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Abstract. We study the effectiveness of several low-cost oblique illumination filters to improve overall image
quality, in comparison with standard bright field imaging. For this purpose, a dataset composed of 3360 diatom
images belonging to 21 taxa was acquired. Subjective and objective image quality assessments were done. The
subjective evaluation was performed by a group of diatom experts by psychophysical test where resolution,
focus, and contrast were assessed. Moreover, some objective nonreference image quality metrics were applied
to the same image dataset to complete the study, together with the calculation of several texture features
to analyze the effect of these filters in terms of textural properties. Both image quality evaluation methods,
subjective and objective, showed better results for images acquired using these illumination filters in compari-
son with the no filtered image. These promising results confirm that this kind of illumination filters can be
a practical way to improve the image quality, thanks to the simple and low cost of the design and manufacturing
process. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.1.016001]
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1 Introduction
This paper is focused on the problem of image quality assess-
ment (IQA) for diatom images. Diatoms are a type of unicellular
algae that can be found in water areas, such as rivers and ponds.
There are currently about 20,000 different species.1 Experts can
use these algae as a water quality indicator by counting the num-
ber of species found in a sample and its concentration.2 To per-
form this, manual taxa identification through a microscope is
necessary. Digital imaging technology, which is being incorpo-
rated into several areas of biological research, can be very useful
in the field of microalgae analysis.3 At this point new problems
appear, such as automatic detection and classification of these
diatoms,4,5 but the first step is related to the perceived image
quality. A good IQA plays an important role in this type of prob-
lem due to the large number of species and the small differences
between them.

Automatic IQA is still a challenge in computer vision, due
mainly to the difficulty of developing algorithms that allow
simulation of how people perceive the quality in an image. From
the image processing point of view, many image features
can be used to evaluate the overall image quality, such as
color, contrast, contour, luminance, or texture. There are quality
assessment metrics to objectively rate image quality. Initially,
these methods (also called objective metrics) were based on
mathematical differences between two images, taking a known
reference image to make a comparison. However, although this
type of metrics is still widely used due to their low complexity
and high speed, the obtained results do not correlate well with
human perception (i.e., human visual system). For this reason,
IQA metrics have been evolving to simulate more accurately

the human visual system, leading to perceptual metrics. Unlike
metrics based only on mathematical parameters, perceptual met-
rics give a better correlation with the perceived image quality.6

In addition to these metrics, texture features are used to
characterize image quality and represent relevant information.
It is difficult to provide a clear definition of visual texture,
although it can be related to the spatial distribution of intensity
values. So, taking into account this assumption, different kinds
of texture can be found, such as homogeneous or not homo-
geneous, smooth or rough, and fine or coarse. Usually, features
which define these types of textures are used in computer vision
applications related to classification problems.

In this article, the use of different illumination filters at the
image acquisition step is proposed to enhance the image and
therefore improve its quality. To accomplish this, some diatom
images acquired with these filters have been evaluated using
IQA metrics and texture features. Moreover, the same set of
images have been evaluated by a group of diatom experts,
from the point of view of image resolution, focus, and contrast
perceived. In Fig. 1, a diatom sample is shown. The first image,
Fig. 1(a), was taken without illumination filter, that is, bright
field illumination. The same taxon was acquired in Figs. 1(b)–
1(d) but using different illumination filters. The comparison
between these illumination filters has been done in this study
to analyze their effects in terms of objective image quality
and subjective human perception of taxa identification.

This paper is organized as follows: in Sec. 2 an overview of
the state of the art on IQA is presented. Section 3 explains the
materials used in this research. The techniques and experiments
carried out are described in Sec. 4 and the results obtained are
summarized in Sec. 5. Finally, conclusions are given in Sec. 6.
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2 State of the Art

2.1 Image Quality Assessment

Existing IQA methods can be divided in two approaches, sub-
jective assessment and objective assessment. In the first one, a
pool of human observers evaluate the quality of a given visual
content. Thus, subjective quality methods are based on psycho-
physical experiments in which the human observers estimate
the quality of a group of visual stimuli.7 However, this kind of
assessment methods is hard to include in an automatic quality
assessment system.8 They are usually used to validate the objec-
tive IQA metrics.

