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Abstract. A label-free, hyperspectral imaging (HSI) approach has been proposed for tumor margin assessment.
HSI data, i.e., hypercube ðx; y; λÞ, consist of a series of high-resolution images of the same field of view that are
acquired at different wavelengths. Every pixel on an HSI image has an optical spectrum. In this pilot clinical
study, a pipeline of a machine-learning-based quantification method for HSI data was implemented and evalu-
ated in patient specimens. Spectral features from HSI data were used for the classification of cancer and normal
tissue. Surgical tissue specimens were collected from 16 human patients who underwent head and neck (H&N)
cancer surgery. HSI, autofluorescence images, and fluorescence images with 2-deoxy-2-[(7-nitro-2,1,3-benzox-
adiazol-4-yl)amino]-D-glucose (2-NBDG) and proflavine were acquired from each specimen. Digitized histologic
slides were examined by an H&N pathologist. The HSI and classification method were able to distinguish
between cancer and normal tissue from the oral cavity with an average accuracy of 90%� 8%, sensitivity
of 89%� 9%, and specificity of 91%� 6%. For tissue specimens from the thyroid, the method achieved an
average accuracy of 94%� 6%, sensitivity of 94%� 6%, and specificity of 95%� 6%. HSI outperformed auto-
fluorescence imaging or fluorescence imaging with vital dye (2-NBDG or proflavine). This study demonstrated
the feasibility of label-free, HSI for tumor margin assessment in surgical tissue specimens of H&N cancer
patients. Further development of the HSI technology is warranted for its application in image-guided surgery.
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1 Introduction
There are ∼15.2 million new cases of cancer each year, and
more than 80% of these patients will require surgery, some sev-
eral times.1 Surgery cures ∼45% of all patients with cancer.2,3 To
cure a cancer patient by surgery, the surgeon must remove the
entire tumor at the time of the surgery. Unfortunately, up to 39%
of the patients who undergo surgery leave the operating
room without a complete resection due to positive or close
margins.2,4,5 It has been reported that a complete resection is
the single most important predictor of patient survival for almost
all solid cancers.6 In breast, head and neck (H&N), lung, colon,
and pancreatic cancers, complete resection is associated with a
threefold to fivefold improvement in the patient survival com-
pared to a partial or incomplete resection. 7–10

For cancer margin assessment, various methods have been
used or are under development in order to improve the tumor
resection during surgery. The visual appearance and palpation

are often used by a surgeon to differentiate between malignant
and normal tissue.11 However, this visual assessment is subjec-
tive. Intraoperative, frozen margin evaluation is commonly used
to optimize surgical margin delineation at the initial surgery.12

Small samples from the surgical bed are selected to evaluate the
presence or absence of residual cancer.13 However, intraopera-
tive, frozen section diagnosis may suffer from errors that occur
during sampling and histological interpretation. In addition,
histological processing can take time,14 which is labor-
intensive and prolongs the surgery time. Fluorescence-guided
imaging used to navigate cancer resection has been shown to
improve the number of complete resections as well as the pro-
gression-free survival.15–21 In most cases, fluorescence-based
approaches require the injection of a fluorescence contrast
agent. There are clinical needs to develop label-free imaging
technology and quantification methods to aid the decision-mak-
ing during image-guided surgery.

Hyperspectral imaging (HSI), originated from the remote
sensing field,22 has emerged as a relatively new imaging modal-
ity for medical applications.23 This label-free imaging technol-
ogy does not require a contrast agent and offers great potential
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for objective assessment of cancer margins. Light delivered to
the biological tissue undergoes multiple scattering due to the
inhomogeneity of biological structures and absorption primarily
in hemoglobin, melanin, and water as it propagates through
tissue.24,25 The absorption, fluorescence, and scattering charac-
teristics of tissue change with the progression of diseases.26

