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Abstract. Temperature mapping during thermotherapy can help precisely control the heating process, both
temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage.
Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity,
based on the linear correlation between the tissue’s Grüneisen parameter and temperature. However, limited
by the tissue’s unknown optical properties and thus the optical fluence at depths beyond the optical diffusion
limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus
cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures
has to assume that the tissue’s optical properties do not change with temperatures, which is usually not valid
due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT
temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of
multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from
multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including
absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature
distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic
model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations
have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the
technical foundation for better temperature control in deep tissue in thermotherapy. © 2018 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.1.016014]
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1 Introduction
Monitoring the temperature distribution in deep tissues during
thermotherapy of cancers is critically important. With the tem-
perature map, the heating process can be precisely controlled to
efficiently kill the tumor cells and minimize collateral damage to
healthy tissues. Currently, magnetic resonance thermometry is
the major clinical tool for temperature mapping in thermother-
apy, especially for the high-intensity focused ultrasound
treatment. However, magnetic resonance thermography is an
expensive technology and suffers from low resolution and
low speed. For noninvasive real-time temperature mapping,
photoacoustic (PA) tomography (PAT) provides an alternative
solution due to its inherent sensitivity to temperature.1–3 In
PAT, the initial acoustic pressure generated by the pulsed optical
excitation is proportional to the Grüneisen parameter, the optical
absorption coefficient, and the optical fluence.4 The Grüneisen
parameter Γ is related to the specific heat capacity cp, thermal
expansion coefficient β, and speed of sound vs. Γ is a temper-
ature-dependent, mainly due to the temperature dependence of
β, which leads to the temperature mapping capability of PAT.
Although vs in tissues is also temperature-dependent (∼0.1%
to 0.3% increase per degree temperature rise), its effect on Γ

is usually negligible compared with that of β (∼5% increase
per degree temperature rise).5,6

Several PA methods have been developed to measure
temperatures.1,3,7–11 In these methods, it is generally assumed
that the optical fluence is independent of temperature and the
temperature has a linear relationship with the Grüneisen param-
eter. Thus, by measuring the changes in PA signals at different
temperatures over time, the ratiometric change in the PA signals
as a function of temperatures can be obtained by fitting the data
to a linear model.2,8,9,12 These ratiometric methods can obtain an
accuracy of ∼0.1°C in relative temperature mapping and have
been used in photothermal therapy,10,13 cryoablation of prostate
tissue,14 and development of gold nanorods.7 However, these
ratiometric methods are based on the photoacoustic microscopy
systems and mostly work only in superficial depths. Moreover,
they cannot provide absolute temperatures due to the unknown
tissue optical properties and thus optical fluence. We previously
proposed another temperature measurement method using the
dual-temperature dependences of Grüneisen parameter and
the speed of sound in tissue.11 The temperature irrelevant fac-
tors, which are difficult to correct for in deep tissue, such as
the optical fluence and the optical absorption coefficient, are
eliminated by taking ratiometric measurements at two different
temperatures. Although this method realizes the absolute
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temperature measurement in deep tissue, it assumes a relatively
homogeneous temperature distribution, which may not be valid
for thermotherapy in which the temperature elevation is usually
highly confined within a small tissue volume.

All of the above methods avoid directly quantifying the tis-
sue’s optical parameters and thus optical fluence, which leads to
the necessity of either calibration or ratiometric measurement
under the strong assumption that the local optical fluence and
optical parameters do not change with the temperature. Such
an assumption may not be valid in clinical settings, largely
due to the temperature-induced hemodynamic changes, includ-
ing increased blood perfusion and oxygenation in response to
the temperature elevation.15–17 Since the initial acoustic pressure
can be reconstructed by the measured PA signals, the absolute
Grüneisen parameter distribution can be recovered once the
optical fluence and optical parameters are reconstructed.
Previous studies have introduced various optical models, such
as the Monte Carlo simulation,18 radiative transfer equation
(RTE),19–21 and optical diffusion equation, to quantify the opti-
cal variables above.22,23 Generally, two assumptions are used in
the previous studies to simplify the reconstruction problem:
homogeneous Grüneisen parameter and homogeneous optical
properties. Several studies focusing on reconstructing the optical
parameters have been proposed,18–20,22–24 but temperature-
dependent Grüneisen parameter is usually not considered.
Other studies have focused on reconstructing optical parameters
and Grüneisen parameter simultaneously, but prior information
is required in these methods.25–29 Due to the strong underdeter-
mined nature of the inverse problem, all the unknown variables,
including absorption and scattering coefficients, optical fluence,
and Grüneisen parameter, cannot be uniquely recovered from a
single illumination and a single-wavelength PA data without
additional prior information.27 Two more studies have proposed
to decouple the Grüneisen parameter from the reconstructed
optical parameters using prior information such as known
absorption or scattering distributions,27,28 which, however, are
not always available in clinical settings.