The main purpose of objective IQA methods is to give an
objective quality value that should be in agreement with subjec-
tive human evaluation. Objective image quality metrics can
be classified into three main groups, depending on the amount
of previous information required:9 full reference (FR-IQA),
reduced reference (RR-IQA), and no reference (NR-IQA).
In the first case, FR-IQA, a reference image is needed for
comparison. FR-IQA metrics offer good performance although
a reference image for comparison is not always available, so the
application range is limited. Reduced reference methods use
information of some features from the reference image, albeit
it is not mandatory to have that image. Finally, since the require-
ment of a reference image (or partial reference information) is a
problem in several applications, no-reference metrics (NR-IQA
or blind) have been developed, which do not need any
information of the reference image,10 that is, these metrics
predict the image quality of an image using other information
such as the nature of visual human system or the effect of
image distortions.11

In this article, NR-IQA metrics together with a psychophys-
ical experiment have been applied to evaluate the improvement
of the overall image quality when illumination filters are used.
The study was dedicated to diatom images.

2.2 Textural Features

Image texture information can be useful in tasks such as image
segmentation and classification. In image analysis, visual tex-
ture is related to the spatial distribution of intensity values
(gray tones) and may be described as a pattern that is spatially
repeated. To characterize the different types of visual textures,
several measures have been studied. First, texture properties
were inferred using first-order statistical measures, such as
mean, variance, asymmetry, kurtosis or entropy, and among
others. These statistical measures are based on the analysis of
the image histogram to characterize textural information.
However, spatial information is a significant component of
textures. For this reason, in 1973 Haralick established a set of

14 textural features based on co-occurrence matrices (“gray-tone
spatial-dependence matrices”),12 which added relative spatial
information between gray levels in the texture. Co-occurrence
matrices are defined by two parameters, the distance (related
to the texture size) and orientation among gray levels (0 deg,
45 deg, 90 deg, and 135 deg). Some of the Haralick features,
also called second-order statistical measures, are homogeneity,
dissimilarity, energy, and correlation. Using these measures,
we can characterize the visual texture in an image. For example,
the energy or second angular moment has higher values for
smoother textures and homogeneity measures are higher when
contrast in textures is lower.

In 1978, Tamura proposed a set of computational measures
related to six basic textural features.13 For this author, Haralick
features “are not obvious visually” and even a random selection
of features can give a good accuracy in a classification problem,
so he attempted to develop textural features, which are closer to
human visual perception. The first of these features is coarse-
ness, which is related to the size or repeating frequency of
the texture elements. Bigger elements, or less repeated, are
coarser as opposed to fine textures. The second one is contrast,
related to gray-level distribution in an image. Sharper images
have higher contrast. The third one is directionality, which mea-
sures the presence of orientation in the image. The last three are
line-likeness, related to the shape of the texture element, regu-
larity of variation of these elements and roughness, as opposed
to smooth textures. In Tamura’s work, a comparison with sub-
jective assessments showed that coarseness, contrast, and direc-
tionality attained successful results.

Several works in the literature have used visual textural mea-
sures of Haralick and Tamura to solve several classification
problems based on image texture.14 In this paper, for the com-
plete dataset, some Haralick and Tamura features have been cal-
culated to analyze the effect of oblique illumination filters in
terms of texture properties and compare them with the IQA
metrics.

2.3 Oblique Illumination

Some professional image acquisition equipment, such as robo-
tized microscopes and several illumination techniques, are used
in addition to the standard bright field illumination. In the study
of living cells or organic matter, due to their transparency, they
cannot be observed in a clear way; therefore, several important
details are lost. Hence, other illumination techniques are used,
such as phase contrast. The increased contrast is realized by
modulating the attenuation and phase delay of the unscattered
light. Through the phase contrast technique, small refraction
index variations are obtained, making these structures
visible.15,16 Later, the differential interference contrast (DIC)
approach was developed to improve the phase contrast method,

Fig. 1 Filter effect. Navicula tripunctata (a) No filter, (b) filter F2, (c) filter F3, and (d) filter F6.
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solving some disadvantages of this technique (such as the halo
effect around the structures) and increasing contrast in transpar-
ent specimens.17,18

