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Abstract. The current practice of surgical pathology relies on external contrast agents to reveal tissue archi-
tecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison
with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology
based on interferometric imaging of “unstained” biopsies, which provides unique capabilities for quantitative
diagnosis and automation. We developed a label-free tissue scanner based on “quantitative phase imaging,”
which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to
the “nanoscale” tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected
by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically
quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features
allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized,
dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of
commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured
phase information, we implemented software tools for autofocusing during imaging, as well as image archiving
and data access. To illustrate the potential of our technology for large volume pathology screening, we estab-
lished an “intrinsic marker” for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags
specific areas for further examination, potentially improving the efficiency of existing pathology workflows. © 2017
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1 Introduction
Colorectal cancer develops from benign adenomatous polyps
that advance to carcinoma through a series of genetic mutations
over the course of 5 to 10 yr.1 Early diagnosis of colorectal
cancer is strongly correlated with reduced disease-specific mor-
tality. Cancers diagnosed at an early stage (localized) have an
89.8% 5-year survival rate compared with a 12.9% 5-year sur-
vival rate for patients with distant metastasis or late-stage
disease.2 In United States, colonoscopy is the preferred form of
screening, and the percentage of individuals in the age group
of 50 to 75 yr who underwent colorectal cancer screening
increased from 54% to 65% from 2002 to 2010.3 The prevalence
of adenoma among all individuals undergoing colonoscopy is
25% to 27%, and the prevalence of high-grade dysplasia and
colorectal cancer is even lower, 1% to 3.3%.4,5 However, a
biopsy or polyp removal is performed in 50% of all colonoscop-
ies as current screening methods cannot distinguish adenoma
from a benign polyp with high accuracy.6 A pathologist exam-
ines all excised polyps to determine if the tissue is benign,

dysplastic, or cancerous to determine if further treatment is
necessary.

The Patient Protection and Affordable Care Act in the United
States now requires all insurances to cover cancer screening
strategies recommended by the United States Preventive Services
Task Force,7 and recent studies have shown the critical need for
colorectal cancer screening in Asia in light of an alarming
increase in the prevalence of this disease.8–10 Thus, it is very
likely that the number of colon cancer screening cases examined
by pathologists will increase. Considering the small proportion
of cases with advanced neoplasms in the midst of a large volume
of tissue excised during screening, a quantitative tool that can
flag dysplastic or cancerous tissue with a high level of accuracy
will be invaluable for early colorectal cancer detection.

New technologies that can perform automated tissue inves-
tigation and thus reduce the dependence on manual examination
are imperative for efficient large-scale screening strategies.
Already, widespread implementation of the Papanicolaou test
(pap smear) for cervical cancer screening benefited from semi-
automated computational tools. The FDA-approved BD Focal
Point Slide Profiler™ reduces pathology caseloads by 25% by
eliminating normal cases, forwarding the remaining 75% of
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cases to the pathologist for a manual examination with a risk
group designation.11 Critical to the proper operation of such sys-
tems is the staining procedure, which is designed to match nar-
row calibration thresholds. The details of these procedures are
proprietary and require continuous quality review throughout
the machine’s operating lifetime.13

Label-free scattering and imaging techniques have been
developed recently to perform tissue diagnosis based on the
intrinsic tissue architecture modifications associated with cancer
onset and development (see, e.g., Refs. 14–25). As our work
focused on rapid and high-resolution imaging of thin samples,
we choose to use quantitative phase imaging (QPI).26 QPI is an
emerging field that shows promise for quantitative assessment of
cell and tissue properties, including cell growth,27–29 cellular
physiology,30–33 single-cell tomography,34–39 and hematol-
ogy,40–43 as well as cancer diagnosis.19,44–47 In essence, the ad-
vantage of a label-free approach is that variables introduced by
staining and color balance disappear, yielding information well
suited for computer analysis, and QPI is one of the most sensi-
tive techniques in this class of imaging modalities.

Here, we present, for the first time to our knowledge, a QPI-
based tissue scanner capable of acquisition rates that are com-
parable with the existing commercial, intensity-based scanners.
Our label-free scanner combines optical hardware as well as
dedicated, highly parallelized software algorithms for data
acquisition. We apply this technology, for the first time to our
knowledge, for performance of automatic colon tissue screen-
ing, using intrinsic, “self-normalizing,” tissue markers, showing
how such a system can be used to remove normal (benign) cases
from manual investigation by pathologists.

Importantly, such a measurement does not require staining or
calibration. Therefore, unlike with staining, signatures devel-
oped from phase information can be shared across laboratories
and instruments without modification.

