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Abstract. Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid
tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector
machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both
tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image
generated by SVM is then related to pathological information instead of single spectral intensities or spectral
differences within the data set. The results show good agreement with the H&E stained reference and sponta-
neous Raman microscopy, proving the validity of the MCARS approach in combination with SVM. © The Authors.
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1 Introduction
The application of coherent anti-Stokes Raman scattering
(CARS) to microscopy provides access to structural and
molecular information on a vast range of chemical and biologi-
cal systems.1–6 In general, structural information from CARS
microscopy is easily obtained associating a single spectral inten-
sity with a certain color scheme. Although this method allows
analysis of spatial information with submicron resolution, it can-
not specifically address overlapping Raman resonances and,
therefore, lacks molecular specificity.

One way of circumventing this issue can be efficiently
implemented if the single chemical constituents are known in
advance: in this case, the measured spectra are fitted as the
sum of the Raman spectra of the isolated constituents.7 How-
ever, in a situation where the Raman spectrum of each compo-
nent is not known a priori, a different approach must be applied.
In this regard, a multistep analysis8 of CARS data can be imple-
mented by combining Raman reconstruction algorithms,9 prin-
cipal component analysis (PCA), and decomposition of the
measured data using pure spectra. This approach can reveal
quantitative information without any previous information.8

This method is superior to an univariate approach since addi-
tional molecular features beyond single spectral intensity are
analyzed, visualized, and matched to standard histological
assessment of the brain tissues. Nevertheless, a PCA-based type
of data analysis is limited to spectral differences within the indi-
vidual data sets. In other words, the structural and molecular

information obtained with a PCA-based analysis cannot be
easily generalized and extended to other samples.

To transfer knowledge of characterized data sets to unknown
spectra, higher ranking classification methods such as soft-inde-
pendent modeling of class analogies or support vector machines
(SVM) are required. In this case, new spectra are classified in
terms of distances to groups of classified data within a multidi-
mensional vector space.10,11 As demonstrated for Raman and
infrared microscopy, the visualization of class membership via
color coding of spatially resolved spectral information then pro-
vides image contrast and pathological information as well.12,13

The aim of this work is to illustrate the necessity of higher rank-
ing data analysis also for multiplex CARS (MCARS) imaging
by extracting pathological diagnosis on experimental tumors of
mouse brain tissue. In this proof-of-principle-study, we worked
on the differentiation of healthy brain tissue and one type of
tumor (Fig. 1). In other words, biochemical differences between
different types of brain tissue, e.g., originating from different
lipid to protein ratios,14 resulted in differences of the corre-
sponding vibrational spectra that were used for image process-
ing. As only two classes are present, we used a binary classifier;
out of four method combinations (SVM alone, PCA–SVM,
PCA–linear discriminant analysis, and feature forward selec-
tion–SVM), PCA–SVM is considered the best choice.

2 Experimental
A standard cryosection (10 μm) of fixed mouse brain tissue,
containing a solid tumor induced by intracerebral stereotactic
implantation of murine mK1735 melanoma cells as described
previously,15 was prepared. Tissue was prepared either as
(1) an H&E-stained reference sample or (2) an air-dried sample
used for the linear and nonlinear Raman experiments.
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The MCARS experimental setup has been recently
described,16 and its scheme is shown in Fig. 2. The laser beams
driving the MCARS process were obtained from a Ti:Saphire
oscillator (Coherent Mira) by narrowband filtration [for pump
and probe beams, centered at 785 nm with a full width at half
maximum (FWHM) of 1 nm] and using a photonic crystal fiber
(PCF) for Stokes-beam generation (FWHM of pump and probe
∼16 cm−1, Stokes-continuum ranging from 790 to 1100 nm).
The beams were focused in the sample by a 50× microscope
objective (Olympus LMPlan50xIR). The pixel dwell time was
set to 60 ms using a real-time environment (ADWin) controlling
a piezodriven sample holder. Areas of 97 × 97 μm2 were raster
scanned with a step size of 1 μm. The signal passed a spectro-
graph (Princeton Instruments) and was spectrally resolved
(Andor Newton CCD). We estimated the average power in
focus volume to be ∼30 mW.