However, phase contrast illumination techniques are expen-
sive and difficult to apply in portable and low-cost microscopes.
For this reason, in this article, the use of simple and low-cost
illumination filters is proposed. There are other related works
aiming to obtain high-resolution images in a cheaper and easier
way. For example, Fourier ptychography uses modulated illumi-
nation to collect a set of darkfield images and then reconstructed
a wild field image with high resolution.19 For this purpose,
a programmable LED array20,21 or an LCD liquid display22

is needed to replace the original illumination unit. These
approaches achieve good results in terms of image quality,
but they have some disadvantages, such as the substitution of
the original illumination source, the need to take and store sev-
eral images, and the complex retrieval algorithm to obtain the
high-resolution image. Oblique illumination filters techniques,
such as the proposed one, are easier, cheaper, and it is not
necessary to substitute the illumination source.23,24

3 Materials

3.1 Image Acquisition Equipment

To perform this study, a set of 3360 images were acquired in TIF
format with no compression. The microscope used to take them
was a portable and low-cost microscope, the model SP30 from
Brunel microscopes, with a 60× objective. The digital camera
coupled to the Brunel system was the UI-1240LE-C-HQ model
from IDS Imaging Development Systems. The main camera
specifications can be found in Table 1.

Furthermore, the microscope was modified to add more
functionality, such as automatic image acquisition. To do this,
three stepper motors were installed on microscope axis knobs
and an Arduino controller is used to manage the microscope
stage motion.

Table 1 Camera specifications.

Dimensions 48.6 × 44 × 25.6 mm

Weight 41 grams

Camera type Color

Resolution 1.3 Mpx 1280 × 1024

Sensor type CMOS color

Sensor model e2V EV76C560 ACT

Sensor size 1/1.8″

Pixel size 5.3 μm

Mount C or CS

Power consumption 0.3 to 0.7 W

Communication interface USB 2.0 Mini-B

Fig. 2 Filter system. The labels 1, 2, . . . , 8 are related to filters
F1, F2, . . . , F8. (a) 3-D model and (b) printed wheel.

Fig. 3 Microscope scheme. On the right part, the most relevant parts of an optical microscope are
pointed out as well as the location of the filter wheel. On the left, an example of the oblique illumination
effect provoked by using these filters is shown.
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3.2 Filters

The main motivation of this work is to study the improvement of
the overall image quality obtained using illumination filters. For
that purpose, a wheel of filters, which includes a set of seven
filters (F2, . . . , F7) with different shapes and a region (F1)
with no filter, was designed. The wheel allows us to easily
change between the filters. The filter system is shown in
Fig. 2. In Fig. 2(a), the three-dimensional (3-D) model of the
wheel is displayed. The manufacture process was performed
using a 3-D printer, which allows to make filters in an easy
and cheap way. To obtain the final design, a selection between
several wheels was performed. Finally, after some perceptual
tests, a unique wheel was selected to carry out the full study

because it produced the most significant image enhancement.
The printed wheel is shown in Fig. 2(b).

In the microscope, the filter wheel is located between the
light source and the condenser (see Fig. 3). Figure 3 shows a
microscope scheme and a general view of the complete system.
On the right part of the figure, the most relevant parts of an opti-
cal microscope are pointed out. On the left part of the diagram,
it is graphically described how this illumination filter works,
changing the light direction to obtain different oblique illumi-
nation grades depending on the filter shape.

Fig. 4 Sample 1—Cyclostephanos dubius. (a)–(h) F1 to F8.

Fig. 5 Sample 2—Cocconeis placentula euglypta. (a)–(h) F1 to F8.

Table 2 Weight assigned to each score.

Score Weight

5 5

4 3

3 2

2 1

1 0

Table 3 Histogram values of the Nitzschia Umbonata scores.

