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Abstract. When using optical coherence tomography angiography (OCTA), the development of artifacts due to
involuntary movements can severely compromise the visualization and subsequent quantitation of tissue micro-
vasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts
from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid
B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth
volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then
the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine
the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to
result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation.
We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA
images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of
the corrected images are evaluated and compared with those of the original images, further validating the effec-
tiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative
and quantitative assessment of the OCTA images of scanned tissue beds. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.22.6.066013]
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1 Introduction
Optical coherence tomography (OCT), as a noninvasive diag-
nostic tool, has been widely used in dermatological research
and for clinical skin diagnoses for decades now.1–5 In addition
to examining skin morphology, important advances have been
made toward the imaging of functional structures, such as the
vascular networks, within a tissue depth of ∼1 mm. Such devel-
opments have been achieved using a process known as optical
coherence tomography angiography (OCTA). OCTA utilizes an
endogenous contrast mechanism that originates from the fluctu-
ations of blood flow signals to differentiate a vascular network
from its encapsulating static tissue bed.6–9 To extract the signal
fluctuations, B-scans are typically repeated at one cross-sec-
tional position to create a cluster of comparable B-frames.6,10

Signals coming from static tissue within such B-frames show
little interframe variance, while those from blood vessels expe-
rience severe fluctuations due to the continuous flow of blood
cells. To aid in visualization, three-dimensional (3-D) vascular
images are commonly constructed from a series of blood flow
cross sections by raster scanning across the slow transverse
direction. En face view vasculatures can be visualized through
the mean intensity or maximum intensity projection of blood
flow signals at a given depth.

Practically speaking, the process of 3-D OCTA imaging of
human skin in situ is very susceptible to motion-derived artifacts

stemming from various sources, such as respiratory or cardiac
activities, involuntary contracting by the subject, and uninten-
tional movements of the handheld probes during dermatological
scanning. From previous reports,11–14 motion-derived artifacts
resulted in the exclusion of sizable volumes of data from analy-
ses. Even relatively minor movements, such as those attributed
to the heartbeat, microtremors in the skin, or motions due to
breathing, can increase background noise, predominantly result-
ing in the appearance of line artifacts in the en face projection.
Fortunately, coregistering the B-frame clusters, i.e., repeated
B-scans at the same spatial location, before applying angiogra-
phy algorithms can help with the reduction of such artifacts.
Within individual B-frames, the current OCT speeds, typically
with an A-line rate of ∼100 kHz and a B-frame rate of
∼180 fps, usually limit the level of artifacts seen from severe
movements, e.g., inadvertent sliding of the probe. However,
the same cannot be said for consecutive frames because the
time between adjacent frames is relatively long.

Reported efforts on compensating for motion-derived arti-
facts in OCTA can be summed up within two categories: the
hardware approach and the software approach. Hardware tech-
niques adopting high scan rates, e.g., megahertz OCT,15 are pro-
posed to reduce the acquisition time during in vivo skin imaging,
and consequently the probability of motion involvement is less-
ened. In commercialized ophthalmology OCTA systems,16

for example, scanning laser ophthalmoscopy17,18 is a prevalent
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strategy used for detecting rapid/large motions and guiding
appropriate rescans with specified overlapping to counter them.
Adopting such a technique for imaging of the skin, however,
would prove fruitless, mainly because unlike retinal imaging,
human skin has much higher scattering properties compared
to the relatively transparent ocular tissue. Furthermore, the
increased complexity and cost associated with acquiring and
developing additional devices may reduce its competitiveness
in the application of the technology in dermatology.

An alternative solution is software-aided postprocessing
through image registration,19 in which two or more datasets
are usually aligned and merged into one so that artifacts can
be replaced by their spatial counterparts where there is no ap-
parent artifact. Using this concept, Kraus et al.20 corrected for
motion-induced distortion by retrospectively coregistering
orthogonally acquired volumetric scans. Although initially
encouraging, this approach required considerable computational
power to register just two datasets. Another approach attempted
by Antony et al.21 successfully extracted tissue features from
OCT structure images based on surface segmentation, and
accordingly, they designed geometric transformations to correct
the transverse distortions in 3-D. A fiducial marker specifically
designed for human skin imaging has also been utilized to
achieve 3-D motion correction on an individual B-frame
basis.22 Although this method did establish good image corre-
spondence, the feature-based OCT structure registration finds it
difficult to satisfy the accuracy requirement for microscale angi-
ography. Moreover, if directly applying the feature-based
method to register blood flow signals, one usually has difficul-
ties in assessing the essential features of OCT angiograms, such
as extreme curvatures and/or contours. The fiducial marker
adhesively bonded to the skin may also cause an allergic
response or inflammation that not only leads to future reluctance
from the patients to rescan but also interferes with dermatopa-
thological evaluations. An interesting study carried out by
Hendargo et al.23 first presented an automatic nonrigid registra-
tion for use in OCTA by directly manipulating the orthogonal en
face retinal vasculatures. Additionally, Zang et al.24 further dem-
onstrated the practicability of nonrigid registration by minimiz-
ing stitching artifacts when montaging en face vascular images
from equidirectional scanned volumes.