Spontaneous Raman microspectroscopy was performed
using a commercial system (Witec, Alpha 300) with an excita-
tion wavelength of 532 nm. A sample area of 97 × 97 μm was
measured accordingly. With an irradiation power of 5 to 10 mW,
the acquisition time was set to 500 ms per spectrum to balance
between signal quality and prevention of photodamage at the
selected laser power.

The data processing consisted of separate steps. After
normalization of the MCARS raw data by a background signal
to correct for experimental influences, the Raman information
was extracted using the maximum entropy method (MEM) algo-
rithm,9 and an asymmetric least square (ALS)-baseline correc-
tion was carried out.17 Before performing SVM, it is reasonable
to include a dimension reduction step. Instead of using the origi-
nal 800 spectral variables, 15 PCA scores were used after PCA.
The processing of MCARS data with PCA has been described in
a previous work.16 Thereafter, the SVM algorithm with radial-
base kernel was used to build a classification model for normal
and cancerous tissue. The calculation of MEM and PCA were
carried out in LabView Software while the R-program18 with the
package e1072 (Ref. 19) and baseline17 was used for SVM and
ALS-baseline correction, respectively. All results have been
qualitatively correlated with spontaneous Raman microspectro-
scopy and with bright-field microscopy of the H&E-stained
reference slide.

3 Results and Discussion
The mouse brain tissue consists of a solid brain tumor of the
melanoma cell line mK1735 that is bordering the brain paren-
chyma of the cortex. The H&E stained reference is shown in
bright-field contrast at 100× magnification in Fig. 1. The mela-
noma appears in the upper part (high nuclear density, dark red),
whereas the gray matter is shown in the lower part (light red).
The border between tumor and normal tissue has been measured

Fig. 1 H&E-stained bright-field image of mouse brain tissue. A solid
tumor is shown in the upper part. The white bordered fields were
scanned with MCARS and spontaneous Raman microspectroscopy.

Fig. 2 (a) Optical setup for MCARS laser pulse generation is driven by an fs-laser source (Coherent
Mira), protected by a Faraday isolator (F1). A beam splitter separates the beam into two pathways.
The reflected part is used for supercontinuum generation in a PCF while the transmitted part passes
a narrowband filter (F1) resulting in narrowband laser pulses with only 1-nm FWHM that are used as
pump and probe beams (p and p 0). A delay stage (t) allows temporal synchronization with the super-
continuum, which acts as Stokes pulse. Spatial overlap is realized by a long-pass filter (F2). The laser
pulse package is coupled into a microscope objective (MO1) and collimated by a second objective (MO2)
after transmitting the sample (mounted on a piezodriven three-axis stage). A long-pass filter separates
the blue-shifted MCARS signal, which is detected and spectrally resolved by a CCD detector. (b) Pump/
probe and Stokes spectra. Pale red: the initial fs beam (3-nm FWHM) at 785 nm. Red: the narrowband
filtrated part (785 nm), which is used as pump and probe. The ultrabroadband fiber continuum
(790 to 1100 nm) is used as Stokes pulse.
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byMCARS and spontaneous Ramanmicroscopy (regions 1 and 2
in Fig. 1). Additional MCARS-scans have been performed in nor-
mal tissue of gray matter (region 3) and tumor tissue (region 4).