Resolution Focus Contrast

Score F2 F3 F2 F5 F3 F6

1 0 0 1 0 0 2

2 6 4 9 8 4 13

3 17 12 19 22 14 12

4 20 36 20 20 37 23

5 17 8 11 10 5 10

Total 185 176 162 162 168 156

Note: Total row represents the final score after the linear combination
using Table 2.
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3.3 Dataset

In this work, 21 taxa were acquired and assessed. The species
selection was performed by a diatom expert, looking at
a wide array of morphological and structural features such as
shape, size, and striae density, which are key factors for taxa
identification. In Appendix A, a set of features of these species
are summarized. For each evaluated taxon, 20 fields were
captured, and each field was acquired using the eight filters
shown before in the filter wheel, taking into account that filter

1 is the unfiltered image (bright field). Therefore, the final set of
images was composed of 21 × 20 × 8 ¼ 3360 diatom images
in total.

4 Methodology

4.1 Image Acquisition

Once the species were selected by the diatom expert, the fields
were captured with all filters. In Fig. 4, a Cyclostephanos dubius

Fig. 6 Nitzschia Umbonata evaluation. F1 represents the unfiltered image and F2 to F8 are the custom
filters designed. (a) Resolution histogram, (b) focus histogram, and (c) contrast histogram.
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diatom field can be observed with the different illumination
filters applied. Figure 5 shows some of the images obtained
for Cocconeis placentula euglypta taxon. A quality inspection
of these images shows differences in terms of resolution, focus,
and contrast. Thus, a quantitative evaluation is performed to
define the effect of these illumination filters in terms of
image quality.

4.2 Subjective Evaluation

Once all the 3360 images from the studied taxa were acquired
using the filter wheel, three taxonomists from the Diatom
Laboratory at Enviromental School in Universidad de León
(Spain) carried on a psychophysical test to qualitative evaluate
their quality. Three image quality properties were analyzed and
rated from 1 to 5 (in which 1 is very bad quality and 5 is very
good quality). These properties are: (a) resolution, in terms of
capability to identify the necessary diatom features in the image,
(b) focus, to evaluate the blurriness in the image, and (c)
contrast.

After that, for each taxon and property, a histogram of the
160 fields evaluated by the three taxonomists was calculated.
To define a quality value for each filter, that allows us to com-
pare them, a linear combination of the histogram values
weighted with the score values is done. The weight assignment
is presented in Table 2. Figure 6 shows an example of the
results obtained for the Nitzschia Umbonata taxon when evalu-
ating three properties. For this example, the best filters are:
(a) for resolution is F2, followed by F3; (b) for focus is F2,
followed by F5; and (c) for contrast is F3, followed by F6.
Table 3 shows the histogram values of this example for the
best filters and the final value obtained after the linear
combination.

Thus, the best filters for each taxon were calculated. Then,
taking into account the results of the 21 taxa analyzed, a sum-
mary graph was generated. The histograms for each filter con-
sidering resolution, focus, and contrast perception are given in
Fig. 7. That is, the total number of times a filter has been
selected as the best, or the second best. Observing these results,
it can be seen that, in terms of: (a) resolution, the filters F2, F3,
and F6 obtain better IQA than the image without filter. In addi-
tion, for the second best case, filters F3, F5, and F6 have also

been selected more times than F1; (b) focus, the filters F2 and F3
obtain the best results, and (c) contrast, only four filters were
selected as the best or the second best filter (F2, F3, F5, and
F6), so that in no case did the results of the unfiltered images
improve in terms of contrast. Another significant conclusion is
that some filters do not improve perceived image quality in any
aspect, such as F4, F7, or F8.

4.3 Objective Image Quality Metrics

The results of the subjective evaluation show that some illumi-
nation filters enhance the image quality in terms of resolution,
focus, and contrast perceived. To quantitatively and objectively
evaluate the image quality, the same set of images has been
assessed using seven no-reference IQA metrics.

4.3.1 Contrast

Local contrast provides an indicator of focus in an image.25 This
metric is based on the absolute difference of each pixel with the
eight neighboring pixels. The final score is calculated adding
the obtained values for each pixel

EQ-TARGET;temp:intralink-;e001;326;516FContrast ¼
X

x

X

y

Cðx; yÞ: (1)

The contrast value, Cðx; yÞ, for each pixel, Iðx; yÞ is calculated
as described as

EQ-TARGET;temp:intralink-;e002;326;449Cðx; yÞ ¼
Xxþ1

i¼x−1

Xyþ1

j¼y−1
jIðx; yÞ − Iði; jÞj: (2)

4.3.2 Entropy of image histogram

Entropy is a statistical measure of the information contained in
an image.26 This quality measure is based on the fact that the
histogram of a focused image contains more information than
an unfocused one. Entropy can be defined as shown in Eq. (3),
where PðiÞ is the probability for each gray level.