Here, we present a fully automated motion compensation
method that employs both rigid transformation and nonrigid
free-form deformation to correct motion-derived artifacts
that frequently occur in in vivo human skin OCTA imaging.
Although orthogonal transverse scans are widely used in oph-
thalmology research, the restricted uniform sampling therein
becomes inappropriate when imaging irregular tissue character-
istics, e.g., an incision in the skin. Therefore, a nonorthogonal
dual-volume scanning procedure was utilized within our proto-
col. A rigid affine transformation was first applied to the reticu-
lar vasculature of the skin, which primarily consists of deep,
large vessels. The generated affine parameters were then applied
to the whole vessel network with additional translation
adjustment through rigid subpixel compensation. In addition,
a B-spline free-form deformation was used to calibrate localized
misalignment due to nonrigid distortions and accurately register
the dual vasculatures into one artifact-free composition. The
whole registration process was feedback controlled by vascular
image quality evaluations. The overall performance of the
motion compensation algorithm, in terms of correlation coeffi-
cient (CC) and peak signal-to-noise ratios (PSNR) of the

registered vasculatures, was evaluated and compared to that
prior to processing. Our intention is to provide a technique
that will offer greater opportunities for a number of clinical out-
comes, such as the improved early diagnosis of skin abnormal-
ities or the automatic quantification of dermatosis severity, for
example.

2 Methods

2.1 Imaging System and Data Acquisition

To scan human skin, we employed an in-house-built swept
source OCT (SS-OCT) system. The in vivo imaging study that
uses home-built systems to image human subjects was reviewed
and approved by the Institutional Review Board of University of
Washington, and informed consent was obtained in writing from
all subjects before imaging. This study followed the tenets of the
Declaration of Helsinki and was conducted in compliance with
the Health Insurance Portability and Accountability Act.

Briefly in the SS-OCT, a 100-kHz vertical-cavity surface-
emitting swept laser source (SL1310V1-10048, Thorlabs Inc.,
Newton, New Jersey) was used as the light source providing
a central wavelength of 1300 nm and a spectral bandwidth of
68 nm. Light from the laser was first split into sample and refer-
ence arms through a 90∕10 coupler. In the sample arm, a 5×
objective lens (LSM03, Thorlabs Inc.) focused a beam spot
into the skin with an incident power of 5 mW. The beam
spot was scanned by a paired X-Y galvo scanner, forming raster
sampling patterns that consisted of a series of fast (x-axis) and
slow (y-axis) scans. The sample arm was configured as a hand-
held probe affixed with a sample spacer (central hole ∅ ¼
25 mm) to keep a consistent distance between the objective lens
and the skin. The interference signal was detected by a 1.6-GHz
photodetector (PDB480C-AC, Thorlabs Inc.) and sampled by
a 12-bit digitizer (ATS9350, Alazartech) at 500 MS∕s. The
resulting axial resolution was measured to be 15 μm in air,
and the transverse resolution was measured to be 15 μm at
the focus. The system sensitivity was measured at 105 dB.

Dual-volume datasets were sequentially acquired through a
specifically designed C-scan protocol, as shown in Fig. 1(a), in
which each volume consisted of a total of 2500 B-scans with
five repetitions at one spatial location, leading to 500 B-scan
positions. The C-scans were acquired over two volumes, 7 × 7 ×
12 mm3 in each, with a constant sampling voxel size of
14 × 14 × 10 μm3. The total acquisition time for two volumes
was ∼30 s.