Therefore, the reflected, fluorescent, and transmitted lights
from tissue, where are captured by HSI, carry quantitative diag-
nostic information regarding tissue pathology.26–29 Spatially
resolved spectra obtained by HSI provide diagnostic informa-
tion about the tissue physiology, morphology, and composition.
Recent advancements of hyperspectral cameras, image analysis
methods, and computational power make it possible for many
exciting applications of HSI, such as cancer detection and
image-guided surgery.23

Previously, our group has developed a pipeline of machine-
learning-based quantification methods for hyperspectral data,
including image preprocessing, feature extraction and selection,
and image classification, and validated these approaches in
multiple preclinical animal models for both noninvasive cancer
detection30–33 and surgical guidance.34 To simulate the character-
istics of surgical images, our group34 developed a framework of
hyperspectral image processing and quantification and validated
the method for cancer detection during animal surgery. These
preclinical studies have demonstrated that HSI has great poten-
tial to be used as a diagnostic tool for cancer detection. To trans-
late HSI into the clinic, we designed a plot study to image
surgical specimen of H&N cancer patients and implemented
and validated a pipeline of quantification method to differentiate
tumor from normal tissue in HSI data of human patients. The
cancer detection results of HSI were compared with histopathol-
ogy to determine the sensitivity and specificity.

The preliminary result of this pilot study was presented at the
2017 SPIE Photonics West Conference “Advanced Biomedical
and Clinical Diagnostic and Surgical Guidance Systems XV”
and was selected by the conference chairperson for submitting
a full paper to the Journal of Biomedical Optics.35 In this paper,
we extended the SPIE paper and added more results and discus-
sions. This pilot study represented an important first step toward
translating label-free HSI into the clinic for assessing the tumor
margins of H&N cancer tissue from human patients.

2 Methods and Materials

2.1 Overview of the Study Design

Figure 1 shows the study design for the HSI experiment on sur-
gical specimens of H&N cancer patients. Before surgery, con-
sent was obtained from the patient, and clinical information was
collected. During surgery, three types of tissue, i.e., clinically
visible tumor, normal tissue, and tumor with adjacent normal
tissue, were collected and prepared for HSI, autofluorescence
imaging, and fluorescence imaging with vital dyes, i.e., 2-
deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose
(2-NBDG) and proflavine. The tissues were then processed his-
tologically, and the pathological images were digitized and ana-
lyzed by a pathologist for validation.

2.2 Hyperspectral Imaging System

A Maestro (PerkinElmer Inc., Waltham, Massachusetts) imag-
ing system was used to acquire the hyperspectral dataset. This is
a wavelength-scanning system consisting of a xenon light
source, a solid-state liquid crystal filter, and a 12-bit high-
resolution charge-coupled device. Details regarding this system
have been described in previously published papers.36,37 This
system is capable of obtaining reflectance images over the
range of 450 to 950 nm with a 2-nm increment, as well as fluo-
rescence images under different excitation light sources.38

2.3 Surgical Specimen Collection

H&N cancer patients who underwent surgery at Emory
University Hospitals Midtown were recruited into the study.
All tissues were collected under the clinical protocol approved
by the Institutional Review Board of Emory University. During
surgery, fresh surgical specimens were collected and sent to the
Pathology Department for cancer assessment. Three tissue sam-
ples, i.e., (i) clinically visible tumor, (ii) surrounding normal tis-
sue, and (iii) tumor with adjacent normal tissue, were collected
from the main specimen of each consented patient. These spec-
imens were rinsed with cold phosphate-buffered saline (PBS) to
remove excess blood on tissue.