2 Materials and Methods

2.1 Study Design

In this work, we imaged a tissue microarray (TMA) set contain-
ing tissue with colon carcinoma, intramucosal carcinoma, dys-
plasia, hyperplasia, and normal colonic mucosa. Quantitative
features were extracted from the image to construct a support
vector machine (SVM) classifier using MATLAB® to flag cases
with dysplasia, intramucosal carcinoma, and carcinoma as high
index of suspicion using 25% of the cases in the TMA set. The
classifier was then tested on the remaining 75% cases in the
TMA set as an internal validation. We envision that this screen-
ing process will reduce the workload for pathologists. To dem-
onstrate the application of our technique to biopsies, we imaged
a large section of surgically resected tissue using a second
instrument. The SVM classifier was then tested on the surgical
specimen as an external validation.

2.2 Interferometric Microscopy

We direct the light from a conventional phase-contrast micro-
scope (Axio Observer Z1, Zeiss) onto the spatial light interfer-
ence microscopy (SLIM) module [Cell Vista SLIM Pro,
Phi Optics, Inc., Fig. 1(a)]. The module consists of lenses,
polarization control, and a fast liquid crystal phase modulator

Fig. 1 High-throughput imaging system enables label-free cancer diagnosis. (a) SLIM is a white-light
interferometry technique that attaches onto an existing phase-contrast microscope. The phase offset
between the scattered and transmitted light is manipulated by an SLM. (b) A home-built C++ code over-
laps camera acquisition, data copy, computation, and mechanical motion to maximize hardware paral-
lelism. Previous frames are processed while the current one is acquired. (c) The resulting SLIM images
have sufficient intrinsic contrast to match or outperform conventional staining procedures for colorectal
cancer screening. Cellular level detail, such as nucleoli (white arrows), is clearly visible.
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(∼10-ms stabilization time) operating in reflection mode. The
modulator is located at the Fourier plane of the image field and
controls the offset between scattered and transmitted light, effec-
tively adjusting the phase shift associated with the ring found in
the phase-contrast objective. Following the interferometry tech-
nique described in Ref. 48, the images are collated to produce a
quantitative phase image, with values at each pixel in units of
radians. All images presented here were obtained using a 40 ×
∕0.75 NA objective, which yields a 330 × 330 μm2 field of
view, sampled by a camera with five megapixels (Zyla, Andor).

Initially, achieving a flat field required that the system be
carefully aligned for each objective. In a later revision of the
optical assembly (not used here), the field of view is dynami-
cally adjusted with a manual “zoom lens” (Phi Optics propri-
etary, similar to Thorlabs PN: SM1NR1) positioned between the
microscope and the SLIM add-on module.

2.3 Software Architecture

Our software overlaps computation with necessary hardware
events, such as spatial light modulator (SLM) modulation
and camera transfer time. To achieve real-time performance
[Fig. 2(a)], we use three decoupled threads in a pipeline fashion.
The first thread is responsible for triggering the acquisition of
new images and controlling the SLM. A second thread receives
and transfers new images to the graphics processing unit (GPU),
while a third thread renders the phase images and writes them to
the disk [Fig. 2(b)]. This “producer–consumer” model is neces-
sary as scientific cameras have precise shutter open triggers, but
the availability of acquired data depends on the computer load.
For example, a camera that is triggered every 10 ms has
data arriving in 12 ms� 2 ms intervals. Without this scheme,
the throughput would be 14 ms rather than 10 ms, and camera
aperture jitter would perturb time-critical experiments. We
found that using Windows Multimedia Timers, along with dis-
abling latency-prone hardware devices further reduces aperture
jitter. As most of the computation is carried out on the GPU, the
Windows Task Manager rarely displays appreciable central
processing unit (CPU) utilization. Thus, by separating acquisi-
tion and file writing, the program implicitly handles unpredict-
able write speeds, such as the latencies due to disk seeks on large
redundant array of independent disks arrays. Even solid-state
drives benefit from this approach as their speed is hard to know
a priori (due to the so-called “solid state drive write cliff”).49

To avoid redundant memory copies, a large buffer is acquired
at program initialization and pointers rather than deep copies are
used to exchange data between threads. Further, these pointers
are used to detect acquisition failure by verifying the order and
arrival of triggered frames. When an error occurs, the acquisition
event is repeated, although some categories of errors require the
camera to be software reset. In these cases, the necessary syn-
chronization is handled by a record keeping structure. In this
structure, frames are pooled into three categories: “free,” “inside
camera,” and “inside write queue.” In the event of an error, a
lock is held until the necessary corrections are made, resetting
the camera or waiting for more files to be written to the disk,
implicitly pausing the acquisition threads.

