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Abstract. The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal
gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed
their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experi-
ments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We
investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and
the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean
spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships
showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant
although different values were found with regards to bench tests and animal experiments. The linear trend
and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature
gradient and mean temperature within a tissue undergoing thermal treatment. © 2017 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JB0.22.9.097002]
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1 Introduction context. In the late 1990s, Rao et al. developed a FBG-based
system for temperature monitoring during hyperthermia proce-
dures. The system was tested inside a 4.7-T MR scanner: the
probe revealed a temperature resolution of 0.2°C and an accu-
racy of 0.8°C, in a range of 25°C to 60°C, and the system was
also tested in vivo.”> Over the last few years, the use of FBG in
temperature monitoring during hyperthermal treatment has
gained large interest as testified by several articles published
in this topic.>”® During hyperthermia procedures, the tempera-
ture of the tumor is strongly increased, to achieve protein dena-
turation and to lead to the controlled necrosis of the malignant
mass. In this application, the temperature must be raised over
100°C in the region of the tissue close to the energy delivery
system [e.g., fiber optic applicator in case of laser ablation
(LA)].° The phenomena of heat conduction and blood perfusion
affect the treatment, because tissue temperature decreases at a

Over the last decade, fiber Bragg grating (FBG) sensor technol-
ogy has gained popularity in several fields, such as health mon-
itoring, impact detection, automotive, medical applications, and
physiological monitoring."* The reason behind this is that FBG
sensors offer major advantages over other sensors developed
with a different technology, including immunity from electro-
magnetic fields, a rapid response, high sensitivity, and multi-
plexing capabilities.'

The interest in FBG sensors is strictly related to their sensi-
tivity to strain and temperature, as well as the possibility to pro-
vide distributed measurement.>* A number of applications,
especially in the medical field, can take advantage of this fea-
ture. For instance, hyperthermal procedures used for the treat-
ment of tumors are a case in point of a specific field where
temperature monitoring may be particularly beneficial to certain distance from the applicator. The thermal gradient,
improve clinical outcomes.™® A number of studies have been which in some procedures can be extremely high (up to
conducted to investigate the possibility of using FBGs in this 50°C/mm°), has a strong effect on outcome. Subsequently, it

requires accurate monitoring. Uniform FBGs provide one
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temperature value, which is mostly related to the temperature
averaged on the sensitive length of the grating. As a result, when
there is a high thermal gradient, the length of the FBGs can in-
fluence the accuracy of the measurement,'®!! and ideally punc-
tual gratings can provide the real value of the tissue temperature
in a specific place. To have the tissue temperature distributed
around the applicator may be particularly beneficial in providing
direct insights into the thermal gradient. Although linearly
chirped fiber Bragg gratings (LCFBGs) can provide such infor-
mation, only a few studies involving their use may be found in
the literature.>'>"'* Different from uniform FBGs, the characteri-
zation of LCFBGs for thermal gradient measurement is not
straightforward, and a preliminary analysis is mandatory to
find a correlation between the spectrum features and the thermal
gradient.!?!® The aim of this article is to fill the gap in the liter-
ature by performing a careful assessment of LCFBG response to
thermal gradients, under various conditions. First, a constant
temperature was applied along the active length, to perform
the static calibration of the sensor. Second, the sensor was sub-
jected to linear thermal gradients during bench tests. Finally, the
feasibility assessment of LCFBG for temperature monitoring
during LA of ex vivo organs was performed. In these experi-
ments, the temperature was simultaneously monitored by means
of thermocouples and array of uniform FBGs. Finally, LCFBG
was used in a preclinical scenario, i.e., to monitor tissue temper-
ature during LA of liver in in vivo animal models (pigs).

2 Principle of Work of Fiber Bragg Grating
Sensors

The working principle of FBGs is related to their specific char-
acteristics and to their fabrication process.>*%!® Specifically, an
FBG is written into a single-mode fiber, which presents a peri-
odic variation of the refraction index,!” obtained by exposing the
core of the fiber to an intense optical interference pattern. The
possibility to reproduce permanent gratings in an optical fiber
was demonstrated in 1978 by Hill and Meltz.'"® Nowadays,
the holographic technique and the phase mask technique are
the most effective methods used to inscribe Bragg gratings in
photosensitive fibers.!*?° Specifically, the core of the fiber is
exposed to an ultraviolet beam that can locally change the

refractive index proportionally to the incident energy. The
resulting grating reflects light of a specific wavelength, called
Bragg wavelength (43), depending on the spacing of the peri-
odic variation and on the modulation of the refractive index.
Consequently, an FBG acts as a filter that conveys all the wave-
lengths that are not in resonance with it and reflects the ones that
follow the Bragg condition, given as

A =2 negr - A, (1)

where 7.4 is the effective refractive index of the fiber core and A
is the period of index modulation.?! When a broadband light
source propagates within the fiber, a narrow spectral component
centered in Ag is reflected by the grating.