EQ-TARGET;temp:intralink-;e003;326;325FEntropy ¼ −
X

intensity

PðiÞ · log½PðiÞ�: (3)

Fig. 7 Best filters for subjective metrics. F1 represents the unfiltered image and F2 to F8 are the custom
filters designed.
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Fig. 8 Objective quality metrics scores. F1 represents the unfiltered image and F2 to F8 are the custom
filters designed. Red squares and yellow dots indicate the best and worst results, respectively.
(a) Contrast score, (b) entropy score, (c) anisotropy score, (d) SML score, (e) TG score, (f) BIQI
score, and (g) NIQE score.
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Sharper images have a higher number of gray levels, so the
entropy will be higher.

4.3.3 Anisotropy

Anisotropy is measured as the variance of the entropy on several
directions.27 As it was previously explained, entropy increases
with sharpness but, in situations where images are noisy, there
is not a fair correlation. Thus, the anisotropy measure approach
is based on the fact that degradation in the image damages
the directional information and, for this reason, anisotropy
decreases as more distortions are added to the image.

This metric is sensitive to noise or blurriness, so it can be
used as a good IQA method.

4.3.4 Sum of modified Laplace transform

This derivative-based metric28 is based on the Laplacian oper-
ator [∇2Iðx; yÞ] to rate the sharpness in an image [Iðx; yÞ]. The
final score of the metric is calculated by adding the resultant
absolute values obtained in the convolution process [see
Eq. (4)], where Lxðx; yÞ and Lyðx; yÞ are the images after
convolution with the Laplacian operator

EQ-TARGET;temp:intralink-;e004;63;505FSML ¼
X

x

X

y

jLxðx; yÞj þ jLyðx; yÞj: (4)

4.3.5 Tenenbaum gradient

This derivative-based method is one of the first metrics proposed
for focus analysis in literature.29 It is based on the Sobel operators
to convolve the image (both vertical and horizontal). The final score
of the metric is calculated as the sum of the square of the gradient
vector components [see Eq. (5)], where Sxðx; yÞ and Syðx; yÞ are
the resultant images after convolution with the Sobel operators.
This metric offers an overall measure of the image quality30

EQ-TARGET;temp:intralink-;e005;326;657FTenengrad ¼
X

x

X

y

Sxðx; yÞ2 þ Syðx; yÞ2: (5)

4.3.6 Blind image quality index

This metric consists of a two step-framework for NR-IQA based
on natural scene statistics (NSSs).31 NR-IQA methods usually
assume that the distortion affecting the image is known, such
as white noise, Gaussian blur, or fast fading. In BIQI metric,
the first step of the two-step framework is image distortion
classification based on how NSS are modified, and the second
step is the quality assessment, using a specific algorithm for
the selected distortion.

4.3.7 Natural image quality evaluator

NIQE is also a blind NR-IQA method based on measurable devi-
ations from statistical regularities observed in natural images

Fig. 9 Textural features scores. F1 represents the unfiltered image and F2 to F8 are the custom filters
designed. Red squares and yellow dots indicate the best and worst results, respectively. (a) Haralick
contrast score, (b) Haralick homogeneity score, (c) Haralick energy score, and (d) Tamura coarseness
score.
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(constructing an NSS model). No training with human evaluated
distorted images is needed, which means that it is a “completely
blind”metric.32 The final score for this metric, which gives a qual-
ity measure of the analyzed image, is calculated as a distance
between the NSS model statistics and those of the image.

5 Results

5.1 Objective Quality Metrics

In Fig. 8, the results of the objective image quality metrics are
presented. For each metric, the mean and the standard deviation
values of all images for the considerated filter are calculated.
The resultant values are normalized within the interval [0, 1].
For all metrics, excluding BIQI and NIQE, a higher value
means a better image quality. So, in all cases, the values for
the unfiltered image (F1) are the smallest one, and the higher
values are obtained, in general, by filters F3 and F6. For the
last two metrics analyzed, that is, BIQI and NIQE, the results
are similar but presented in a different way. In these cases,
lower values mean better image quality and the unfiltered
images have the higher scores; therefore, images acquired
using an illumination filter present a better image quality.

