
lesion (first group): En of Abs875, μ3 of Refl745, x̃ of
Refl645, and σ of Abs935. Also, differences between lesion
and surrounding skin in terms Ep of Abs465, En of
Abs635, μ3 of Abs985, and μ3 of Refl975.

Fig. 3 Reflectance images obtained with the system at different wavelengths analyzed: (a) nevus,
(b) melanoma, and (c) basal cell carcinoma.

Fig. 4 Averaged reflectance (�σ, standard deviation) of nevi, mela-
nomas, and basal cell carcinomas.
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• Four were color-based parameters (second group): maxi-
mum of L�, σ of a� as CIELAB colorimetric coordinates,
and minimum ΔE with the surrounding healthy skin as
the reference, and maximum ITA.

• Three were empirical parameters (third group): En of
Emp1, maximum of Emp2, maximum of Emp3, which
are defined as follows:

EQ-TARGET;temp:intralink-;e011;326;669Emp1¼ logfRefl524ði;jÞ∕½Refl671ði;jÞ ·Refl995ði;jÞ�g;
(11)

EQ-TARGET;temp:intralink-;e012;326;625Emp2 ¼ Refl2671ði; jÞ∕Refl2524ði; jÞ; (12)

EQ-TARGET;temp:intralink-;e013;326;598Emp3 ¼ Refl671ði; jÞ
Refl995ði; jÞ

: (13)

The following scatter plots (Fig. 6) show three specific exam-
ples from the three groups of selected parameters. Since the
number of melanomas finally included in the study was odd,
one extra melanoma was considered in the validation set.

The corresponding upper and lower thresholds used for clas-
sification were calculated with the training set while the samples
shown correspond to the validation set. The plots show that
some of the melanomas and basal cell carcinomas tend to
have values beyond the upper/lower thresholds.

With the classification algorithm based on these 15 param-
eters, 6 out of 47 melanomas and none of the 22 basal cell car-
cinomas were misclassified (91.3% sensitivity); in contrast, 66
nevi from 145 were classified as malignant (54.5% specificity).
Here, sensitivity or true positive rate is the probability of
detecting malignant lesions (melanomas and basal cell carcino-
mas) and the specificity or true negative rate is the proportion of
nevi correctly identified.

As commented above, the analysis was repeated but only
including nevi and melanomas in the training and validation
sets. In this case, the sensitivity and specificity of the system
were of 87.2% and 54.5%, respectively.

Fig. 5 Histograms of (a) a nevus and a melanoma in terms of spectral
reflectance at 415 nm and (b) at 675 nm, with their respective values
of mean (x̃ ), standard deviation (σ), maximum, minimum, entropy
(Ep), energy (En), and third central moment (μ3).

Fig. 6 Scatter plots from three specific parameters: (a) differences between the lesion and the skin in
terms of μ3 of Refl985, (b) σ of a� of the CIELAB color space, and (c) maximum of Emp2. The thresholds
shown are those calculated with the training set while the samples correspond to those of the validation
set.
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4 Discussion and Conclusions
In a study of the first SIAscope scoring system applied to a data-
set of 348 pigmented lesions (52 melanomas and the remainder
nonmelanoma lesions, mostly nevi), Moncrieff et al.21 obtained
sensitivity and specificity values of 82.7% and 80.1%, respec-
tively. The SIAscope is a multispectral system with four narrow-
bands (from 400 to 1000 nm) that provides information about
the amount of collagen, hemoglobin, and melanin distribution
in the epidermis and dermis of pigmented skin lesions in
the form of maps called SIAscans. These maps, presented
by the MoleMate software, have to be interpreted by general
practitioners or dermatologists who have previously received
training.22

Similarly, Haniffa et al.23 conducted a study that included
881 pigmented lesions. The observations, carried out by a 3-
year-experienced dermatologist using the latest SIAscope
software, obtained 87% and 91% sensitivity and specificity,
respectively. In the same study, the observations made by a der-
matologist with 20 years of experience resulted in 94% sensi-
tivity and 91% specificity. The authors concluded that the use of
SIAscope by an experienced dermatologist made no additional
contribution over clinical diagnosis.

In a more recent study that analyzed 188 lesions including
three types of malignant lesions (21 melanomas, 9 basal cell
carcinomas, and 5 squamous cell carcinomas) and various
benign lesions (122 nevi, 23 seborrheic keratosis, 7 dermatofi-
bromas, and 1 cherry angioma), Sgouros et al.24 concluded that,
although SIAscope was not superior, it could support the results
of dermoscopy. In this study, the sensitivity and specificity for
suspected malignant lesions were 85.7% and 65.4%, respec-
tively. The lower specificity compared with previous studies
results from the inclusion of more types of malignant lesions.
The authors concluded that SIAscope should not be considered
a replacement for the standard diagnostic procedure, but an
additional tool for nondermatologist clinicians.

Taking into account that the classification algorithm pro-
posed in this article does not require the skills of a dermatologist
to interpret a map, our study provides slightly higher sensitivity
(91.3%) and lower specificity (54.5%) values than previous
studies. Consequently, the inclusion of texture information can
be considered relevant for the detection of melanomas and
basal cell carcinomas.

However, one should bear in mind that the sensitivity
decreases to 87.2% when basal cell carcinomas are not consid-
ered. Nevertheless, this value is still similar to that obtained by
an experienced dermatologist using the SIAscope.