Increasing the amount of measured data is a common strategy
to eliminate the need for prior information and reduce the degree
of underdetermination.Multi-illumination in sequence, which can
introduce more independent measurements, is widely used in
diffuse optical tomography,30 but few similar strategies have
been used in PAT. Zemp et al.31 and Ranasinghesagara et al.32

proposed a method on reconstructing optical parameters using
multiple surface illuminations but with the assumption
of a known Grüneisen parameter. Bal and Ren presented a
noniterative procedure to reconstruct the Grüneisen parameter
but with the assumption of known absorption or scattering
coefficients.27 Shao et al. realized the simultaneous reconstruction
of the Grüneisen parameter and the optical parameters, but the
Born approximation was assumed, which limited the applicability
of this method to the weak optical heterogeneity.33

Here, we propose an absolute temperature mapping method
enhanced by an optical model based on multi-illumination PAT.
Instead of the traditional calibration-based temperature measure-
ments over time, this method focuses on recovering the optically
relevant variables to quantify the absolute temperature directly.
An optical diffusion model is introduced to estimate the optical
fluence. A Jacobian matrix-based method without the Born
approximation is used to reconstruct other optical parameters.
With the known initial pressure rise reconstructed from the
PA signals, the absolute temperature distribution inside the

tissue can be recovered. The assumption that the tissue’s optical
properties are temperature-independent is not required in our
method. Moreover, this new strategy can correlate the deep-
tissue temperature with the surface temperature, which can be
readily measured.

2 Methods

2.1 Photoacoustic Temperature Mapping

In PAT, for a nonfluorescent target, the local heating due to a
laser pulse Si incident at surface location rsi leads to a thermo-
elastic expansion and initial acoustic pressure rise, which can be
expressed as

EQ-TARGET;temp:intralink-;e001;326;606p0ðr; rSiÞ ¼ ΓðrÞHiðrÞ; (1)

where HiðrÞ is the absorbed energy density at location r. HiðrÞ
can be expressed as

EQ-TARGET;temp:intralink-;e002;326;552HiðrÞ ¼ μaðrÞΦðr; rsiÞ; (2)

where μaðrÞ and Φðr; rsiÞ are the optical absorption coefficient
and the optical fluence, respectively. The Grüneisen parameter
ΓðrÞ, which is also position relevant, is defined as2

EQ-TARGET;temp:intralink-;e003;326;487ΓðrÞ ¼ β

κρCV
¼ βv2s

CP
¼ f½TðrÞ�; (3)

where β is the thermal coefficient of volume expansion, κ is the
isothermal compressibility, ρ is the mass density, CV is the spe-
cific heat capacity at constant volume, vs is the speed of sound,
CP is the specific heat capacity at a constant pressure, and TðrÞ
is the temperature distribution in the tissue. The relationship
between Grüneisen parameter and temperature can be modeled
by curve fitting the measured data. In this study, the linear rela-
tionship for soft tissue from a previous study by Alaeian is
used,34 which is given as

EQ-TARGET;temp:intralink-;e004;326;343ΓðrÞ ¼ f½TðrÞ� ¼ 0.0086269T þ 0.11227; (4)

where T is the temperature in Celsius. Therefore, the initial
acoustic pressure can be expressed as
EQ-TARGET;temp:intralink-;e005;326;290

p0ðr; rSiÞ ¼ ΓðrÞμaðrÞΦðr; rsiÞ
¼ f½TðrÞ�μaðrÞΦðr; rsiÞ: (5)

From Eq. (5), to recover the temperature distribution, the initial
acoustic pressure rise distribution reconstructed by the measured
acoustic pressure signals, the optical absorption coefficient
μaðrÞ, and the optical fluence Φðr; rsiÞ are all needed.