The average of 390 spontaneous Raman spectra measured
in tumor and normal tissue in region 2 of Fig. 1 is shown in
Fig. 3(a). Both spectra show clear signal intensities between
2800 and 3000 cm−1, where the CH2 symmetric- and antisym-
metric-vibrational modes are the most prominent features
around 2890 and 2930 cm−1, respectively. The typical Raman
signatures of proteins in brain tissue show up at 1440 and
1660 cm−1, originating from the CH2-deformation and the
amide vibrational modes.20 Significant differences occur at
1442 and 2887 cm−1, where the normal tissue provides stronger
relative signal intensities. Since tumors may consist of several
subpopulations of cells with highly different metastatic behav-
iors,21,22 we cannot exclude that tumors with different grades
of proliferation might also show different CARS signatures.
Therefore, biological aspects of spectral alterations are not a
subject of this study and will be addressed in future experiments.
The average MCARS-spectra of normal tissue and tumor tissue
in Fig. 1 are shown in Fig. 3(b), after normalization and MEM
processing of the raw data. Taking the lower spectral resolution
of the CARS setup into account, the CH-stretching region shows
good agreement with the data obtained from spontaneous
Raman spectroscopy and is considered to have a higher influ-
ence on the later classification result compared with the finger-
print region that is not as prominent as in the Raman control in
this study. The signal-to-noise ratio of both methods is com-
pared in Fig. 3(c). While the spontaneous Raman spectrum was
recorded with an acquisition time of 500 ms, the Raman-
extracted MCARS spectrum of the same specimen is measured
within just 60 ms, but it still shows a three times better signal-to-
noise ratio.

Figure 4(a) shows the result of spontaneous Raman imaging
performed at field 2 of Fig. 1, where tumor tissue borders the
gray matter. The integrated signal between 2800 and 3100 cm−1

referred to a color map ranging from black to yellow. The nor-
mal tissue displays a higher absolute signal intensity and is
consecutively encoded in yellow. The result reveals a near
perfect overlap with the H&E stained reference image (Fig. 1).
Figure 4(b) shows a similar area measured with MCARS. The
image contrast was obtained using the two step approach con-
sisting of Raman extraction and PCA.8 The color coding refers
to spectral differences within the scanned area. The scores aris-
ing from PCA were associated with different colors, so tumor
tissue appears in green and normal tissue in red. This color
coding was based on previous knowledge such as the H&E
reference and manual recognition of spectra. The same method
of data postprocessing was performed in the next two images,
where the tissue of the fourth area is shown in Fig. 1(c) and the
one from the third area in Fig. 1(d). The scores resulting from
the three highest loadings were set to red, green, and blue. The
combination of the color maps results in an image contrast
showing the morphology of the dried sample, which is also dif-
ferent for tumor and normal tissue. On the other hand, the results
of Figs. 4(c) and 4(d) clearly show the limitation of the method.
Although image contrast is obtained, it is not possible to use

Fig. 3 (a) Averaged Raman spectra of normal (upper line) and tumor
tissue (lower line). Due to the weak fluorescence, the baseline was
corrected by a standard polynomial fit and respective subtraction.
(b) Averaged MCARS spectra of normal (upper line) and tumor tissue
(lower line) after normalization and MEM extraction. (c) Raman
spectrum of tumor tissue with 500-ms acquisition time (gray line)
and MEM-extracted MCARS spectrum with an acquisition time of
60 ms (black line).