To facilitate scanning slides and other forms of programmed
automation, “capture dialogs” generate a list of steps outlining
the precise state of the microscope [Figs. 3(a) and 3(b)]. This list
is then processed [Fig. 3(c), “schedule”] with one thread dedi-
cated to triggering the camera, shifting the SLM, and moving
the microscope stage. A second thread is responsible for

receiving the images, computing autofocus parameters, and rec-
ord keeping to redo frames in the case of acquisition failure.
Finally, a third thread is responsible for writing files to the disk.
With tightly overlapped software design, the rate limiting factors
in our data acquisition procedure are hardware parameters, such
as XY stage speed, SLM stability, and camera readout time.

Because of this parallelization procedure, we are able to sus-
tain 15 5.5 megapixel SLIM phase maps per second.

Fig. 2 User-friendly QPI slide scanning interface enables rapid digi-
tization of microscope slides: (a) live image, (b) phase retrival, and
(c) scanner dialog. The live interface enables the SLIM imaging proc-
ess in real time (inset 1). Here, SLIM imaging is seamlessly integrated
among other channels of the microscope. The SLIM channel can be
selected or mixed with the fluorescence, dark-field, differential inter-
ference contrast, and phase-contrast channels that operate on the
existing microscope (inset 2). To account for mismatch between con-
sumer and producer threads, the “triggering” process (inset 3)
releases a single framewhile the readout process is capable of receiv-
ing multiple frames (inset 4). In the acquisition dialog, the scanner sur-
face (inset 5) is represented as a rectangle with shading indicating the
height variation due to manually selected focus points (inset 6).
Various settings, such as the depth of the autofocus system, can
be configured through the interface (inset 7).

Journal of Biomedical Optics 066016-3 June 2017 • Vol. 22(6)

Kandel et al.: Label-free tissue scanner for colorectal cancer screening



2.4 Phase-Based Autofocusing Procedure

To achieve optimal image quality, our slide scanner adjusts the
focus at each mosaic tile. This procedure benefits from knowl-
edge of the approximate plane of best focus, and, thus, autofo-
cusing is performed offset from a user-defined focus plan [Fig. 4
(a)]. To enable dynamic adjustment of the plane of best
focus as the scan progresses, the tile positions and associated
focus points are stored as a Delaunay triangulation.50 Neverthe-
less, during the course of this work, we found that dynamically
adjusting the focus resulted in poor image quality, especially
when our scanning procedure encountered large open areas or
sharp discontinuities (residual paraffin). Therefore, we choose to
keep this offset plane constant for the duration of the acquisition,
and the depth scanning autofocus procedure is performed from
this offset.

The autofocus algorithm51 proceeds by scanning through the
z-depth and measuring the focus at each plane [Fig. 4(b)].
Iterative techniques, such as golden-section search,52 showed
promise but were found to be significantly slower as the mecha-
nized focus needed to traverse a larger distance. Further, any-
thing other than a linear scan necessarily requires serializing
the computation (waiting for pixel readout), effectively doubling
the time needed per z-slice. Importantly, using a convex optimi-
zation technique is fundamentally unreliable because noise ren-
ders the focus curve nonmonotonic. Unlike a linear search, a
misstep at the first bifurcation is irreversible and leads to a dras-
tic deviation from the optimal result. Thus, our implementation
samples along the z-axis at approximately five frames per sec-
ond. The acquisition time is evenly divided between the four-
frame phase shifting process and adjusting the piezo focus.
After sampling the focus function, the algorithm performs a par-
abolic interpolation to choose the final image and, as the focus

curve is smooth, interpolation helps to achieve a good result
with few samples [Fig. 4(b), black circle].

Since an out-of-focus position generates a convolution with a
Fresnel kernel, which smooths the edges of the phase map, the
focusing metric relies on maximizing the variance of the two-
dimensional wavelet decomposition [Fig. 4(c)]. Specifically, we
used the Haar wavelets that are a basis of edges, which are well
suited to describing transient discontinuities.

The robustness of this metric can be assessed by its perfor-
mance in cases where the plane of best focus is ambiguous. Such
a case frequently occurs in live-cell imaging where there is a
tendency for individual cells to round up (bulge) away from
the glass, often during mitosis. Similar defects manifest them-
selves as bubbles of mounting medium or residual paraffin in
imperfect tissue sections. The membrane circumscribing the
cells appears as a sharp discontinuity and contributes dispropor-
tionately to the overall image variance, resulting in a counter-
intuitive best focus where the rest of the cells are blurred
[Fig. 4(e)]. This further speaks to the difficulty of using an adap-
tive sampling technique (see the previous paragraph) because
the “in–focus” image is expected to be globally optimal rather
than locally optimal. As shown, using a metric that combines
both the high- and low-frequency wavelet details image, the
“fusion” scheme selects the desired result. Thus, owing to the
stability of the common-path interferometer and the precision of
the piezo focus, even relatively large focus steps can be used to
localize the focus with high repeatability [Fig. 4(d)].