2.2 Forward Problem: Optical Model-Enhanced
Photoacoustic Tomography

For an optically heterogeneous media, the task of temperature
mapping is converted to the recovery of optical parameters
including absorption coefficient μaðrÞ, reduced scattering coef-
ficient μ 0

sðrÞ, and optical fluence Φðr; rsiÞ from the recon-
structed initial acoustic pressure rise. In the forward problem,
an optical model of the photon transportation in the tissue is
introduced to quantify the distribution of optical fluence
Φðr; rsiÞ. For the highly scattering biological tissue, the
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diffusion approximation model can be used, which is
expressed as4

EQ-TARGET;temp:intralink-;e006;63;730−∇ · ½DðrÞ∇Φðr; rsiÞ� þ μaðrÞΦðr; rsiÞ ¼ qiðrÞ; (6)

where DðrÞ ¼ f3½μaðrÞ þ μ 0
sðrÞ�g−1 is the optical diffusion

coefficient and qiðrÞ is the source term of Si. If the optical
parameters μaðrÞ and DðrÞ are obtained, the optical fluence
can be solved from Eq. (6) using finite element method
(FEM).35,36

Therefore, the optical forward problem can be formed by a
nonlinear mapping F, linking the optical parameters to the opti-
cal fluence distribution

EQ-TARGET;temp:intralink-;e007;63;611Φðr; rsiÞ ¼ Fi½μaðrÞ; DðrÞ�: (7)

Substituting Eq. (7) into Eq. (5), the forward problem of optical
model enhanced PAT can be expressed as
EQ-TARGET;temp:intralink-;e008;63;557

p0ðr; rSiÞ ¼ ΓðrÞμaðrÞFi½μaðrÞ; DðrÞ�
¼ Pi½TðrÞ; μaðrÞ; DðrÞ�; (8)

where P denotes a nonlinear mapping that relates the temper-
ature and the optical parameters to the initial acoustic pressure
rise.

2.3 Inverse Problem: Reconstruction of Optical
Parameter and Temperature Distribution by
Using Multiple Illuminations

In this work, the initial acoustic pressure rise is reconstructed
from the measured PA signals and is considered as accurate
measured data.25,37,38 The inverse problem is to reconstruct
the optical parameters [μaðrÞ and DðrÞ], Grüneisen parameter
ΓðrÞ, and temperature TðrÞ, from the measured data
p0ðr; rSiÞ and optical fluence Φðr; rsiÞ, which can be calculated
by solving the optical forward problem. From Eq. (8), the gen-
eration of initial acoustic pressure rise can be divided into two
independent components: the temperature-dependent Grüneisen
parameter and the temperature-irrelevant absorbed energy den-
sity. It is an underdetermined problem to simultaneously recover
the two independent components, which are both heterogeneous
in the tissue, from a single measurement p0ðr; rSiÞ. It is worth
noting that the tissue’s optical properties can change with tem-
peratures as a result of physiological responses (e.g., elevated
blood perfusion), but as physical parameters, they are not tem-
perature-dependent quantities (e.g., the optical absorption cross
section of hemoglobin is not temperature dependent). Again,
unlike previous methods taking ratiometric measurement at dif-
ferent temperatures, our method does not assume temperature-
independent optical properties of the tissues.

2.3.1 Multiple-illumination PAT

First, the optical fluence and tissue’s optical properties need to
be reconstructed. The multiple illuminations in sequence are
used to generate independent measurements and eliminate the
unknown heterogeneous Grüneisen parameter, which will be
described in the following sections. As shown in Fig. 1, multiple
illuminations with point optical sources at different locations
can be achieved by rotating the imaged object or moving the
optical sources. The multiple illuminations are performed
sequentially in the PA imaging process, meaning that one

independent PA image is acquired at each illumination location.
Under each illumination source (location), the initial acoustic
pressure rise can be reconstructed as one measurement. Then,
the measurements are equally grouped into two sets, k and l.
Each set has the same number of optical illuminations N.

After discretization, the measured data can be assembled into
two matrixes
EQ-TARGET;temp:intralink-;e009;326;485

p0kðrÞ ¼ ½p0ðr; rS1Þ; p0ðr; rS2Þ; : : : ; p0ðr; rSI Þ�T;
fS1; S2; : : : ; SNg ∈ k;

p0lðrÞ ¼ ½p0ðr; rSIþ1
Þ; p0ðr; rSIþ2

Þ; : : : ; p0ðr; rS2I Þ�T;
fSNþ1; SNþ2; : : : ; S2Ng ∈ l: (9)

The ratio of two sets of measured data is formed by the ratio
of each corresponding element in the matrix and can be derived
into the ratio of optical fluence of two sets as follows:
EQ-TARGET;temp:intralink-;e010;326;368

p0kðrÞ
p0lðrÞ

¼ Pk½TðrÞ; μaðrÞ; DðrÞ�
Pl½TðrÞ; μaðrÞ; DðrÞ�

¼ ΦkðrÞ
ΦlðrÞ

; (10)

where the optical fluence ΦkðrÞ and ΦlðrÞ have the same form
of the measured data.