One of the most interesting configurations is the LCFBG.
These sensors show a monotonically increasing grating period
along the sensing element (z-axis of the fiber). The consequence
is that Az changes along the z-axis

Ag(2) =2 negr - A(2). ()

Regarding LCFBGs, the relationship between A and z is
linear and can be expressed as

Az) =N+ k-2, 3)

with 0 < z < L, where L is the length of the grating and k is the
chirp rate coefficient, which defines the increase in the refractive
index period along the optical fiber,” and A, is the period at one
of the two extremities of the grating (in z = 0).

As a result, Ag linearly changes along the z-axis

g(2) =2 negr - (Ao +k - 2). 4

The spectrum of the reflected light has a width that is larger
than uniform FBG. The typical commercial length of LCFBGs
ranges from 1.5 to 5 cm and the spectrum bandwidth from 5
to 50 nm.>

A typical resulting spectrum is shown in Fig. 1(a).

An external stimulus (temperature or strain) applied to the
active part of the sensor causes a change in the reflected
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Fig. 1 (a) Typical normalized spectrum obtained by interrogating an LCFBG and (b) example of a nor-
malized spectrum acquired during the test, in which A4, A¢, 4, and 4, parameters are shown.
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spectrum. In particular, the application of a temperature varia-
tion (AT) at each point of the active region of the sensor entails a
shift of the Bragg wavelength, Alg, which can be expressed as

Adg(z) = Sy - AT(2), 5)

where Sy is the thermo-optic coefficient.

Equation 5 shows a linear relationship between each portion
of the grating and the variation of the corresponding local
temperature.' ">

3 Static Calibration of the Linearly Chirped
Fiber Bragg Grating Sensor: Experimental
Setup and Results

Section 3.1 is focused on the description of the experimental
setup used for the static calibration of the LCFBG sensor
under test. In Sec. 3.2, the results are shown.

3.1 Static Calibration: Experimental Setup

The LCFBG sensor under test (model FBG A141111-017,
Technica SA, 1.5 cm of active length, 1550 & 0.5 nm of central
wavelength of, 10 nm of 3-dB bandwidth, reflectivity >90%,
which is embedded into a single-mode SMF-28e fiber with a
250-um-diameter acrylate coating, was calibrated. During the
experiments, the LCFBG was interrogated by a Bragg meter
interrogator (FiberSensing, BraggMETER, FS2200) based on a
scanning laser source. The reference temperature was measured
with a thermocouple (type T, RS Pro, accuracy = +0.5°C),
placed close to the active length of the LCFBG. The calibration
was performed on a thermostatic chamber (PN120, Carbolite).
The chamber temperature was set at 100°C. The chamber was
then turned off when the temperature target was reached. During
the slow cooling phase, which lasted about 6 h, the spectrum of
the LCFBG was collected with a sample frequency of 1 min.
During this phase, the temperature shifted from 100°C to
about 25°C.

3.2 Static Calibration: Data Analysis and Results

For each acquired spectrum, we followed the two following
steps: (i) each spectrum was normalized (/,,), (ii) from each nor-
malized spectrum, the ¢ average wavelength was estimated by
calculating the mean value between the value of 4,, and of 1,
which represent the minimum and the maximum wavelength at
0.5 amplitude of the spectrum, as shown in Fig. 1(b), and
(iii) each spectrum was acquired at a specific temperature, T,
which was measured with the thermocouple. Consequently,
the values of A, calculated for each spectrum was related to the
temperature value provided by the thermocouple at the same
instant of analyzed spectrum acquisition. The relationship
between A¢c and T is shown in Fig. 2.