2.5 Scanning and Image Assembly

Mosaic tiles are acquired by translating an XY stage (Zeiss
MCU2008), with an expectation of rigid misalignment along
either the X, Y, or both. Hence, we opt to maximize the

Fig. 3 Software architecture for high-throughput imaging with error correction. The software architecture
was designed to maximize computational overlap while providing deterministic operation for error cor-
rection. (a) Capture dialog, showing the slide scanning and “multi-ROI” acquisition modes, generates a
list of events and channel settings. (b) The event list is then processed by a scheme where one thread is
assigned to triggering (moves stage, shifts SLM, and shutter open on camera) and a second thread
receives images and performs bookkeeping for error detection (busy wait on new images and compute
focus parameters). (c) Schedule of events. Acquired images are pushed onto a file writing thread, which
enables the software to briefly exceed hard disk write speeds without affecting the acquisition. To avoid
redundant data copy, along with system overhead during high-speed acquisitions, a large memory buffer
is preallocated and pointers are used in place of whole images. (d) The validity of the pointers is used for
error detection.
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similarity between overlapping mosaic tiles using phase
correlation53 to perform image registration. To avoid memory
limitations, our scheme consists of two passes on the data, with
the first pass finding the optimal overlap and the second pass
generating tiles for archival storage. The alignment procedure
is designed to mask computation with disk access, with one
thread responsible for loading data into a large buffer and a sec-
ond thread performing the phase correlation procedure. Further,
all image reads and the associated computations are stored in a
cache, so subsequent use does not require further disk access.
When the RAM is exceeded, the oldest image is removed from
the cache. An additional performance improvement comes from
ordering the pairs to minimize the potential number of times
items can be removed from the cache. The required real-to-com-
plex discrete Fourier transforms are performed on the GPU, with
the computational portion occupying significantly less time than
disk access. In most cases, this scheme avoids one of two of the
Fourier transforms in the phase correlation algorithm.

Disagreement between estimates of the true tile position
is resolved by a least-squares fit, producing a globally optimal
configuration with a minimal alignment error. On the second
pass, mosaic tiles are rendered according to this configuration,
and the resulting images are generated for web viewing (256 ×

256 pixels) or archival storage (10;000 × 10;000 pixels, see
Fig. 6). While overlapping regions between mosaic tiles could
be merged to achieve a more aesthetically pleasing seam, to
avoid affecting the quantitative image statistics (particularly,
the variance), overlapping regions contain data from (only) a
single mosaic slice. Finally, a background correction image is
calculated by selecting a small percentage of the data whose
phase values are near zero (empty space) and removing this
background from each frame. Following the initial tile genera-
tion, successive levels combined to create the mipmaps (“image
pyramids”) typically used in online image viewers.

The code is written in Python with GPU portions using
PyCUDA. The rate limiting step is disk reading and writing. In
this work, we used CATMAID54 and Zoomify. The principle
advantage of CATMAID is easy annotation, and Zoomify oper-
ates without a dedicated server. A representative colon TMA
slide is shown in Fig. 5.

One of the chief objectives of our slide scanning instrument
is digitally archiving TMAs. To segment cores, we proceed with
a two-pass k-means55-derived scheme operating on a stitched,
downsampled image. The first pass identifies constituent pixels
as belonging to a core and determines the center of mass and
cropping box, resulting in a series of unlabeled boxes around

Fig. 4 Fusion of focus metrics resolves ambiguous cases. (a) Tilt correction, (b) focus optimization, and
(c) a focus metric can be calculated from the variance of the wavelet decomposition details images
obtained from the SLIM image. Such a scheme is useful for choosing a plane of best focus as there
may exist local solutions for the plane of best focus. (d) To ascertain repeatability, the focus position
at a different ROI (not shown) was taken 20 times, with a 7-point scan at a varying step size. We attribute
the high level of repeatability (less than 50 nm) to the interferometric stability of the SLIM image. (e) The
weighting of low and high detail images focuses the image on the bulk of the sample rather than on high
variance outliers. This allows for a nonambiguous solution to the plane of focus.
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each core. Understanding that cores have irregular spacing, a
further k-means algorithm is used to associate the centroids
with their spacing on a regular grid. Essentially, a second pass
of k-means is performed for each row and column to bin the
centroids into the expected number of rows of columns. During
the second pass, the k-sets for the clustering are known in
advance, i.e., there are 100 cores along a 10 × 10 grid.