In Eq. (10), the heterogeneous temperature-relevant terms are
canceled out and only a ratiometric measurement of optical flu-
ence corresponding to different illumination locations is left.
Therefore, we can divide the modeling into two steps: first,
the optical parameters and optical fluence can be reconstructed
by the ratio of multiple-illumination data, and second, the tem-
perature distribution will be recovered.

2.3.2 Nonlinear iterative reconstruction of optical
parameters

In general, the optical absorption coefficient and diffusion coef-
ficient are both heterogeneous and unknown in this step. If the
perturbation of the optical fluence caused by the heterogeneity
of optical parameters is not negligible, as in the biological tis-
sues, the reconstruction of optical parameters is a nonlinear
process. Therefore, the optical parameters and optical fluence
need to be reconstructed iteratively, with the guidance of the

Fig. 1 Schematic of multiple illuminations in sequence. The red
circles denote the different illumination locations. Sk and Sl denote
the two equally separated sets of illuminations with the same
number N.
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measured data. Briefly, an iteration reconstruction architecture
can be designed as follows:

1. Input the initial homogeneous optical parameters as
published in the literatures.39

2. Solve the optical forward problem to update the opti-
cal fluence at each illumination location.

3. Calculate the error between the ratio of two sets of
optical fluence and the ratio of the measured data,
and estimate the convergence. If the error satisfies
the termination condition, terminate the iteration
loop; otherwise, continue to the next step.

4. Construct and solve the inverse problem to update the
optical parameters.

5. Return to step 2.

In step (2), at each illumination location, the corresponding
optical fluence can be calculated by the diffusion model
described in Sec. 2.2, with the optical parameters obtained
from step (4) in the previous iteration.

In step (3), the error can be calculated as

EQ-TARGET;temp:intralink-;e011;63;497ε ¼ kfc − fmk22
kfmk22

; (11)

where fc ¼ ΦkðrÞ
ΦlðrÞ and fm ¼ p0 kðrÞ

p0lðrÞ denote the calculated and mea-

sured values, respectively. A predefined small quantity ε� can be
used as the termination condition. If ε ≤ ε�, the iteration will be
terminated.

In step (4), the inverse problem is set up to calculate the
updated value of optical parameters. The updating direction
is determined by approaching fm from fc. Therefore, fm is
expressed by the first-order Taylor expansion with the matrix
form

EQ-TARGET;temp:intralink-;e012;63;348½fm� ¼ ½fc� þ
�
∂fc
∂μa

�
½δμa� þ

�
∂fc
∂D

�
½δD�; (12)

EQ-TARGET;temp:intralink-;e013;63;304J ·

�
δμa
δD

�
¼ ½fm − fc�; (13)

where the Jacobian matrix is
EQ-TARGET;temp:intralink-;e014;63;253

½J� ¼
2
4 ∂fc

∂μa
∂fc
∂D

3
5 ¼

2
4

∂Φk
∂μa

· 1
Φl
− Φk

Φ2
l
· ∂Φl
∂μa

∂Φk
∂D · 1

Φl
− Φk

Φ2
l
· ∂Φl
∂D

3
5: (14)

The partial derivations can be calculated by the diffusion
approximation model. Then, we define b ¼ ½fm − fc� and

x ¼
h δμa
δD

i
, Eq. (13) can be rewritten as the simple matrix form

EQ-TARGET;temp:intralink-;e015;63;156Jx ¼ b: (15)

The inverse problem is solving Eq. (15) for the updated optical
parameters in the current iteration, which is a linear problem.
Tikhonov regularization is used to reduce the ill-condition of
the inverse problem, and the solution is given as40

EQ-TARGET;temp:intralink-;e016;326;752x ¼ ðJTJ þ λIÞ−1JTb; (16)

where I is the identity matrix and λ is the regularization
parameter.