Fig. 1 Study design for the HSI of surgical specimens of H&N cancer patients.
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2.4 Hyperspectral Image Acquisition and
Quantification

Fresh surgical specimens were scanned with HSI in the follow-
ing steps: (1) acquire white and dark reference hypercube
before tissue imaging. White reference image cubes are acquired
by placing a standard white reference board in the field of
view. The dark reference cubes are acquired by keeping the cam-
era shutter closed, (2) acquire reflectance hyperspectral images
of the specimen from 450 to 900 nm with 5-nm intervals,
(3) acquire autofluorescence images of the specimen with
blue excitation at 455- and 490-nm long-pass emission filter.
(4) Acquire fluorescence imaging with 2-NBDG (Cayman
Chemical, Ann Arbor, Michigan) using blue excitation and
490 long-pass filter. For 2-NBDG imaging, the specimen was
washed once after incubation of tissue in a 160 μM solution
of 2-NBDG in 1× PBS for 20 min at 37°C as described in
Ref. 39 and (5) similarly, acquire fluorescence imaging with
proflavine (Sigma Aldrich, St. Louis, Missouri) using the
same imaging setting as described in step 4). After 2-NDBG
imaging, the specimen was washed once and then incubated
in a 0.01% w/v solution of proflavine in 1× PBS for 2 min
at the room temperature for proflavine imaging.

Figure 2 showed the flowchart of the machine-learning-based
quantification approach for hyperspectral images. In this pilot
study, the steps of preprocessing, feature extraction, and
image classification were implemented and validated for cancer
detection in surgical specimens. To establish the histopathology
gold standard, the tissue samples were histologically processed
with hematoxylin and eosin (H&E) staining and pathology
slides were digitally scanned, and a clinically experienced
pathologist outlined the tumor border on the digitized images
for the validation of the HSI classification. HSI images, auto-
fluorescence images, and fluorescence images were manually
aligned with the H&E images to map the tumor region with
a software system (Analyze, AnalyzeDirect, Inc.).

2.5 Hyperspectral Data Normalization

The purpose of data normalization was to remove the spectral
nonuniformity of the illumination device and the influence of
dark current. The raw data are normalized using the following
equation:

EQ-TARGET;temp:intralink-;sec2.5;63;287IreflectðλÞ ¼
IrawðλÞ − IdarkðλÞ
IwhiteðλÞ − IdarkðλÞ

;

where IreflectðλÞ is the calculated normalized reflectance value at
the wavelength λ, IrawðλÞ is the intensity value of the sample
pixel, and IwhiteðλÞ and IdarkðλÞ are the corresponding pixel
intensities from the white and dark reference images at the wave-
length λ, respectively.

2.6 Glare Detection and Removal

Glare regions are formed due to specular reflection from the
moist tissue surface and do not contain useful diagnostic infor-
mation regarding the tissue. Similar to the method we reported
in Ref. 34, the glare detection method includes the following
steps: (1) calculate the total reflectance of each pixel within a
hypercube to form one reflectance image; glare pixels have
higher total reflectance than normal pixels. (2) Compute the
intensity histogram of this image, fit the histogram with a log
logistic distribution, and then experimentally identify a thresh-
old that separates glare and nonglare pixels.

2.7 Hyperspectral Image Classification

We analyze the spectral data in order to classify each pixel into
normal or cancer tissue. To reduce the computational time with-
out reducing the accuracy, spectral curves were averaged in non-
overlapping blocks of 5 × 5 in order to yield a spectral signature
per block. All of the spectral information available in the hyper-
spectral data was utilized. Blocks containing glare pixels were
excluded from the classification process. Each block was
assigned a label as cancerous or normal.

For each patient, we used the images of the tumor and normal
tissue to train the classification algorithms and then used the
tumor with adjacent normal tissue to test the performance of
the classification model. In other words, the classification
method built the training model using the spectral features
extracted from the tumor and normal tissue, and the model
was then evaluated on the tumor–normal interface tissue of
the same patient. We applied ensemble linear discriminant
analysis as the classifier using MATLAB® (MathWorks, Natick,
Massachusetts).40

2.8 Pathology Validation

We used the pathology images of the same surgical specimen to
validate the cancer detection using hyperspectral image classi-
fication. On the digitized, H&E-stained, pathology slides, the
tumor margin was outlined by an experienced pathologist spe-
cialized in H&N cancer. To reasonably assess the performance
of the classification, we chose the regions of interest where the
tumor or normal tissue had been histopathologically confirmed
by the pathologist.