In the case of Fig. 11 (a biopsy), the process reduced
∼200 gigabytes of floating-point phase maps into 2 gigabytes of
web-ready 8-bit JPEGs.

2.6 Tissue Microarray Cohort

Our final goal is to apply our approach to biopsies. However,
TMAs of colon resection specimens provide a controlled sys-
tem, with a large number of distinct samples presented as
0.6-mm disks on a single microscope slide.56 The morphological
markers discovered in these TMA samples (gland solidity and
phase median) are expected to be applicable to colonoscopic
biopsies as well. The use of TMA obtained from colon resection
specimens provides an ideal study material for addressing
the morphological parameters of colon cancer progression.
Furthermore, the use of TMAs is superior to biopsy samples
as biopsy samples are not guaranteed to yield a stepwise colonic
lesion progression from normal, to hyperplasia, dysplasia, and
carcinoma.

A TMA was prepared with archival pathology material col-
lected from 131 patients who underwent colon resection for
treatment of colon cancer at the University of Illinois at Chicago
(UIC) from 1993 to 1999. For each case, 0.6 mm in diameter
colon core duplicates of tissue corresponding to “tumor, normal

mucosa, dysplastic mucosa, and hyperplastic mucosa” were
retrieved. Tissue cores were transferred using an MTA-1 manual
arrayer (Beecher Instruments, Inc.) into a high-density array
composed of four blocks with primary colon cancer (n ¼
127 patients) and mucosa of normal (n ¼ 131 patients), dys-
plastic (n ¼ 33 patients), and hyperplastic colon (n ¼ 86 patients).
The gland median phase and solidity, computed as the ratio of
the area of the gland to the area of the convex hull fitted around
the gland, were used for classification. The tissue collection
was performed in accordance with the procedures approved
by the Institutional Review Board at UIC (IRB Protocol No.
2004-0317).

Two 4-μm sections were cut from each of the four blocks at
UIC. The first section was deparaffinized and stained with
hematoxylin and eosin (H&E) and imaged using the
Nanozoomer (bright-field slide scanner, Hamamatsu Corpora-
tion). One of the pathologists on our team made a diagnosis
for all tissue cores in the TMA set, which was used as “ground
truth” for analysis. A second adjacent section was prepared in a
similar way but without the staining step. This slide was then
sent to the Quantitative Light Imaging Laboratory at the
University of Illinois at Urbana-Champaign for imaging. These
studies followed the protocols outlined in the procedures
approved by the Institutional Review Board at the University
of Illinois at Urbana-Champaign (IRB Protocol No. 13900).

2.7 Support Vector Machine Training

Complete glands present on all cores were manually annotated
on the SLIM images using a Wacom brand tablet and the region
of interest (ROI) feature in ImageJ. Solidity, which is computed

Fig. 5 Typical TMA slide. (a) Entire slide as seen on a web browser with virtually instantaneous loading.
Original raw SLIM data amounts to ∼200 Gb. (b)–(f) Google Maps TM type pyramid subsampling allows
for a broad range of zoom levels to be accessed in real time remotely. Each image represents the region
in the dash box shown in the previous image. Note that the TMA slide measures 1 × 3 inches, while our
imaging was performed with submicron resolution, such that individual nucleoli (pointed by arrows in f)
are resolved. The TMA is available for remote browsing at http://light.beckman.illinois.edu/SI/Scanner/
Colon/Colon2/.
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in ImageJ as the ratio of the area of the gland to the area of the
convex hull fitted around the gland, and median phase value in
each gland were measured. 25% of the cases in the TMA set
were used to build an automated classifier for diagnosis. Solidity
and phase median measurements were extracted from 454
glands from cores diagnosed as normal and 194 glands from
cores diagnosed with cancer. These measurements were used
to create a classifier with the SVM algorithm using MATLAB®

(Fig. 10). A linear kernel was used to build the classifier, and
sequential minimal optimization was used to calculate a hyper-
plane to separate the different classes of data. Evaluating a gland
in the SVM yields values running on a continuum between “low
index of suspicion,”which would contain normal and hyperplas-
tic tissue, and “high index of suspicion,” which designates dys-
plastic and cancerous tissue.

2.8 Internal Validation

The TMA cores from the three slides, which were not used for
building the classifier, were used for internal validation of the
classifier. The solidity and phase median values are computed on
816, 168, 219, and 704 glands from 100, 27, 34, and 102 cores
diagnosed as normal, hyperplasia, dysplasia, and cancer, respec-
tively. Using the SVM classifier, each gland was then stratified
as “low” or “high” suspicion.