Before registering the volume datasets, the acquired frames
were preprocessed through the following steps. First, we core-
gistered the repeated B-scan frames through a subpixel image
registration algorithm25 to minimize any small or slow motions.
Thereafter, an optical microangiography (OMAG) algorithm7

was applied to extract dynamic blood flow information from
the static tissue background. A typical cross-sectional structure
image and its corresponding blood flow are presented in
Figs. 1(b) and 1(c), respectively. Second, an automatic segmen-
tation approach was adopted from Yin et al.26 to differentiate the
papillary dermis layer, filled with an abundant superficial
plexus, and the reticular dermis layer, which is dominated by
larger arterioles or venules, as shown in Figs. 2(a), 2(d), and
2(g), respectively. Furthermore, the en face vasculatures were
separated into two images according to the scanning protocol,
as shown in Figs. 2(b) and 2(c), 2(e) and 2(f), or 2(h) and 2(i).
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Severe motion-derived artifacts are visualized in Fig. 2 as ver-
tical lines marked by red arrows.

2.2 Image Registration Method

During image registration, two different approaches were
utilized sequentially based upon the vascular network within
the dual-volume datasets: a general registration that was

mainly achieved by rigid affine registration plus rigid subpixel
motion compensation and a precise registration that was
mainly realized through nonrigid B-spline free-form deforma-
tion, as shown in Fig. 3 (dashed boxes). This section will out-
line in detail the step-by-step motion compensation procedure
applied for human skin OCTA. The preregistration process
introduced in Sec. 2.1 is summarized here as the elliptical
blocks of Fig. 3.

Fig. 2 En face skin vasculatures from different depths. (a) Motion affected en face arm skin vasculature
obtained by two repeated C-scans with (b) and (c) representing single-volume datasets. (d) Dual-
scanned en face skin vasculature of papillary layer with (e) and (f) representing single-volume datasets.
(g) Dual-scanned en face skin vasculature of reticular layer with (h) and (i) representing single-volume
datasets. Red arrows indicate severe motion-derived artifacts.

Fig. 1 C-scan protocol and resultant cross sections: (a) dual-volume OMAG scanning protocol, (b) a
typical cross-sectional structure image, and (c) corresponding blood flow image.
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Fig. 3 Flow chart outlining automatic motion compensation in skin OCTA. P represents the papillary
vasculature, R represents the reticular vasculature, and α represents the rescaling factor. Function
of each process step is classified in the legend.

Fig. 4 Peak detection-based frame division. (a) 1-D projection curve showing artifact peaks in vascu-
lature A with overlapping peak widths marked in a dashed box. (b) 1-D projection curve showing artifact
peaks in vasculature B. Detected peaks are marked with black dots. (c) Vasculature A with artifact line
removal and frame division. (d) Vasculature B with artifact line removal and frame division. (e) An exam-
ple showing the advantages of peak detection over threshold in detecting motion-derived artifacts. The
threshold approach fails by regarding normal regions as artifacts (upper subgraph, threshold 1) or regard-
ing artifact lines as normal (lower subgraph, threshold 2) due to regional signal variance.
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2.2.1 Peak detection-based frame division

After separation of the dual scans, the en face vasculatures of
both depths, the papillary layer and the reticular layer, were suc-
cessfully acquired, but with severe motion-derived artifacts that
appear as white lines. The locations of those artifacts were iden-
tified in the all-depth vasculatures by averaging pixel intensities
along the x-axis, as shown in the one-dimensional (1-D) projec-
tion curves in Figs. 4(a) and 4(b). Peak detection according to
the peak prominence was used to identify which of the projected
B-frames had suffered from motion-derived artifacts. The peak
prominence was empirically selected as 0.3 times the maximum
peak elevation above the mean intensity (mean refers to the aver-
age intensity of the whole image). The calculated peak widths
were also utilized to indicate how many frames were affected by
each motion, which were then accordingly removed. When two
adjacent peaks were detected with overlapping widths, as shown
in the dashed box of Fig. 4(a), they were automatically regarded
as one peak to avoid confusion in the following frame division.
Each vasculature was then divided at the location of the peaks,
generating a sequence of frame groups that were free of artifact
lines. Last, the peak detection results were extended to both the
papillary layer and the reticular layer for registrations in the next
step. This approach has several advantages over the previously
published threshold-based motion detection,23,24 especially for
human skin OCTA. As illustrated in Fig. 4(e), when local vas-
cularity increases to a level beyond that of normal tissue, e.g.,
angiogenesis during wound healing, adopting a simple threshold
technique could deliver inaccurate results by either mistakenly
regarding a normal region as an artifact or by erroneously
taking an artifact as true data. Moreover, the peak width also
provided a better indicator for the occupied region of each spe-
cific motion-derived artifact compared with that using arbitrary
thresholds.