2.9 Performance Metric

The sensitivity and specificity of the classifiers for each patient
were calculated based on the number of correctly classified
tumor and normal pixels/blocks of all the specimens belonging
to this patient. We also calculated how many normal pixels/
blocks were correctly classified for a normal specimen and
how many tumor pixels/blocks were correctly classified for a

Fig. 2 Flowchart of the machine-learning-based quantification pipeline for hyperspectral images.
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tumor specimen as well as the sensitivity and specificity on a
tumor–normal interface specimen for each patient. We evaluated
the performance of the hyperspectral image classification using
the areas under the curve (AUC), accuracy, sensitivity, and
specificity, as defined in the following equations [true negative
(TN), true positive (TP), false positive (FP), and false negative
(FN)]:
EQ-TARGET;temp:intralink-;sec2.9;326;675

Accuracy ¼ TPþ TN

TPþ FPþ FNþ TN
;

Sensitivity ¼ TP

TPþ FN
; specificity ¼ TN

TNþ FP
:

3 Results
Fresh surgical tissue specimens were collected from 16 H&N
cancer patients. The characteristics of these patients were listed
in Table 1. These patients included seven with oral cancer, one
with maxillary sinus cancer, five with thyroid cancer, one with
parotid cancer, and two with larynx cancer. As described above,
we collected three types of tissue specimens from each human
patient, which included (i) clinically visible tumor tissue without
necrosis, (ii) normal tissue, and (iii) tumor with adjacent normal
tissue at the tumor–normal interface. Figure 3 shows the three
tissue specimens and their corresponding histological slides.

Using the reflectance spectra from HSI, the HSI method was
able to distinguish between cancer and normal tissue of the oral
cavity with an average accuracy of 90%� 8%, sensitivity of
89%� 9%, and specificity of 91%� 6%. For tissue specimens
from the thyroid, the method achieved an average accuracy of
94%� 6%, sensitivity of 94%� 6%, and specificity of
95%� 6%. As shown in Table 2, HSI outperformed autofluor-
escence imaging, 2-NBDG, and proflavine fluorescence imag-
ing for both cancer sites.

Figure 4 shows the photographs of the tumor and normal tis-
sue as well as the tumor with adjacent normal tissue for a typical

Fig. 3 Surgical specimens of tumor, normal tissue, and tumor with adjacent normal tissue from a tongue
cancer patient. Left: tissue and corresponding histological slides. Right: 2-NBDG and proflavine fluores-
cence images for each tissue.

Table 1 Patient characteristics.

Patient Age Gender Race Tumor site Histologic type

1 55 F White Tongue Squamous
cell carcinoma2 43 M White Tongue

3 67 F White Tongue

4 53 M White Mandible

5 76 M Indian Gingiva

6 51 F White Floor of mouth

7 57 M White Floor of mouth

8 73 F White Maxillary sinus

15 57 M African
American

Larynx

16 69 M African
American

Larynx

9 69 M African
American

Thyroid Papillary
thyroid
carcinoma

10 59 M Asian Thyroid

11 24 F Indian Thyroid

12 37 M Indian Thyroid

13 30 F African
American

Thyroid

14 39 M African
American

Parotid Pleomorphic
adenoma

Note: Patients 1 to 8, 15, and 16: squamous cell carcinoma; patients 9
to 13: papillary thyroid carcinoma.
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case. The three types of tissue demonstrate different spectral
curves. The tumor margin, as assessed by the classification
method, was close to that of the histological image outlined
by the pathologist.

4 Discussion
In this study, we reported regarding automated tissue classifica-
tion methods that use the spectra from 450 to 900 nm to extract
diagnostic information. Each hyperspectral image contains more
than two million reflectance spectral signatures. The reflectance
spectra capture the alteration of absorption and scattering prop-
erties of the tissue associated with malignant transformation.
Molecular fingerprinting based on inverse modeling of reflec-
tance spectra may shed new light on our understanding of cancer
biology.