Fig. 4 (a) Intensity map of the CH stretching vibrational region (inte-
grated between 2831 and 3032 cm−1) using spontaneous Raman
microscopy at the border between tumor (upper left) and normal tis-
sue according to area 2 in Fig. 1. (b) MCARS imaging of a similar area
using Raman extraction and PCA (area 1 in Fig. 1). (c) MCARS im-
aging of tumor tissue of area 4 in Fig. 1, using Raman extraction and
PCA (d) MCARS imaging of normal tissue (area 3 in Fig. 1) using
Raman extraction and PCA. (e) Decision values of the SVM classi-
fication with tumor tissue (yellow to red) and bordering gray matter
(cyan to blue) [same area as in (b)]. (f) Group value of the SVM clas-
sification with positive values (tumor tissue, green color) and negative
values (normal tissue, blue color).
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information of a previous measurement to apply the same color
coding, for example, the color coding of Fig. 4(b). We address
this issue using the spectral data sets of Figs. 4(c) and
4(d) to train the SVM model: these two datasets are used to
establish a simple binary SVM model based on tumor and nor-
mal tissue. The algorithm constructs a separating hyperplane
based on the largest margin between both groups. For every
spectrum, the distance to that hyperplane is calculated. The dis-
tance is subsequently converted to a classification decision for a
new spectrum. To build such a model, the spectra (9409 each) of
the tumor (area 4 in Fig. 1) and the healthy region (area 3 in
Fig. 1) represented the training set. The SVM model based
on the spectral datasets of Figs. 4(c) and 4(d) was then applied
to the tissue region containing the border of the tumor [area 1 in
Fig. 1, Fig. 4(b)] as an independent test set. The accuracy of the
PCA–SVM model on the training set was 99.985% estimated
by a 10-fold cross validation. The results of the SVM analysis
of the border of the tumor are shown in Figs. 4(e) and 4(f): In
Fig. 4(e), the decision value of the region with the tumor border
(area 1 of Fig. 1) is shown, e.g., the distance to the hyperplane.
In that representation, the region of brain parenchyma exhibits
negative values, while the tumor region shows positive decision
values. The decision values can be seen as a spectral marker,
which is afterwards converted to a classification for the tissue.
This is shown in Fig. 4(f), where only two colors exist, indicat-
ing the two groups (green represents tumor tissue and blue indi-
cates normal tissue). This procedure now relies on trained
regions and automatically highlights the tumor border. Further-
more, it simplifies the information necessary for potential in vivo
diagnostics. The image result of Figs. 4(e) and 4(f) basically
agrees with Fig. 4(b) and the H&E stained reference. Minor
differences occur at the border between the tissues due to non-
resonant contributions such as glass not included in our training
data sets. We also have to consider that data originating from
highly complex biological tissue alterations might not be fully
characterized by a single hyperplane in an SVM routine.
Nevertheless, this model is a first step toward a CARS-based
diagnostic procedure for brain metastases of malignant mela-
noma. Moreover, we would like to emphasize that the H&E
stained information is only required to distinguish the tumor
from normal tissue in the original training datasets. Later, when
the SMV model is applied to the test dataset, no H&E stained
information is used or required. H&E staining was shown here
only to further confirm our analysis since it has been the gold
standard in microscopy of biological systems.

4 Conclusion
The border between normal mouse brain tissue and a solid tumor
has been visualized by MCARS microscopy, and an SVM
model based on a PCA of training data was established to pre-
dict the border automatically. Therefore, the image contrast is
based on class affinities and not limited to purely relative effects
such as spectral differences within a single data set. This is an
important advantage over PCA-alone-based analysis approaches
(or similar methods like singular value decomposition): image
contrast can be obtained, but the obtained information cannot be
directly applied for the detecion of tumor regions in an unknown
sample. This is not the case with the SVM model based on a
PCA illustrated in this work. We illustrate that MCARS micros-
copy can provide suitable information for higher ranking data
analysis as known for linear techniques such as spontaneous
Raman and infrared microscopy. In this study, MCARS also

turned out to be already one order of magnitude faster than spon-
taneous Raman microscopy, which was used to verify the
results. Future studies will focus on improving spectral resolu-
tion and accommodating the higher ranking classification
method introduced here.23 For example, if more classes would
be present as training data sets, a combination scheme for the
binary classifier could be applied. Often used schemes are one-
against-one or one-against-rest, while using the SVM-multiclass
formulation would be an interesting option to proceed. Never-
theless, the question of which of these methods is best for
MCARS is the focus of ongoing research. Moreover, the type
of tumor used in this work shows very sharp tumor/normal mar-
gins and is the best-case scenario for the SVM–PCA modeling.
It is still an open question whether more structured margins,
such as an infiltrating glioma, would be reasonably predicted by
our model. Finally, future tasks will also aim to explore the
potential of MCARS for providing high-speed and Raman ana-
logue spectral information suitable for supporting databases of
various kinds of biological tissues for biomedical imaging and
in vivo application.
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