As shown in Fig. 2, the relationship between A and T is well
represented with a linear model. Consequently, we calculated
the calibration curve of the LCFBG as the best-fitting line
between Ac and T. The appropriate agreement between the lin-
ear model and the experimental data is confirmed by the high
value of the correlation coefficient (R? = 0.99) and by the low
value of the root-mean-square error (RMSE = 8.2 pm). The
sensitivity of the LCFBG was calculated as the slope of the
best-fitting line (10.4 pm/°C).
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Fig. 2 Correlation between the average wavelength of the LCFBG
and the temperature. Experimental data (black dots) and the best-fit-
ting line (continuous black line) are shown.

4 Response of Linearly Chirped Fiber Bragg
Grating to Linear Thermal Gradient: Bench
Tests

In this section, the experimental setup was prepared to apply a

linear thermal gradient on the active area of the LCFBG, and the
results obtained during the experiments are shown.

41 Linearly Chirped Fiber Bragg Grating Response
to Linear Gradient: Experimental Setup

The experimental setup shown in Fig. 3 allowed us to apply a
linear thermal gradient on the sensor under test. A brass plate

Fig. 3 Experimental setup prepared to apply a linear thermal gradient
on the LCFBG sensor: (a) depth groove along the length of the plate
where the sensor is placed in contact with the brass, (b) thermocou-
ples used to measure the brass temperature along the sensor active
area, (c) box containing ice, and (d) hot air welder.
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(15 cmXx 6 cm x 0.5 cm) was used for this scope. A 1-mm-
depth groove along the length of the plate was made to position
the sensor in contact with the brass [Fig. 3(a)]. The LCFBG
under test was placed along the groove with its active length
positioned in correspondence to the thinning of the brass plate,
and one extremity of the sensor was connected to a Bragg meter
interrogator (FiberSensing, BraggMETER, FS2200). Four
circular holes were carved on the plate for the placement of
four thermocouples [type T, RS Pro, accuracy = +0.5°C,
Fig. 3(b)] used to monitor the temperature along the sensor
during the test. The holes are 0.5-cm distant from each other
and very close to the central groove (i.e., 1 cm) to minimize
the temperature difference between the one measured with
the thermocouples and the temperature acting on the sensing
area of the LCFBG. The thermocouple outputs were recorded
with the NI 9211 module. To reproduce a linear thermal
gradient along the active area of the sensor, a box containing
ice kept at —70°C [Fig. 3(c)] and a hot air welder [HTC 900,
Fig. 3(d)] were placed over the brass plate, as shown in
Fig. 3.

With this configuration, one extremity of the sensor is sub-
jected to a low temperature given by the ice action, while the
other extremity is under a higher temperature caused by the
welder activity. A linear thermal gradient was obtained with
a maximum difference of approximately 30°C between the
two extremities.
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4.2 Linearly Chirped Fiber Bragg Grating Response
to Linear Gradient: Results

The experimental setup described in Sec. 4.1 allowed us to apply
a linear thermal gradient along the active area of the sensor.
Figure 4(a) shows the temperature trend along the z-axis, which
was recorded with the four thermocouples during four instants of
the experiments. Of note, the extremity of the LCFBG closer to
the box containing ice (z = 0 cm) is always subjected to a lower
temperature as compared to the other extremity of the sensor,
which is closer to the welder (z = 1.5 cm).

To analyze the response of the LCFBG to a linear thermal gra-
dient, both the average wavelength (1) and the full width at half
maximum (FWHM, AJ) were calculated. The first parameter was
obtained as outlined in Sec. 3.2 and in Fig. 1(b), while A4 was
calculated as the difference between 4), and 4,, [see Fig. 1(b)].
First, Ac was related to the average temperature (7 pe.,) applied
along the active area of the sensor (7 ., is calculated as the aver-
age of the temperatures recorded with the four thermocouples
placed along the active area of the sensor); A4 was then related
to the thermal gradient AT (estimated by the difference between
the two thermocouples placed at the two extremities of the active
area). Figures 4(b) and 4(c) show these trends.

Both the relationships shown in Figs. 4(b) and 4(c) are well
represented with a linear model (R?> = 0.988 and 0.993, respec-
tively, and RMSE = 21 and 7.0 pm, respectively). Sensitivity
values, estimated as the slope of the best-fitting line, were as
follows: 9.5 and 4.5 pm/°C, respectively.
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Fig. 4 (a) Temperature gradient measured with the four thermocouples on the active area of the sensor,
(b) average wavelength versus mean temperature acting on the LCFBG, and (c) FWHM versus temper-
ature difference between the extremities of the LCFBG.
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Fig. 5 Schematic representation of the configuration used during ex
vivo LA.