2.9 External Validation

A paraffin-embedded surgically resected colon sample was
obtained from UIC. It was sectioned at 4-μm thickness, depar-
affinized, and later coverslipped with an aqueous mounting
medium. The slide was imaged using the commercial SLIM sys-
tem (Cell Vista SLIM Pro, Phi Optics, Inc.) with the tissue scan-
ning software developed for this work. The slide was imaged
with the 40 × ∕0.75 NA objective and has a spatial resolution
of 0.4 μm. The size of each field of view was 221 × 165 μm,
corresponding to 1392 × 1040 pixels on the CCD camera. To
image the surgically resected tissue (Fig. 11), 15,589 fields of
view were mosaicked together, with ∼10% overlap on all sides.
The images were stitched together using an image alignment
and registration software developed for this work. The resulting
large image file was then cropped into 176 images of 10;000 ×
10;000 pixels, corresponding to a 1587.3 × 1587.3 μm2 field of
view. Manual segmentation of glands was performed on these
cropped images, using ImageJ, to measure the solidity and
median phase value. The SVM classifier was used to classify
the glands as low or high index of suspicion. The individual
glandular diagnoses were then thresholded at 50% to obtain
a single flagging measure for each 10;000 × 10;000 pixel tissue
region. Thus, multiple diagnoses are performed in a spatially
resolved manner and in specific regions flagged for pathology
assessment, as shown Fig. 11.

2.10 Effects of Thickness on Quantitative Phase
Imaging Images

We performed imaging of two adjacent tissue slices cut at 4-μm
thickness and measured the phase median and glandular solidity,
the parameters used for diagnosis, for three glands in each sec-
tion. As seen in our analysis, there are not significant differences
in either the median (paired t-test, p ¼ 0.46) or the solidity
(paired t-test, p ¼ 0.34), demonstrating that our technique is
robust (Fig. 6).

This is in good agreement with Ref. 47, where measurements
of slide thickness were performed using a scanning electron
microscope (SEM). In that work, a paraffinized 3.5-μm thyroid
tissue section was coated with gold/palladium before SEM mea-
surements. Those images showed that the thickness of typical
sample tissue is a continuum with a gradual decrease, followed
by a gradual increase in thickness, indicating that changes in
tissue morphology are primarily responsible for tissue thickness
changes in microtome-derived histology slides.

3 Results

3.1 Label-Free Tissue Scanner

One of the chief outcomes of this work is a turnkey solution for a
label-free pathology workflow. Figure 1(a) shows the SLIM
module (Cell Vista SLIM Pro, Phi Optics, Inc.), which upgrades
an existing phase-contrast microscope to produce quantitative
phase maps. SLIM is described in detail elsewhere.39,48 In
essence, SLIM operates by making the ring in the phase-contrast
objective pupil “tunable.” To achieve this, the image formed by a
phase-contrast microscope is Fourier transformed at a plane of
an SLM. At this plane, the image of the phase-contrast objective
ring is perfectly matched to the mask on the SLM, and phase
steps in increments of π∕2 are introduced sequentially. From four
intensity images that correspond to different quarter-wavelength

Fig. 6 Adjacent slices preserve diagnostic markers. We performed
imaging of two adjacent tissue slices cut at 4-μm thickness and mea-
sured the phase median and glandular solidity, the two quantitative
parameters used for diagnosis, for three glands in each section. As
seen in our analysis, there are nonsignificant differences in both the
median (paired t -test, p ¼ 0.46) and the solidity (paired t -test,
p ¼ 0.34).
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phase shifts, the phase shift of the field is retrieved at each point
in the field of view.

Critical to the operation of the tissue scanner is the ability to
perform phase-shifting and computation in real time. To this
end, we developed an acquisition software that seamlessly
combines CPU and GPU processing [Fig. 1(b)]. The SLIM
phase retrieval computation occurs on a separate thread while
the microscope stage moves to the next position (see Sec. 2).

Computation is performed on the GPU, freeing the CPU for
data serialization tasks, such as reading the camera buffer or
writing files to the disk. To account for sample variation, sim-
plify the operating procedure, and reduce variation between
acquisitions, a depth scan optimizes the acquired focus at each
tile with the final “in-focus” image acquired at an interpolated
z-position. We address the global tilt (due to stage, sample,
mounting) by specifying focus points and performing the depth