2.2.2 Sequential general registration of frame groups

The divided groups of B-frames within both reticular layer vol-
ume scans were labeled in ascending order according to their
original physical positions. Both reticular volumes were then
sequentially coregistered into one through two-dimensional
(2-D) affine transformation,27 as shown in Fig. 5(a). To represent
the affine transformation with matrix operations, we adopted
homogeneous coordinates in which 2-D coordinates along the
x- and y-axes ½x; y� were represented by 3-D coordinates
½x; y; 1�. Therefore, typical motion-induced distortions, such as
shift, expand/contract, twist, or rotation, within the frame groups
can be corrected through the combination of translation, scale,
shear, or rotation transformations, as described in Figs. 5(b)–
5(e), respectively.

The affine registration was evaluated by a gradient descent
method, the limited memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS), which maximized the normalized mutual
information between en face vasculatures of registered frame
groups27,28

EQ-TARGET;temp:intralink-;e001;326;536CostMI ¼
HðSÞ þH½TrðMÞ�

H½S; TrðMÞ� ; (1)

whereHðSÞ represents the marginal entropy of static vasculature
S as the registration model, H½TrðMÞ� represents the marginal
entropy of moving vasculature M to be registered, and
H½S; TrðMÞ� represents their joint entropy, as defined by
Maes et al.29 The cost function reaches maximum when the
two vasculatures are well aligned.

During the affine registration of the reticular layer, affine
parameters for each frame group were recorded and thereafter
applied to the en face vasculatures of both depths, as expressed
in Fig. 6(a). After each affine transformation, a rigid subpixel

Fig. 5 Affine registration of the reticular vasculature. (a) Schematic registration procedure of reticular
vasculature. A_R represents the first reticular vasculature, B_R represents the second reticular vascu-
lature, and Reg_R represents the affine registered reticular vasculature. (b) to (e) Affine transformation
diagrams and matrix operations accounting for translation, scale, shear, and rotation, respectively. S
represents the reference vasculature as registration model and M represents the moving vasculature
to be registered.
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registration algorithm was added to compute the upsampled
(10×) cross correlation between the images to be registered
and the reference static images by means of fast Fourier trans-
form and correlation peak positioning; accordingly, subpixel
shifts down to 1∕10-pixel scale were compensated for. The com-
putational burden for this subpixel compensation was acceptable
when considering the sample size of 500 × 500 for each vascu-
lature. Notice that the all-depth vasculatures used here in general
registration were rescaled as combinations of the papillary pro-
jection plus a visualization enhanced reticular projection, as
shown in Fig. 6(b). The enhancement factor, α, was empirically
established as 2.0 to boost the weight of the large vessels in the
registration in comparison to that of the small vessels. The gen-
erally registered vasculature composite, Gel_Reg, combining all
the transformed frame groups, is shown in Fig. 6(c). Prior to
precise registration, it was necessary to separately stitch the
transformed frames (from vasculature A or B, respectively)
into two vasculatures with the motion-derived artifact lines
replaced by their counterparts in Gel_Reg. With that, two arti-
fact-reduced images were obtained, denoted as Gel_Reg_A and
Gel_Reg_B, as displayed in Fig. 6(c).

2.2.3 B-spline free-form transformation for precise
registration

Following sequential general registration, the two en face vascu-
latures were ready for coregistration. Skin is naturally highly
susceptible to significant subject-dependent variations and micro-
vasculature deformations. With that, such deformations cannot be
described as parameterized transformations, and so, to compen-
sate for this, we chose to apply a registration algorithm that uses
nonrigid cubic B-spline free-form transformation.30–32

As shown in Fig. 7(a), a typical 1-D cubic B-spline is made
up of four individual parts and in each, the curve can be
expressed as a third-order polynomial function, as follows:
EQ-TARGET;temp:intralink-;e002;326;383

B2ðt2Þ ¼ t32∕6

B1ðt1Þ ¼ ð−3t31 þ 3t21 þ 3t1 þ 1Þ∕6
B0ðt0Þ ¼ ð3t30 − 6t20 þ 4Þ∕6

B−1ðt−1Þ ¼ ð1 − t−1Þ3∕6: (2)