2.3.3 Recovery of the temperature distribution

The temperature distribution can be recovered in the second step
with the optical fluence and optical parameters reconstructed
from the first step. According to Eq. (5), the heterogeneous
Grüneisen parameter ΓðrÞ can be estimated. To reduce the effect
of noise, the estimated Grüneisen parameter Γ̂ðrÞ can be derived
using all the illuminations as follows:

EQ-TARGET;temp:intralink-;e017;326;612Γ̂ðrÞ ¼

P
ip0iðrÞ þ

P
j
p0jðrÞ

μaðrÞ½
P
i
Φðr; rsiÞ þ

P
j
Φðr; rsjÞ�

: (17)

Finally, the temperature distribution can be calculated by

EQ-TARGET;temp:intralink-;e018;326;539TðrÞ ¼ f−1½ΓðrÞ�: (18)

Here, Eqs. (17) and (18) show that the Grüneisen parameter and
the absolute temperature can be reconstructed by combining
multi-illumination PAT with a nonlinear forward model and
inverse model. The most practical aspect of the proposed
method is the capability of quantifying the temperature inside
the tissue without the need of modulating the tissue’s temper-
ature. Moreover, since the temperature at the tissue surface
can be accurately measured by a thermometer, this method pro-
vides a practical solution to calibrate the deep-tissue temperature
using the surface temperature, which, to our best knowledge, is
the first in PA temperature mapping.

2.4 Simulation Setups

Two-dimensional (2-D) simulations are performed to test the
feasibility of the proposed method. The imaging field is discre-
tized into 3575 nodes by FEM within a 4-cm-radius-circle.35,36

As shown in Figs. 2(a) and 2(b), true absorption and reduced
scattering coefficients are mapped into the imaging field, respec-
tively. The absorption coefficient of the background is
0.01 mm−1 while the reduced scattering coefficient of the
background is 1 mm−1.30 Three absorption anomalies with an
absorption coefficient of 0.03 mm−1 and three scattering
anomalies with a reduced scattering coefficient of 3 mm−1

are added to create the optical heterogeneity. The isotropic
point optical source is placed at 1mm inside the boundary of
the imaging field, according to the approximation of the optical
diffusion model.30 For the heterogeneity of temperature, three
temperature anomalies at 40°C, 45°C, and 55°C are added to
the homogeneous background temperature of 37°C. The initial
acoustic pressure rise distributions are modeled by multiplying
the distribution of simulated optical fluence,30 absorption coef-
ficient, and Grüneisen parameter. As an example, Figs. 2(c) and
2(f) show the distribution of optical fluence and initial acoustic
pressure rise for the optical source S1. For all the simulations,
the iteration terminated condition is set to be ε� ¼ 0.001 in the
reconstruction process. A control group is also set for compari-
son in each simulation. The control group uses the homo-
geneous empirical optical parameters in the diffusion model.
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2.4.1 Influence of number of illuminations

The number of illuminations can impact the degree of underde-
termination of the inverse problem. To test the influence of the
number of illuminations, four simulations are configured. As
shown in Fig. 3, 2, 4, 8, and 16 illuminations are placed around
the imaging field, respectively. In each simulation setup, the
source locations are distributed with equiangular intervals. In
this section, all the simulations are noise-free.

2.4.2 Influence of noise

Noise level is also studied to test the noise-resistance perfor-
mance of the proposed method. In this section, three simulations
with 1%, 5%, and 10% Gaussian noise are performed. In each
simulation, the number of illumination is set to eight, an optimal
value obtained from the previous simulation.

3 Results
Figure 4 shows the reconstructed results of the first four simu-
lations in Sec. 2.4.1, corresponding to different numbers of illu-
mination. The reconstructed temperature is presented with

truncated range from 37°C to 55°C [Fig. 4(d)] and the absolute
values [Fig. 4(e)]. Due to the assumption of optical homo-
geneity, the results with a different number of illuminations
are the same in the control group (Fig. 4, the second row).
Clearly, the temperature distributions are recovered incorrectly
in the control group due to a failure to account for local optical
fluence. With the false assumption of optical properties, the
large artifacts at the absorption anomalies may mislead the tem-
perature monitoring. By contrast, using the proposed method,
the reconstruction quality improves with the increase in the
number of illuminations. The temperature anomalies can be dis-
tinguished from the background in each simulation, and no
crosstalk among them has been observed in the reconstructed
temperature maps. However, the reconstructed temperature dis-
tributions still suffer from artifacts induced by the anomalies of
the optical properties, especially the absorption coefficients.
With reduced number of illuminations, the artifacts at the
absorption anomalies in the simulation become more signifi-
cant. In the proposed method, the temperature is a dependent
variable and the optical parameters are independent variables.
Thus, the artifacts in the reconstructed temperature maps are

Fig. 3 Simulation setups to test the influence of the number of illuminations. (a)–(d) 2, 4, 8, and 16 illu-
minations around the imaging field. The red circles denote the locations of each illumination, distributed
with equiangular intervals.