Fig. 7 Automated processing workflow for gigapixel SLIM images. (a) Unlabeled TMA, imaged by our
SLIM tissue scanner. (b) Typical samples used in this paper result in tens of thousands of tiles. The tiles
are assembled using a “phase correlation” schemewhere the optimal displacement between neighboring
tiles is determined by the location of the peak in the correlation image. In our implementation, disk access
is overlapped with the correlation procedure. (c) Disagreements between estimated tile positions are
resolved with a least-squares fit. (d) The result positions are used to generate image pyramids typically
used for archival access. (e) Regularly spaced TMA cores are cropped and labeled by a thresholding
technique. (f) Resulting images are ready for computational processing (files) and collaborative diagnosis
(web-based viewers, see Fig. 5).
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scan offset from this tilt, drastically reducing the scan volume.
These five or six manual focus points are the same points used to
locate the sample. In the future, we plan to identify the scan area
by performing a “prescan” at a lowmagnification (2×). The final
SLIM images [Fig. 1(c)] are displayed at up to 15 frames per
second, as limited by the SLM refresh rate—which has shown
improvement since the start of this work.57

Scanning large fields of view, e.g., entire microscope slides,
and assembling the resulting images into single files required the
development of new dedicated software tools [Fig. 7(a)]. The
resulting phase images are prepared for archival storage with

an image alignment and rasterization code developed in-
house (Sec. 2.5). The local overlap between neighboring tiles is
estimated with a parallel Python code, where disk access is
masked by computation [Fig. 7(b)]. Specifically, a “producer”
thread reads images from the disk while a second “consumer”
thread performs phase correlation and peak detection. Discre-
pancies between the locations of tile pairs are resolved through
global optimization, following a least-squares model [Fig. 7(c)].
After background correction, to account for alignment artifacts,
the overlapping tiles are combined into bitmaps suitable for dis-
play. This process reduces ∼200 gigabytes of floating point TIF

Fig. 8 Quantitative parameters for classification. Our classification method augments phase information
with the geometric structure of the gland. Scanned images are manually segmented into glands, whose
solidity (“glandular solidity”) and median phase value are used to train the SVM-based classifier used in
this work. (a) Gland identification, (b) feature extraction, and (c) classification.

Fig. 9 Tissue classification using an SVM. Screening of cores for each of the four groups: (a) cancer,
(b) dysplastic, (c) normal, and (d) hyperplastic. A typical core contains several glands, each being evalu-
ated using the SVM classifier. The consensus of these evaluations is used to diagnosis the core.
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data into 2 gigabytes of web-ready JPEGs. The final tiled images
are stored and available for access remotely, through “deep
zoom” style image viewers, such as Google Maps™ [Fig. 7(f)].

3.2 Quantitative Classification of Tissue Microarray
Cores

We used the tissue scanner to image a TMA consisting of 0.6-
mm diameter colon core duplicates of tumor, normal mucosa,
dysplastic mucosa, and hyperplastic mucosa from 131 patients
who underwent colon resection. To quantitatively classify tissue
into the categories of high index of suspicion (dysplasia, intra-
mucosal carcinoma, and carcinoma) and low index of suspicion
(normal and hyperplasia), an SVM classifier was built using
glandular solidity and glandular phase median as the support
vectors (see Sec. 2 for details).

Figure 8 shows the procedure for tissue classification. In
short, cancer is detected through these two parameters. We
use SVM to determine their optimal fusion, which in the sub-
sequent text is referred to as the “index of suspicion.”58 We note
that while individually, the morphological and quantitative fea-
tures are insufficient for clinical discrimination, when combined
together, they provide a strong diagnostic marker not available
through conventional, label-based imaging techniques.

The SVM classifier was first tested on three TMA slides,
consisting of 816 glands from 100 cores designated as normal,
168 glands from 27 cores designated as hyperplastic, 219 glands
from 34 cores designated as dysplastic, and 704 glands from 102
cores designated as cancerous. The distribution of gland types
across the cores is shown in Fig. 9. Using our analysis based on
gland solidity and phase values, 86% of the glands from normal
cores and 85% of the glands from hyperplastic cores were

Fig. 10 Classification accuracy of colorectal tissue. The accuracy of classification of normal, hyperplas-
tic, dysplastic, and cancerous cores into the “high index of suspicion” and “low index of suspicion” groups
is shown. The high index of suspicion (dysplasia, cancer) cases are flagged with 96.3% sensitivity and
95.3% specificity.
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classified into the low index of suspicion group. Furthermore,
68% of the glands from dysplastic cores and 80% of the glands
from cancerous cores were classified into the high index of sus-
picion group. Figure 10 summarizes these results.

It should be noted that, for a core to be diagnosed as normal
or hyperplastic, all glands in that core must show normal or
hyperplastic morphology on the H&E images. However, for a
core to be diagnosed with dysplasia, intramucosal carcinoma,
or carcinoma, a minimum of one gland has to display this mor-
phology on the H&E image, and other glands could have normal
or hyperplastic morphology. This explains the higher discrimi-
nation accuracy seen in glandular classification from cases in the
low index of suspicion group, in comparison with cases in the
high index of suspicion group. Figure 10 shows the number of
glands classified as high index of suspicion and low index of
suspicion in each core belonging to the normal, hyperplasia,
dysplasia, and carcinoma categories.