5 Experiments in Ex Vivo Animal Models
Undergoing Laser Ablation

In this section, the feasibility assessment of LCFBG for temper-
ature monitoring during LA was investigated in ex vivo animal

models (pig livers). The experimental setup and the results are
presented.

5.1 Linearly Chirped Fiber Bragg Grating Response
During Laser Ablation in Ex Vivo Animal
Models: Experimental Setup

To assess the feasibility of LCFBG for temperature monitoring
during LA, we performed experiments in ex vivo animal models.
The laser light (Nd:YAG, wavelength of 1064 nm) was set at a
power of 3 W, and treatment time was 3 min. The laser appli-
cator was inserted within the animal organ, perpendicular to the
LCFBG sensor, at a distance of ~5 mm and centered to one of
the two extremities of the LCFBG. This configuration allows to
have a temperature gradient along the active area of the LCFBG:
the extremity close to the applicator will reach a higher temper-
ature as compared to the other extremity. To have a reference
measurement of the temperature on the active area of the
LCFBG, nine uniform FBG sensors were positioned on a
fiber placed in contact to the LCFBG, to cover the entire
LCFBG length, as schematically shown in Fig. 5. Two arrays
for a total of nine uniform FBGs are housed inside two fibers
with one lying over the other one, and the arrays are inscribed
inside an acrylate SMF-28e fiber, with external diameter of
0.25 mm. The first fiber embeds an array of two gratings, with
sensitive length of 1 mm, at a relative distance of 15 mm. The
Bragg wavelengths of the gratings at room temperature are 1540
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Fig. 6 (a) Temperature trend along the z-axis of the sensor and (b) average wavelength versus average
temperature. Data and the best-fitting line are shown. (c) FWHM versus temperature difference between
the extremities of the LCFBG active area. Data and the best-fitting line are shown.
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and 1550 nm. The second FBG array is constituted by seven
gratings, each with a sensitive length of 1 mm, at a relative dis-
tance of 1 mm. The Bragg wavelengths of the seven gratings at
room temperature ranged from 1530 to 1560 nm, with a step of
about 5 nm between each peak. For these small sized gratings,
the reflectivity ranges between 35% and 44%.

5.2 Linearly Chirped Fiber Bragg Grating Response
During Laser Ablation in Ex Vivo Animal
Models: Results

To estimate the temperature trend along the z-axis of the sensor,
the initial temperature of the organ (~18.7°C) was measured
with a thermocouple before starting the LA. Figure 6(a)
shows the temperature on the active area of the LCFBG at differ-
ent instants of time, which was estimated by the nine FBGs. As
could be observed in Fig. 6(a), the temperature gradient in a
tissue undergoing LA is not linear, because of the mechanisms
of laser light absorption and scattering in the region of the tissue
proximal to the applicator.®

The A and AZ parameters were calculated as described in
Fig. 1. Afterward, 1 was related to T,.,, (calculated as the
mean temperature of the nine FBGs used as a reference),
while A1 was related to AT (which calculated the difference
between the temperature measured with the two FBGs placed
at the extremities of the LCFBG). Figures 6(b) and 6(c) show
these trends (A¢c versus Tean and AZ versus AT, respectively).
They are well represented via a linear model (R?> = 0.986 and
0.973, respectively, and RMSE = 6.0 and 11 pm, respectively).
Sensitivity values, estimated as the slope of the best-fitting lines,
are about 14.1 and 10.5 pm/°C respectively.

Experiments in in vivo animal models undergoing LA

The last test was carried out to assess the feasibility of LCFBG
for temperature monitoring in in vivo animal models. In particu-
lar, the LCFBG response was acquired during LA on the liver of a
living pig. The experimental setup and the results are presented.