Fig. 2 Basic simulation setups. (a) 2-D absorption coefficient distribution. (b) 2-D reduced scattering
coefficient distribution. (c) Optical fluence distribution corresponding to a representative illumination
location S1. (d) 2-D temperature distribution. (e) 2-D Grüneisen parameter distribution. (f) Initial acoustic
pressure rise distribution corresponding to S1.
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largely due to the inaccurate optical parameters reconstructed
from the forward and inverse models. The variations of the
reconstructed optical parameters also provide similar results,
showing that more illuminations lead to less crosstalk and arti-
facts in the reconstructed temperature images.

The relative errors are calculated for quantitative assessments
of the reconstructed results. Table 1 presents the relative errors
of the reconstructed variables in each simulation, with different

number of illuminations. The true distributions are used as the
gold standards. The relative error of optical fluence is defined as
the average relative error of optical fluence within the imaging
field. The reconstructed temperature distribution has an accu-
racy of ∼90% in the case of 8 and 16 illuminations. The relative
errors of all the reconstructed variables present similar trends
with the number of illuminations. When the illumination num-
ber is larger than four, the accuracy is significantly improved.

Fig. 4 Simulation results of the optical parameters and temperature with different number of illumina-
tions. From left to right: (a) absorption coefficient, (b) reduced scattering coefficient, (c) optical fluence,
and (d–e) temperature. From the top row to the bottom row: ground truth, control group, 2, 4, 8, and 16
illuminations.
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We conclude that the improvement in accuracy is attributed to
the reduction of the degree of underdetermination with the
increase in the number of illuminations.

The time cost of computation in each simulation is also
assessed. More illuminations lead to larger size of the
Jacobian matrix, which results in longer computational time
mainly in the inversion process. Of course, more illuminations
also lead to a longer imaging time when either the sample or the
light source is rotated. Therefore, there is a tradeoff between the
number of illuminations and time cost when both accuracy and
efficiency are taken into consideration (Fig. 5). The time cost
shown in Table 1 mostly accounts for the data processing
time, not the actual acquisition time of the data. Ten image
frames can be acquired within 1 s for all illuminators, if a typical
photoacoustic computed tomography system with a 10-Hz laser
is used. The temperature change in typical thermotherapy within
1 s is thought to be minimal,41,42 so it is safe to assume that the
temperature measurement by our method at a single temperature
is much less affected by the hemodynamic changes than pre-
vious methods using ratiometric measurement at different
temperatures.

Figure 6 shows the reconstructed results with different noise
levels. For the control group, temperature reconstructions are
more blurred with increased noise levels. Although the quality
of reconstructed temperature maps is sensitive to the noise level,
the temperature anomalies can be resolved even with 10% noise,
reflecting the noise resistance of the proposed method. The
reconstructed temperature anomalies can be distinguished

from the background, and the temperature distribution inside
the targets is relatively smooth. Similar to the simulations
above, the reconstructed temperature distributions are affected
by the accuracy of reconstructed optical parameters. With the
increased noise level, more artifacts induced by the recon-
structed optical parameters, especially from the reconstructed
absorption coefficients, are shown in the background and
blur the boundaries of the temperature anomalies.

Detailed quantitative results can be found in Table 2, which
shows the relative errors of each reconstructed variable with dif-
ferent added noise levels. Optical fluence (shown by the average
value) has higher reconstruction accuracy but larger variation
range than optical parameters, whereas the reconstruction accu-
racy of temperature is always worse than that of optical param-
eters with different noise levels. These results again support the
conclusion that in PA mapping of the absolute temperatures, the
reconstruction accuracy of optical parameters mainly contrib-
utes to the accuracy of the temperature estimation.

4 Discussion
We have reported an absolute temperature mapping method
using PAT, which can assess the temperature by accounting
for the optical fluence and the optical parameters inside the tis-
sue. The major improvement of the proposed method over pre-
vious PA temperature mapping is that we do not have to
modulate the tissue’s temperature due to the assumption that
the tissue’s optical properties or the optical fluence inside the
tissue do not change with the temperature. Our method has
two steps. In the first step, the ratiometric measurement of initial
acoustic pressure rise at different illumination locations in
sequence is calculated to eliminate the influence of hetero-
geneous Grüneisen parameters, which are temperature-depen-
dent. An optical forward model is then introduced to recover
the distribution of optical fluence with different illumination
locations. In the second step, the optical parameters and the opti-
cal fluence are updated iteratively. After the iteration converges,
the absolute temperature distribution can be recovered by divid-
ing the initial acoustic pressure rise by the product of recon-
structed optical fluence and the absorption coefficient.
Results of 2-D simulations have shown the feasibility of the
proposed method. Relative errors of 10.6% to 15.7% can
be achieved at different noise levels. The absolute tempera-
ture mapping ability of this method may lead to potential
applications of temperature monitoring during various cancer
thermotherapies.