Our end goal is to provide a quantitative screening tool, i.e.,
to rule out normal cases and flag cores with suspected cancer or
dysplasia for further examination by a pathologist. To this end,
the risk stratification of multiple glands from each core was
pooled together and a threshold was set as follows: if 50% or
more glands from a single core were classified as “high index of
suspicion,” then the core was flagged. This resulted in 135 cores
being flagged for further analysis by the pathologist. A closer
examination of the flagged cores showed that 88% of all cores
with dysplasia and 99% of all cores with cancer were flagged
(Fig. 10). Additionally, 5% of all normal cores and 4% of all hyper-
plastic cores were incorrectly flagged as high index of suspicion.
The overall sensitivity and specificity for identification of high
index of suspicion cases were 96.3% and 96.9%, respectively.

3.3 Quantitative Classification of Full Tissue Slide

To illustrate the operation of our imaging and classification
analysis on full biopsies, a surgically resected colon sample
was imaged using the SLIM tissue scanner (see Sec. 2 for

details). The large tissue image was cropped to 10;000 ×
10;000 pixel regions over which the glands were segmented
for extracting the phase median and glandular solidity values.
The SVM classifier flagged the glands as either high or low
index of suspicion. As discussed in Sec. 2.10, the variation in
tissue thickness (if any) corresponds to morphological changes.
As a control, we used an adjacent H&E section with the path-
ologist’s diagnosis to compare against our result. As shown in
Fig. 11, the quantitative classifier flagged all the regions with
cancerous or dysplastic regions as high index of suspicion, and
all benign regions were successfully assigned a low index of
suspicion.

4 Discussion
Our results show that SLIM data have diagnostic value and that
high and low index of suspicion cases can be classified
extremely well. Selecting the dysplasia and cancer cases with
96% sensitivity and 95% specificity is very promising. As
shown with previous reports of label-free imaging for diagno-
sis,19,59–70 we do not attempt to replace the clinical workflow but
to complement it with valuable information that results in higher
accuracy, reduced manual time, and increased throughput.
Histopathology following colonoscopy tissue resection contin-
ues to remain the gold-standard for diagnosis of colorectal
cancer and dysplasia. At the same time, we believe that, if valu-
able, a new technology can and will be incorporated into the
existing process. The semiautomated pap smear analysis is a
good example where the existing workflow was adjusted to
incorporate a new tool that brings value. Stains are continuously
developed as well and can be regarded as a disruption of the
common workflow, but, because they significantly boost speci-
ficity, in some cases, this disruption is worthwhile. In our case,
we envision a process in which SLIM imaging is performed
before staining, possible in conjunction with H&E. Alterna-
tively, SLIM can be performed on successive slices, as is the

Fig. 11 Biopsy flagged with regions of “high” (red) and “low”’ suspicion (green). After assembly, the
image was analyzed in chunks of 10;000 × 10;000 pixel regions with glands in each region evaluated
according to the SVM model. The consensus of constituent glands is represented with a “green” or “red”
flag indicating low or high index of suspicion, respectively. Inset: H&E stained parallel section, showing
the red-bordered tumor and green-border benign region, as indicated by the pathologist.
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case with additional staining, and, as shown here, this can now
be accomplished without significant disruption.

Due to its common-path interferometric geometry, SLIM is
extremely stable and, thus, provides information about tissue
architecture at the nanoscale. This type of data is specific to
interferometry. An appealing feature of this system is that it
can be integrated with existing microscopes with which the
pathologist is already familiar. In our approach, a parallel C+
+ code drives the hardware, achieving optimal performance
with half the time spent moving the stage and half acquiring the
interferometric image. Crucial to the performance of the code is
our use of references to memory locations (pointers) to avoid
redundant data copies. As a result, we achieved an order of mag-
nitude increase in throughput compared with serial systems,
creating a compromise-free imaging system, which allowed
us to establish a new quantitative marker for colorectal cancer
screening.

SLIM has a high sensitivity and high specificity for flagging
cases requiring pathological examination, and it flags specific
regions on large tissue samples, such as biopsies, requiring
the attention of pathologists. Therefore, SLIM can help optimize
diagnostic workflow in colorectal screening programs. This
demonstration, along with the ability to effortlessly generated
and share large datasets, will serve as motivation for exploring
new disease markers and developing automatic diagnostic
algorithms.
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addressing pathogenesis, cell signaling, development of human tis-
sue arrays, and characterizing biomarkers.
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