5.3 Linearly Chirped Fiber Bragg Grating Response
During Laser Ablation in an In Vivo Animal
Model: Procedure

Thermal treatment was performed in a pig liver with a laser
diode (power set at 5 W and treatment time: 10 min), according
to an experimental protocol that received the full approval
from the Institutional Ethical Committee (Protocol No.
38.2015.01.069). The pig (55 kg, male) was anesthetized using
10 cc of Propofol and 5 cc of Esmeron, and 2% isoflurane was
injected during the ongoing procedure. The basal temperature of
the animal (38°C) was measured with a thermometer for clinical
use. The procedure and the placement of the laser applicator and
fiber optic sensors were performed percutaneously by an expert
radiologist and guided through computed tomography (CT) im-
aging. Two conventional surgical needles were used to insert
both the laser applicator and the gratings inside the in vivo
liver. The procedure was the following: (i) the CT exam was
performed in order to choose the suitable parenchymal region
of the liver (absence of big blood vessels, inside on the lobe)
in which to perform LA and (ii) the surgical needle guiding
the laser applicator was inserted inside the chosen region.
First, the radiologist inserted the needle in the animal liver; sec-
ond, he introduced the laser fiber inside the needle, and finally
he retracted the needle, to leave inside the organ only the fiber
optic applicator with the emitting surface in direct contact with
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Fig. 7 (a) Scenario of the experimental trials, (b) percutaneous inser-
tion of the optical applicator and of sensors within the surgical needles,
(c) CT image used to guide the needle (highlighted with a red ellipse)
within the liver, and (d) schematic of the relative positions between the
gratings (I and Il) and the laser applicator (lll), and a detail of the sur-
gical needles that are retracted (IV) to leave the gratings in contact with
the ablated tissue region (distances and lengths are not in scale).

the parenchyma; (iii) a further CT scan was performed to check
the actual position of the applicator and to define the trajectory
and the distance of the second needle for the insertion of the
gratings in the organ. The desired position is the grating needle
parallel to the fiber applicator, with an axial distance of 1 cm,
and the tip of the FBGs placed at the same height of the emission
center of the fiber applicator; (iv) the above-mentioned needle is
placed inside the animal to target the organ, and two optical
fibers (one housing the uniform seven FBGs array, and the
other housing the chirped grating) are inserted inside this needle.
The two FBGs fibers are in-built; (v) one last CT scan is
acquired to verify that the desired relative positioning between
the sensors and the applicator has been accomplished and (vi) the
needle used to guide the gratings inside the organ is then
retracted, aiming to leave the FBGs in direct contact with the
tissue undergoing the laser treatment.

Figure 7 shows the in vivo experimental setup, with details of
the CT operation room [Fig. 7(a)], the percutaneous insertion of
the needles [Fig. 7(b)], the CT image scanned after the place-
ment of the fibers within the liver [Fig. 7(c)], and the schematic
of the relative distance among the gratings and the laser appli-
cator [Fig. 7(d)].

5.4 Linearly Chirped Fiber Bragg Grating Response
During Laser Ablation in an In Vivo Animal
Model: Results

Figure 8 shows the trends of the temperature gradient acting on
the chirped and measured in four different times during the LA

September 2017 « Vol. 22(9)
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Fig. 8 (a) Temperature gradient measured on the chirped FBG, at different times during the ablation
procedure, (b) average wavelength versus average temperature, and (c) FWHM versus temperature
difference between the extremities of the LCFBG active area. In both graphs, data and the best-fitting

line are shown.

procedure, - and AA. A- and AZ constitute the functions of
Tmean and AT, respectively. The reference temperatures have
been measured with an array of FBGs, placed adjacent to the
LCFBG, as described in Sec. 5.2.

The relationships shown in Figs. 8(a) and 8(b) (4 versus
Tmean and AA versus AT, respectively) are well represented
with a linear model (R?> = 0.944 and 0.957, respectively, and
RMSE = 8.9 and 9.0 pm, respectively). Sensitivity values, esti-
mated as the slope of the best-fitting lines, are ~3.4 and
2.8 pm/°C, respectively.

6 Discussion and Conclusions

The aim of this study was twofold: to investigate the response of
an LCFBG to a linear thermal gradient and to perform a feasibil-
ity assessment of this type of sensor for temperature monitoring
in biological tissues undergoing LA.

The measurement of tissue temperature increase during ther-
mal treatment is pivotal to guarantee the adequate and desired
outcome of the therapy, i.e., to thermally damage the malignant
tissue and to spare the surrounding healthy anatomical structures
from risky temperature increase. Several studies demonstrated
that fiber optic sensors, and FBG in particular, can appropriately
accomplish this task; being small and flexible, these sensors are
easy to insert inside organs.** Additionally, FBGs allow for the
simultaneous measurement of temperature in different positions
along only one fiber.*!! LCFBGs provide an essential additional
feature for this specific application, namely, the possibility to
measure thermal gradients in real time. The correlation between
the experienced thermal gradient and spectrum change is a
demanding task, which requires a preliminary analysis.’