The parameters, t2, t1, t0, and t−1, vary from 0 (left) to 1 (right),
and therefore, can be written as t2 ¼ xþ2u

u , t1 ¼ xþu
u , t0 ¼ x

u,
t−1 ¼ x−u

u , with u representing the part length, i.e., the distance
between adjacent control points located at −64, −32, 0, 32, and
64. This B-spline curve has two main properties: first, it is con-
tinuous at the connecting points between parts and at these
points and has continuous first- and second-order derivatives.
This characteristic provides superior smoothness for the B-
spline curves and for any combinations or interpolations that
are based on similar B-splines. For instance, in Fig. 7(b), the
value at a given position (green arrow) can be interpolated by
four neighboring B-splines curves, which are scaled by the cor-
responding control points (dashed arrows), as expressed by

EQ-TARGET;temp:intralink-;e003;326;156Tðx; yÞ ¼
X2
i¼−1

BiðtiÞΨi; (3)

where Ψi represents the values of control points. Second, a sin-
gle B-spline curve is nonzero only in a small region; for exam-
ple, the B-spline in Fig. 7(a) has nonzero values only from −64
to 64. This means that any changes based on B-spline are highly

Fig. 6 Sequential general registration of the all-depth vasculature. (a) Transform equation to describe the
application of affine parameters. (b) Intensity rescale of vasculature A and B. AD represents the all-depth
vasculature, P represents the papillary vasculature, R represents the reticular vasculature, and α rep-
resents the scale factor used to boost visualization of the reticular vasculature. (c) Schematic diagram of
the general registration process. Gel_Reg represents the generally registered vasculature, Gel_Reg_A
and Gel_Reg_B represent the generally registered vasculatures A and B with artifact lines replaced by
counterparts in Gel_Reg.
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localized, so only limited surrounding points are influenced by
a single control point, and the computational efficacy of B-
spline-based interpolation is acceptable, even for a large number
of control points. By comparing the dash curves in Figs. 7(b),
C1, and 7(c), C2, the decreased value at control point 0 only
leads to a decreased distribution around 0 without extending
to regions under −64 or beyond 64.

Further to that, 2-D B-splines can be simply derived from the
products of two orthogonal 1-D B-splines and still possess the
characteristics of smoothness and local controllability. Instead
of using these weighted summations to interpolate pixel inten-
sity, however, they could be used to characterize pixel displace-
ment from the original position to the warped point; thereby,
deforming the distribution of surrounding pixels through
B-spline transformation. The transformation equation for each
pixel can be described as a linear superposition of 2-D B-splines
scaled by control points Ψh;c, which have two subscripts, h and
c, indicating their positions within a grid of Hx × Cy pixels

EQ-TARGET;temp:intralink-;e004;63;243Tðx; yÞ ¼
X2
j¼−1

X2
i¼−1

BjðtjÞBiðtiÞΨhþi;cþj; (4)

in which i, j, ti, and tj are represented by transverse coordinates
x, y as h ¼ bx∕Hxc − 1, c ¼ by∕Cyc − 1, ti ¼ bx∕Hxc −
bx∕Hxc, tj ¼ by∕Cyc − by∕Cyc. b c is a flooring operation
toward the nearest integer. Consequently, the basic concept of
2-D B-spline registration comes down to designing a grid of
control points with third-order basic splines, and using the com-
binations of those splines to adjust misaligned images. As sche-
matically described in Fig. 7(d), the original image depicted by
the black mesh grid can be deformed to the blue mesh grid, point
by point, according to the transformation operator Tðx; yÞ.

After general registration, the vasculatures, Gel_Reg_A and
Gel_Reg_B, were zero-padded all around with an extra 50 pixels

(each vasculature reaching a sample size of 600 × 600). Without
loss of generality, Gel_Reg_B, being the moving image, was
subjected to 2-D B-spline transformation to coregister with
Gel_Reg_A, the static reference image. In the interest of calcu-
lation efficacy, a multiresolution gradient descent approach was
utilized through the L-BFGS optimizer to refine the registration,
starting from a grid of 8 × 8 control points to a grid of 22 × 22
points. To constrain the vasculature smoothness, a penalty term
was applied to regulate the transformation function, expressed
as

EQ-TARGET;temp:intralink-;e005;326;331Regulation ¼ 1

XY

ZY

y¼0

ZX

x¼0

��
∂2TðBÞ
∂x2

�
2

þ
�
∂2TðBÞ
∂y2

�
2

þ
�
∂2TðBÞ
∂xy

�
2
�
dx dy; (5)

where TðBÞ represents the transformed moving image, and X
and Y are the evaluated pixel numbers along the x- and y-axes,
respectively. Additionally, a similarity criterion was designed to
quantify the degree of alignment between the static image and
the moving image, as expressed in the following sum of squared
differences33