5.2 Textural Features

To study the effect of using these oblique illumination filters in
terms of texture properties, some Haralick statistical measures12

and Tamura features13 were calculated. The results for Haralick
contrast, Haralick energy, Haralick homogeneity, and Tamura
coarseness are given here (see Fig. 9). Each feature score is
normalized within the interval [0, 1] and represents the mean
value for all the analyzed species for each filter.

In the case of contrast F1 [Fig. 9(a)], the unfiltered image has
the lowest value, so the use of illumination filters increases the
overall contrast in an image and, in general, higher contrast is
related to sharper images. Conversely, Haralick homogeneity
results [Fig. 9(b)] reveal that the unfiltered image has the highest
homogeneity score. This measure is related to the previous one
because the homogeneity in an image is higher when contrast
is lower. The next two measures, such as Haralick energy
[Fig. 9(c)] and Tamura coarseness [Fig. 9(d)], are related to
smooth and coarse textures, respectively. In the first case, F1
has the highest value; therefore, the image is smoother than
those which have been acquired using an illumination filter.
In the last case, F1 has the lowest score, which means that
filtered images are coarser.

We can use these textural measures to relate visual texture
properties with image quality. In this way, comparing with
the objective image quality metrics, an image with high contrast
and coarser texture elements will have a better quality than
others with lower contrast and finer texture elements.

5.3 Examples

Analyzing the results of IQA metrics and textural measures, the
best filters are F3 and F6 since in most cases the best scores were
obtained by them. Two diatoms fields are presented to visually
compare them in Figs. 10 and 11. The differences in terms of
contrast and resolution can be observed in both examples, where
the F1 (no filter) and the F3 and F6 images are shown.

6 Conclusions
In the present document, different oblique illumination filters
have been tested to analyze if the perceived image quality

Fig. 11 Example 2. Navicula lanceolata. (a) F1 (no filter), (b) F3, and (c) F6.

Fig. 10 Example 1. Cymbella excisa. (a) F1 (no filter), (b) F3, and (c) F6.
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increases compared to a standard bright field image. To achieve
this, a set of seven filters, with different internal shapes, were
designed and manufactured using a 3-D printer. Twenty samples
of 21 diatom species were acquired and evaluated with the seven
illumination filters in addition to the unfiltered image. The com-
plete dataset (3360 images) was evaluated by a group of three
diatomist in terms of image resolution, focus, and contrast.
The results obtained indicate that oblique illumination filters
enhance the perceived resolution in an image and the best filters
for these aspects are F2, F3, and F6. However, for focus, the
scores obtained for the unfiltered image are very similar to
the best ones (F2 and F3). This fact can be explained because
these types of illumination filters add a “shadow” effect to the
image edges that are perceived, such as an image distortion.
In terms of contrast, the best filters are F2, F3, and F6.

Moreover, the same dataset was evaluated using several
no-reference objective IQA metrics. For all of them, the images
acquired using the proposed illumination filters achieve better
scores than the image acquired without filter. From the seven

filters analyzed, F3 and F6 obtain the best marks in terms of
overall image quality.

Considering the results of texture analysis, and taking into
account the objective quality assessment metrics, we can
identify a relation between texture features and image quality.
Coarser and higher contrast textures in an image are related
to a higher quality, whereas finer, smoother, and lower contrast
textures are associated with a lower image quality. In the case of
taxa identification, the use of illumination filters increases con-
trast, roughness, and coarseness of the image, and it is perceived
as better image quality.

Hence, based on the results obtained, we can assume that
the use of these types of low-cost illumination filters improves
the global image quality in diatom analysis.

Appendix A
In Figs. 12–15, all diatom classes used in this work are illus-
trated. The unfiltered (F1) original image is shown together

Fig. 12 Diatom species (I).
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Fig. 13 Diatom species (II).
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Fig. 14 Diatom species (III).
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with the filtered image with the highest quality, that is F3, F6,
etc. Moreover, some features such as taxon name, average size,
and outer shape are indicated.
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