In our work, we moved from the bench trial to the direct
application of the measuring system in a test performed in an
in vivo animal model. Our results demonstrated the feasibility
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of LCFBGs for the monitoring of the thermal gradient and
mean temperature along its active area. We performed this
assessment in considering both linear gradient (during bench
test) and nonlinear, yet monotonically increasing thermal gra-
dients in tissue undergoing LA in both ex vivo and in vivo animal
models. The parameters used to estimate the temperature differ-
ence between the two extremities of the LCFBG (AT) and the
mean temperature (7 ,.,,) acting on the sensor were the FWHM
(AZ) and the mean spectrum wavelength (1.), respectively.

Results showed that both the AZ versus AT relationship and
Ac versus T .., are well represented with a linear model as tes-
tified by the high value of R? and the low values of RMSE.

If considering the experimental results obtained through the
bench test analysis, when the LCFBG experienced a linear ther-
mal gradient, of the relationship Ac versus T'.., is linear, and
the sensitivity (i.e., 0.00951 nm/°C) is close to the expected
numerical sensitivity (i.e., 0.0102 nm/°C), calculated by the
model developed in Refs. 15 and 25.

On the other hand, the A4 versus AT trend provides a slight
disagreement between simulations and experimental data.
Indeed, while the AA(AT) trend is linear, for linear gradients, the
sensitivity exhibits a difference: it is equal to 0.0081 nm/°C in
the simulations, while this is equal to 0.0045 nm/°C in experi-
ments. This can be explained in part with the nonideality of the
LCFBG spectrum used in measurements compared with the
simulated CFBG spectrum.

The bigger dispersion of the data obtained during in vivo
experiments is demonstrated by the lower values of R*> and
the bigger RMSE values with respect to the ones obtained dur-
ing bench trials and ex vivo experiments. This result can be
related to the breathing movements of the animal, which can
cause small but not negligible strains to the LCFBG. We also
want to point out the different values of thermal sensitivity
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estimated as the slope of the best-fitting lines during the bench
tests, the ex vivo experiments, and the in vivo trials (see Figs. 4,
6, and 8). These distinct values may be generated by the differ-
ent boundary conditions of all the tests, by the different shapes
of the gradient, but especially by a potential misalignment
between the LCFBG and the temperature sensors used as a refer-
ence. Indeed, during bench tests, although the experimental con-
ditions were highly controlled, it is worth saying that the
LCFBG was in contact with the brass plate only in his lower
surface, while the upper side was in contact with the thermal
paste and the room temperature. Conversely, in the ex vivo
and in vivo tests, the sensor is completely surrounded by tissue,
and this condition may slightly influence the response of the
grating.

Moreover, during bench tests, the relative position among the
reference sensors and the LCFBG can be adjusted accurately.
On the other hand, principally in in vivo experiments, the posi-
tioning is not straightforward, because both the LCFBG and the
reference sensors (array of FBGs) are manually inserted within
the organ. This maneuver did not allow the operator to perform
an accurate adjustment of the relative positioning among the
Sensors.

Another significant cause of this misalignment may be the
displacement of the gratings due to the breathing movements
of the animal. We have previously proved that the maximum
displacement of the liver during the respiration can bring a
measurement error of a about 2°C on uniform FBG,* but no
data are available regarding the entity of this strain error on
the LCFBG. In addition, we should include the hypothesis
that the sensors slightly change their positions during the test.

Since the thermal gradient is significant, the inaccurate posi-
tioning can lead to a high difference between the temperature
used as a reference (estimated by the array of FBGs) and the
temperature acting on the LCFBG. For instance, the temperature
gradient measured in vivo through the uniform FBG array has a
maximum value of 70°C on 13-mm length; hence, being the
thermal gradient equal to 5.4°C/mm, a potential misalignment
of 4.6 mm can entail a temperature difference up to 25°C.

In light of these considerations, further analyses should be
anticipated to disseminate the approach, to assess the potential
measurement error due to breathing movement on the LCFBG,
as well as to evaluate the sensitivity of the LCFBGs to a non-
linear thermal gradient.
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