EQ-TARGET;temp:intralink-;e006;326;176Cost ¼ 1

XY

ZY

y¼0

ZX

x¼0

½A − TðBÞ�2dx dy; (6)

where A represents the static vasculature.
The B-spline coefficients were then searched out by repeat-

edly minimizing a combined evaluation function (EF) as

EQ-TARGET;temp:intralink-;e007;326;83EF ¼ −Costþ β · Regulation; (7)

Fig. 7 Schematic explanation of cubic B-spline transformation. (a) A typical 1-D cubic B-spline with four
pieces (piece length μ equals to 32) described by third-order polynomial functions B2ðt2Þ, B1ðt1Þ, B0ðt0Þ,
B−1ðt−1Þ. (b) Schematic diagram of B-spline interpolation with a green arrow denoting where a value to be
interpolated was scaled by the dashed arrows denoting four sounding control points. The transformed 1-
D B-spline is visualized as a dash curve (C1). (c) Schematic diagram to show the localization of B-spline
transformation with the sudden change of a control point at 0. The transformed 1-D B-spline is visualized
as a dash curve (C2). (d) Schematic diagram of 2-D B-spline free-form deformation.
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where β works as a weighting factor to balance the registration
accuracy and vasculature smoothness, which was rationally
chosen as β ¼ 0.01, based on the size of the current control
mesh grids. If no desirable registration coefficient was identi-
fied, the searching would automatically stop by exceeding
the iteration number and reaching the maximum permissible
grid size. In that case, the best approximations would be
returned as the proper registration parameters. Here, a composite
image was created by summing both the static image and the
transformed moving image with equal weights. The composite
image was further trimmed by removing previously zero-padded
regions.

2.2.4 Precise registration feedback controlled by vascula-
ture evaluation

The effectiveness of the general and precise registration proto-
cols was evaluated by a specifically designed vasculature evalu-
ation process, as shown in Fig. 8. Taking the generally registered
images, Gel_Reg_A and Gel_Reg_B, as an example, two images
were normalized to the same mean intensity for objective
comparisons to be made. A vessel subtraction map (VSM)
was then obtained by subtracting Gel_Reg_B from Gel_Reg_A,
as in Fig. 8(a). The VSM was subsequently segmented into
10 × 10 blocks with the standard deviations between the vessels
being calculated from pixel value variations within each block.
Finally, a vasculature evaluation map (VEM) was obtained
through bicubic interpolation of the blocks to form a regional
evaluation criterion with the same sampling as the original vas-
culatures (500 × 500).

The VEM was calculated for the generally registered vascu-
latures, A and B, as shown in Fig. 9(a), with the associated vas-
culature composite (Aþ B), shown in Fig. 9(b). Subsequently,
a second VEM was obtained by comparing the B-spline

deformed vasculature B from the first-round precise registration
with vasculature A, as shown in Fig. 9(c), as well as the corre-
sponding composite image, as shown in Fig. 9(d). A significant
improvement in image quality was validated by the evaluation
maps (see the reduced color bar values) and coregistered vascu-
latures [see the comparative vessel patterns indicated by the red
arrows in Figs. 9(b) and 9(d)]. The precise registration, however,
was not conclusively validated due to the relatively coarse B-
spline interpolation grid (maximum 22 × 22 points), which
resulted from a trade-off with calculation efficiency. In its place,
we used the VEM and identified the regions with mean values
exceeding 50% of the maximum VEM value. Those regions
within both vasculatures were then segmented out and zero-
padded to their closest rectangle blocks. Then, a bicubic inter-
polation was applied to upsample those blocks twice along both
x- and y-axes. Finally, the interpolated images were rerun
through B-spline registration, and afterward downsampled back
to the original transverse spacing. This feedback controlling
process was repeated several times until reaching the limits
where no such regions were detected, as illustrated in the precise
registration element of Fig. 3. Using this method, the VEM
values across the whole map were <0.04, as shown in Fig. 9(e).
The corresponding final composite vasculature is shown in
Fig. 9(f).