On the other hand, MelaFind® is a 10-wavelenghts (430, 470,
500, 550, 600, 650, 700, 770, 880, and 950 nm) system that
generates six scores based on constrained linear classifiers
for each measured lesion. In MelaFind®, each classifier is
trained to differentiate melanomas from other pigmented lesions
such as common nevi, low-grade dysplastic nevi, congenital
nevi, seborrheic keratosis, solar lentigos, and pigmented basal
cell carcinomas from a database of ∼10;000 excised lesions.25

A lesion is recommended for biopsy if all six scores are above
the threshold value.22 After the measurement, the system provides
a disorganization value and a treatment suggestion for dermatol-
ogists: positive or negative for high degree of morphological
disorganization lesion, where positive means the lesion should
be considered for biopsy.

The FDA Summary of Safety and Effectiveness Data of
MelaFind®26 shows a much higher sensitivity (98.3%) to detect

in situ and invasive melanomas (172/175 melanomas detected)
than the SIAScope; however, the specificity was only of 10.8%
(157/1457 of high grade dysplastic nevi, atypical melanocytic
proliferation/hyperplasia lesions were classified as melanomas).
Therefore, the use of MelaFind® generates a large number of
false positives and, consequently, a large number of unnecessary
biopsies. Other investigations in which different dermatologists
were asked to evaluate and diagnose a specific number of lesions
with and without information from the MelaFind® were carried
out. The averaged sensitivities and specificities obtained were
very similar to those previously shown, ranging from 96.9%
to 98.3% and from 9.2% to 9.9%,4,27 respectively. The authors
concluded that the information obtained with the MelaFind®

should be used to decide the need for a biopsy, since in case
of an experienced dermatologist MelaFind® could improve
biopsy sensitivity with a modest effect on biopsy specificity.

The lower sensitivity shown in our system could be improved
by defining more restricted upper and lower thresholds.
However, this would also result in an increase of false positives
and, thus, a marked reduction of the specificity, which is unac-
ceptable from the dermatologists’ point of view. In fact, the
detection of malignant lesions at early stages, when they can
still be controlled and successfully excised, is crucial when deal-
ing with skin cancer, and this is the reason why dermatologists
are more concerned with increasing sensitivity than specificity.

On the other hand, we should underscore that, in contrast
with MelaFind®, our study only compared melanomas and
basal cell carcinomas with different kinds of nevi (common,
melanocytic, dysplastic, blue, junctional, and Spitz nevi) and
melanomas with nevi.

Using Eq. (6) described in Sec. 2.1, Diebele et al.10 found
values of 94% and 89% for sensitivity and specificity, respec-
tively. In this case, the system developed by the authors con-
sisted of a multispectral imaging camera (Nuance EX) that
contained a CCD imaging sensor, a solid-state liquid crystal fil-
ter with a polarizer, a wavelength tuning element (from 450 to
950 nm in steps of 10 nm), a spectral optimized lens, and inter-
nal optics. The illumination system was a ring of halogen lamps
with a polarizer orthogonal to the camera to remove the artifacts
caused by light reflection. However, they only analyzed 65 nevi
and 17 melanomas and a further verification of the algorithm is
still pending. Our system obtained a slightly lower sensitivity
when excluding basal cell carcinomas, taking into account
that in contrast with the abovementioned study, it also included
dysplastic nevi and nonpigmented lesions. These lesions present
a further difficulty in the discrimination of melanomas, since
they are unusual benign moles that may resemble melanomas.
In addition, our study included many more lesions.

On the other hand, artificial intelligence is starting to enter in
the medicine field.28 Specifically, Esteva et al.29 used a deep con-
volutional neural network (CNN) to classify skin lesions from
dermoscopic images. The algorithm was trained from a dataset
of more than 100,000 images from 18 different clinician-
curated, open-access online repositories and from the Stanford
University Medical Center. An area under curve of 96% for
the detection of carcinomas and 94% for the detection of mela-
nomas was obtained, improving the performance of most of the
21 dermatologist that were asked to classify hundreds of lesions
from a dermoscopic image. The conclusion of the study was that
CNN could be a powerful tool for huge image datasets, and
encouraging results will probably be obtained in the coming
years. However, this is not the best tool for pilot studies in

Journal of Biomedical Optics 065006-7 June 2017 • Vol. 22(6)

Delpueyo et al.: Multispectral imaging system based on light-emitting diodes. . .



which new technologies are tested and the database of lesions
is small.

In conclusion, the addition of textural information, which to
our knowledge has not been yet considered in any study, was
shown to be more useful for the diagnosis of malignant lesions
(melanomas and basal cell carcinomas) than the sole use of aver-
aged spectral and color information. The sensitivity (91.3%) and
specificity (54.5%) values slightly improved in some cases over
those previously achieved by means of other multispectral sys-
tems without the need for an experienced dermatologist as it
was based on a complete automatic algorithm. However, when
only the melanomas and nevi were considered, the sensitivity
decreased to 87.2%, although this value was still similar to
that obtained by experienced dermatologists through averaged
spectral and color features.

The system proposed has a specificity similar to that of con-
focal microscopy (55.1%)30 but is much closer to dermoscopy
(84.1%)31 than Melafind® (10.8%). On the other hand, the sys-
tem has a slightly lower sensitivity than Melafind® (98.3%) and
confocal microscopy (96.3%)29 but is closer than dermoscopy
(89.2%).31

Consequently, our system can help to improve the diagnosis
of skin cancer as a supporting tool to dermoscopy and confocal
microscopy. In fact, the combination of different technologies
might be crucial to improving sensitivity and specificity in
this field.
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