Although frozen section diagnosis is commonly used to
guide surgical resection during surgery, it only samples a
small portion of tissue in the resection area, which may lead
to underestimation and does not guarantee margin-negative
resection. In addition, this procedure is time-consuming and
labor-intensive. HSI is a wide-field imaging modality that
can cover a large field of view and can, therefore, provide
rapid assessment of complete resection margins.

In this surgical specimen study, the label-free, HSI was supe-
rior to autofluorescence imaging or fluorescence imaging with
vital dye (2-NBDG or proflavine) for the detection of H&N
cancer. A recent study showed that wide-field fluorescence im-
aging with 2-NBDG can accurately distinguish the pathologi-
cally normal and abnormal biopsy tissue of H&N cancer
patients.41 Proflavine has also been used for distinguishing
between normal and neoplastic mucosa in the H&N.42 We

Table 2 Classification performance of HSI, autofluorescence imaging, and fluorescence imaging with 2-NBDG and proflavine.

Cancer site Imaging method AUC Accuracy (%) Sensitivity (%) Specificity (%)

Oral cavity HSI 0.94� 0.06 90� 8 89� 9 91� 6

Autofluorescence 0.83� 0.19 80� 18 78� 21 86� 14

2-NBDG 0.86� 0.16 83� 15 81� 19 85� 11

Proflavine 0.72� 0.25 70� 21 71� 20 70� 22

Thyroid HSI 0.98� 0.03 94� 6 94� 6 95� 6

Autofluorescence 0.74� 0.33 70� 34 76� 23 77� 35

2-NBDG 0.80� 0.20 76� 20 75� 22 79� 19

Proflavine 0.86� 0.16 82� 16 79� 18 85� 13

Fig. 4 Tumor margin detection of surgical specimens from an H&N cancer patient. After hyperspectral
image acquisitions, the tissue was processed histologically, and tumor margins were outlined on the
pathology image (bottom right) by a pathologist (J.V.L.), which was used to validate the results of
the classification (top-right). The average spectral curves are shown at the bottom left for each type
of tissue, i.e., tumor, normal, and tumor with adjacent normal tissue.
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previously demonstrated the utility of HSI for H&N cancer
detection in a subcutaneous cancer animal model31,34 and a
chemically induced oral cancer model.43 One important advan-
tage of HSI is that it does not require the use of an exogenous
contrast agent. Therefore, this noninvasive imaging technology
can be rapidly translated from ex vivo tissue specimens to in vivo
human studies, such as in clinical trials of hyperspectral, image-
guided surgery.

In this study, we used the tumor and normal tissue from the
same patient to train the classification and then to classify the
tumor tissue with adjacent normal tissue. This approach pro-
vides reliable results and high accuracy for differentiating
tumor from normal tissue. This approach is useful during sur-
gery as this technology is helpful to the surgeon for differenti-
ating the tumor margin while the clinician normally is aware of
the tumor core but is not certain regarding the boundary of the
tumor. In the future, we will test another approach that uses dif-
ferent patients’ data to train the classification and then test the
method on a new patient. This requires a large database and we
are currently collecting tissue from more patients. The combi-
nation of the two approaches may be able to provide a useful
tool for the surgeon to achieve complete resection and thus
improve both the patient survival and outcome.

5 Conclusion
HSI is an emerging imaging modality for medical applications.
This label-free, HSI technology does not require a contrast agent
and offers great potential for cancer detection and image-guided
surgery. Hyperspectral large data contain both spatial and spec-
tral information. Our hyperspectral image quantification tools
are able to distinguish cancer from normal tissue in fresh sur-
gical specimens of H&N cancer patients. Further development
of the HSI technology is warranted for its application in image-
guided surgery.
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