3 Results
Visually, motion compensation and artifact reduction were suc-
cessfully achieved through step-by-step rigid affine registration,
rigid subpixel registration, and nonrigid B-spline free-form
registration, feedback controlled by vasculature evaluation.
Additionally, a considerable signal-to-noise improvement can
be seen when comparing the registered vasculature composite,
shown in Fig. 10(b), with the two original vasculatures, shown
in Fig. 10(a). Two additional cases are shown in Figs. 10(d)

Fig. 8 Vasculature evaluation process to assess the quality of registrations. (a) VSM obtained
through the normalized subtraction between two coregistered vasculatures. Gel_Reg_A represents
the generally registered vasculature A and Gel_Reg_B represents the generally registered vasculature
B. (b) VEM obtained by calculating regional standard deviation of the VSM and smoothing through a
bicubic interpolation. ðn;mÞ represents a typical pixel in the VSM, N and M represent the evaluated
pixel numbers along x - and y -axes.
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versus 10(c) and Figs. 10(f) versus 10(e). As much data as pos-
sible from each vascular scan were carried forward to the arti-
fact-free composite, as demonstrated in Figs. 10(a)–10(f) by
arrows. To quantitatively evaluate the results of the registration

process and to assess how much the motion compensation algo-
rithm improved the quality of the vasculature, the CC and PSNR
of both vasculatures, pre- and postregistrations, were calculated
using Eqs. (8) and (9)34

Fig. 9 Vasculature evaluation maps and associated composite vasculatures postregistration. (a), (c),
and (e) Vasculature evaluation maps for the general registration, the first-round precise registration,
and the second-round precise registration, respectively. (b), (d), and (f) The composite vasculatures
obtained after the general registration, the first-round precise registration, and the second-round precise
registration, respectively.

Fig. 10 Representative skin vasculatures before and after motion compensation. (a) Two en face vas-
culatures of case 1 preregistration. (b) Final artifact-free vasculature of case 1 postregistration. (c) Two en
face vasculatures of case 2 preregistration. (d) Final artifact-free vasculature of case 2 postregistration.
(e) Two en face vasculatures of case 3 preregistration. (f) Final artifact-free vasculature of case 3 post-
registration. Red arrows highlight artifact lines in vasculatures preregistration. Zoomed images within
boxes highlight positions with signal-to-noise improvement.
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where Aðx; yÞ and Bðx; yÞ represent individual pixel values
within vasculatures A and B, respectively, and Ā and B̄ represent
the corresponding mean values. Comparative CC and PSNR val-
ues are listed in Table 1 for all three cases of Fig. 10. In all cases,
the processes described in this study resulted in the simultane-
ous improvement of clarity and contrast within vasculature data-
sets, allowing for the subsequent production of artifact-free,
signal-enhanced composite images that can be used to more
accurately quantify important vessel parameters, such as vessel
area density and blood flow flux.35

4 Discussion
The proposed registration method was successfully utilized to
eliminate motion-derived artifacts in human skin OCTA.
While it is common practice to use an edge enhancement filter,
such as Gabor filter or Hessian filter, to increase visual contrast
(common approaches for visual enhancement36) prior to regis-
tration, no such filter was applied to the angiograms in this
study. The decision was made to forego such a routine because
it could have resulted in the misrepresentation of vessel textures.
For instance, the Gabor filter is known to cause extensions of the
vessel when used to smooth the vessel edge, which inevitably
raises the quantification values of vessel area density and vessel
flux. Such an occurrence can happen when capillaries or small-
scale vessels are heavily involved in an evaluation, such as when
imaging patients with diabetic dermopathy, necrobiosis lipoid-
ica diabeticorum, or pruritus. Possible misreading to any degree
would have been unacceptable here as accuracy is the key to
this study.

A more critical step in the motion compensation process,
however, is accurately identifying the motion-derived artifacts.
As discussed in Sec. 2.2.1, peak detection for frame group divi-
sion is considered a more accurate technique when compared to
arbitrary thresholds. This is justified if one considers peak analy-
sis as peak prominence and peak width performing like dynamic
thresholds on specific artifacts with consideration given to
regional features. Additionally, such a technique allows for
the detection of incomplete or mild artifacts. Moreover, to
ensure the robustness of this technique, when no artifact was
found to exceed our default prominence level, the highest peak
was regarded as the point where frame groups would be divided.
Although the default prominence of 0.3 times maximum eleva-
tion worked well for all cases here, further optimization could be
achieved with the use of more regional characteristics, if desired.
It should be noted this technique is not without a potential flaw.
A conceivable problem exists in mistaking several frames as
motion-derived artifacts when large vessels are orientated
parallel to those frames, leading to high OMAG signals.
Fortunately, however, this problem very rarely occurred here,
for two reasons: first, the vessels present in the skin comprise
high network distributions that typically would not be captured
in single frames, and second, large unidirectional vessels in the
skin typically reside in the hypodermis layer, which is almost
inaccessible to the OCT beam.