There are two major reasons to adopt the multi-illumination
strategy. First, it is necessary to eliminate the unknown hetero-
geneous Grüneisen parameter in the forward optical model.
Second, it is important to reduce the degree of underdetermination
of the inverse problem. Different number of illuminations is used
to test the performance of the proposed method. It is worth reit-
erating that the multiple illuminations are performed sequentially
in the PA imaging process, meaning that one independent PA
image is acquired at each illumination location. Since the mea-
surements are based on the ratio of different illumination loca-
tions, at least two illuminations are required. The results shown
in Fig. 4 and Table 1 demonstrate that a higher temperature
mapping accuracy can be achieved with more illuminations. This
accuracy improvement can be attributed to the reduction of under-
determination of the inverse problem. More independent informa-
tion can enlarge the dimensions of the Jacobian matrix and reduce
the degree of underdetermination.

Table 1 Relative errors of reconstructed results and time cost with
different number of illuminations.

Number of
illuminations

Time
cost
(s)

Relative error (%)

Temperature
Absorption
coefficient

Reduced
scattering
coefficient

Average
optical
fluence

2 1.772 27.76 25.57 27.46 1.490

4 3.258 19.26 17.49 16.42 0.540

8 7.363 11.28 10.17 10.06 0.097

16 15.165 10.62 9.96 9.45 0.033

Fig. 5 Relative errors of the reconstructed temperature and time cost
with different number of illuminations.
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The optical parameters need to be reconstructed iteratively.
In each iteration, the values are updated by solving the inverse
problem. Due to the strong irregularity of photon transport in the
tissue, the inverse problem becomes highly ill-posed, which is
the primary factor that impacts the accuracy of the temperature
mapping in our method. Both Tables 1 and 2 show that the rel-
ative errors of temperature distributions are larger than those of
optical parameters. Since the temperature is derived from initial
acoustic pressure rise, optical fluence, and optical parameters,
the accuracy of the temperature assessment will not be better
than that of the optical variables in theory, especially with
the noise. In Table 2, the relative errors are increased by

42.27% (for the absorption) and 61.18% (for the scattering)
when the noise level changes from 1% to 10%. The regulariza-
tion strategy used in this method relieves the ill-posed nature of
the reconstruction problem and improves the accuracy. For
future studies, other regularization methods such as L-p norm43

and total variation norm44 can be used to optimize the inverse
problem.

In this study, we mainly focus on the optical perspectives of
the physical model. Therefore, we assume an ideal ultrasound
detection system, a simplification strategy used by other studies
as well.18–20,23,29 The reconstruction error of the initial acoustic
pressure rise is not considered and is assumed to be accurate
to monitor the direction of iteration in the temperature
reconstruction. Nevertheless, the accuracy of the ultrasound
reconstruction will eventually impact the accuracy of the tem-
perature mapping in our method. To improve the ultrasound
reconstruction, several important factors should be taken into
consideration, including the speed of sound, the acoustic attenu-
ation, and the frequency responses of the ultrasound transducer
(array), as detailed by numerous previous studies.25,37,38,45–54

Other factors of the PA imaging system are also not included
in the mathematical model, such as the detection sensitivity of
the ultrasound transducer (array). Based on the calculated tem-
perature distribution given by this method, the deep-tissue tem-
perature can be spatially calibrated by the absolute temperature
directly measured at the surface to reduce the influence of the

Table 2 Relative reconstruction errors with different noise levels.

Noise
level

Temperature
(%)

Absorption
coefficient

(%)

Reduced
scattering
coefficient

(%)

Average
optical
fluence
(%)