During affine registration, corresponding pixels were mea-
sured for statistical dependence via normalized mutual informa-
tion, which is assumed to be maximal if the images are
geometrically aligned. The mutual information equation was
derived from the information theory, which calculates the
amount of information that one image, I1, contains about
another, I2, as

37

EQ-TARGET;temp:intralink-;e010;326;400CostMI ¼ HðI1Þ þHðI2Þ −HðI1; I2Þ: (10)

Compared with the sum of squared differences used in the
precise registration, the mutual information is proposed to be
less sensitive to image intensity, and therefore, provided a cer-
tain robustness for the affine registration. This is especially
important here because we did not apply histogram equalization
to the original vasculatures, as its nonlinear manipulation may
bias the quantitative analyses that follow.38 Additionally, to
avoid any dependency of the registration on the vasculature
overlap, an improved normalized mutual information28 was used
as the standard for image alignment, as in Eq. (1). While, in
practice, the affine registration still requires the two vasculatures
to preserve some degree of overlap, the tolerance of such overlap
will be measured in our future studies.

During precise registration, the B-spline grid size was
restricted to a maximum of 22 × 22 control points. While this
cannot satisfy the accuracy requirement down to a single pixel,
a larger grid size would have exponentially increased the com-
putation cost. To account for this less-than-ideal grid size, we
chose to repeatedly reuse a limited grid of control points com-
bined with interpolation of regions showing high registration
deviation, which forewent the requirement for a high sampling
grid of control points. Additionally, we equally segmented the
vasculature subtraction map into 10 × 10 blocks, with each
block comprising 50 × 50 pixels. The relatively large pixel size
was used to make sure the selected regions would have enough
information for accurate registration in the next step of the
protocol.

Table 1 CC and PSNR values of vasculatures pre- and
postregistration.

Registration evaluation CC PSNR

Case 1 Original 0.6352 14.1459

General registered 0.7824 17.4176

Precise registered 0.8825 18.6596

Case 2 Original 0.1810 9.8625

General registered 0.6939 16.6696

Precise registered 0.8236 18.2343

Case 3 Original 0.4366 10.7405

General registered 0.5495 11.7644

Precise registered 0.8387 15.5022
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While the protocol and accompanying data presented here
are encouraging, a potential limitation for the current dual-
volume scanning procedure could be that the motion-derived
artifacts cannot be adequately handled when the same motions
repeatedly occur across volumes. As discussed by Hendargo
et al.,23 however, this may be more of a problematic issue in
ophthalmology OCT scans because subjects tend to temporarily
shift their eyes when the beam passes near the periphery of the
fovea, causing motion-derived artifacts to be reproducible in
successive volumes. In skin OCTA, the distribution of artifact
lines is random with no conceivable association to the beam
scanning pattern. This possible limitation decreases with, and
may be overcome by simply increasing the number of acquired
volumes (n ≥ 3). Such a method would admittedly require
increased computational power, but with further refinement,
this increased demand could be limited.

Additionally, a number of the methods outlined here may
need reviewing if certain trends in OCT development continue.
For example, the computation of current motion compensation
is performed in 2-D, based on en face view of vasculatures, and
the artifact lines used for frame group division are recognized
from the projected OMAG signals of corresponding motion
involved frames. While these are currently favorable methods,
the skyrocketing speed of OCT A-scan acquisition means the
OCTA algorithms are likely to rapidly change from interframe
to direct intervolume.39 In that scenario, the artifacts would not
appear as bright lines, and accordingly, proper artifact detection
methods and image registration methods would need be devel-
oped from 2-D to 3-D domains.

5 Conclusion
We have proposed and demonstrated an automatic motion com-
pensation method for robust motion-artifact removal in human
skin OCT angiography. The compensation was achieved by
sequentially performing rigid and nonrigid image registrations
on dual-volume datasets to form an artifact-free and quality-
enhanced vasculature composite. In general registration, a rigid
affine registration was first performed on large vessels in the
deep reticular dermis. The affine registration parameters were
then applied to the all-depth vasculatures with a subpixel regis-
tration being added to refine the process ascribed to the involve-
ment of smaller superficial plexus. Then, a precise registration
algorithm based upon B-spline free-form deformation was used
to adjust regional mismatches, which was feedback controlled
through a loop of vasculature evaluation and regional interpola-
tion. The final vasculature composites have shown considerable
signal-to-noise improvement with substantial motion-artifact
removed. We expect that this method would have great potential
to improve the clinical diagnosis of OCT angiography in derma-
tology applications.
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