1% 11.36 10.29 9.48 0.101

5% 14.55 13.88 12.97 0.208

10% 15.68 14.64 15.28 0.258

Fig. 6 Simulation results of the optical parameters and temperature with different noise levels. From left
to right: (a) absorption coefficient, (b) reduced scattering coefficient, (c) optical fluence, (d, e) temperature
with eight illuminations, and (f, g) temperature of the control group. From the top row to the bottom row:
Ground truth, 1% noise, 5% noise, and 10% noise.
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imaging system. So even though the calibration is still needed
when the unknown factors of the imaging system are taken into
consideration, this method provides a spatial calibration instead
of changing the tissue’s temperature over time, which is more
convenient for the clinical applications. Another factor contrib-
uting to the temperature reconstruction error is the forward
model, which directly determines the accuracy of the optical flu-
ence. The diffusion approximation model is used in this method
in the case of optical heterogeneous media, which has modified
the assumption of optical homogeneity in the traditional PAT
studies. However, an important approximation of this forward
model is that the optical fluence has to be dominated by diffuse
photons, which holds only for the photons traveling deeper than
one transport mean-free path (TMFP). This approximation leads
to the inability of the diffusion approximation model to accu-
rately describe the photon transportation in the region within
one TMFP. From this perspective, both the optical fluence
and the optical parameters are inaccurate even if the ill-posed
nature of the inverse problem can be reduced. To achieve
more accurate quantification of photon transportation, we will
consider using the analytical models such as the RTE55 and
delta-Eddington approximation,56 and a numerical method
such as the Monte Carlo method.

Our method eventually utilizes a linear relationship between
the Grüneisen parameter and the temperature, which, however,
is not a necessary condition. Based on the literature, the linear
temperature-dependence range is approximately from 4°C to 55°
C,1 which is actually achievable in most thermotherapy. Several
studies have reported on the nonlinear temperature dependence
of the Grüneisen parameter when the temperature exceeds the
linear range.57–59 In our method, the temperature is recovered
from the estimated Grüneisen parameter only at the last step
of the process, so a nonlinear temperature dependence may
also work in our model.

Computational time cost is also an important performance
index of the method, especially for applications that need fast
temperature mapping. The results in Sec. 2.4.1 show the tradeoff
between the reconstruction accuracy and the time cost.
Moreover, a longer computational time will be taken if the
reconstruction is extended to three-dimensional case. The num-
ber of illuminators and the number of the discretized elements of
the solution domain, which contribute to the scale of the
Jacobian matrix, primarily determine the time cost of solving
the forward and inverse problems. The iteration algorithm for
solving the inverse problem also impacts the time cost of the
reconstruction process. Therefore, for time-sensitive applica-
tions, the time cost of our method needs to be reduced by opti-
mizing the reconstruction algorithm in the inverse problem60,61

or using parallel computing techniques.62

Disclosures
All authors have no financial interest.

Acknowledgments
This work was supported by Duke MEDx fund (to J. Yao),
National Natural Science Foundation of China (81227901,
81271617, 61322101, and 61361160418), and National
Major Scientific Instrument and Equipment Development
Project (2011YQ030114). The authors thank Chuangjian Cai,
Mucong Li, and Yuqi Tang for their helpful discussion.

References
1. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic

monitoring of temperature in tissues,” J. Phys. D: Appl. Phys. 38(15),
2633–2639 (2005).

2. M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sens-
ing of temperature,” J. Biomed. Opt. 14(5), 054024 (2009).

3. S.-H. Wang et al., “Photoacoustic temperature measurements for mon-
itoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).

4. B. Cox et al., “Quantitative spectroscopic photoacoustic imaging: a
review,” J. Biomed. Opt. 17(6), 061202 (2012).

5. N. Bilaniuk and G. S. Wong, “Speed of sound in pure water as a func-
tion of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).

6. H. Watanabe, N. Yamada, and M. Okaji, “Linear thermal expansion
coefficient of silicon from 293 to 1000 K,” Int. J. Thermophys.
25(1), 221–236 (2004).

7. Y. S. Chen et al., “Sensitivity enhanced nanothermal sensors for photo-
acoustic temperature mapping,” J. Biophotonics 6(6–7), 534–542 (2013).

8. H. Ke et al., “Temperature mapping using photoacoustic and thermoa-
coustic tomography,” Proc. SPIE 8223, 82230T (2012).

9. M. Pramanik et al., “Tissue temperature monitoring using thermoacous-
tic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).

10. X. Wu et al., “Photoacoustic-imaging-based temperature monitoring for
high-intensity focused ultrasound therapy,” in IEEE 38th Annual Int.
Conf. of the Engineering in Medicine and Biology Society (EMBC
’16), pp. 3235–3238 (2016).

11. J. Yao et al., “Absolute photoacoustic thermometry in deep tissue,” Opt.
Lett. 38(24), 5228–5231 (2013).

12. H. Ke, S. Tai, and L. V. Wang, “Photoacoustic thermography of tissue,”
J. Biomed. Opt. 19(2), 026003 (2014).

13. J. Shah et al., “Photoacoustic imaging and temperature measurement for
photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).

14. E. V. Petrova et al., “In vivo cryoablation of prostate tissue with temper-
ature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G
(2016).

15. D. K. Kelleher and P. Vaupel, “No sustained improvement in tumor oxy-
genation after localized mild hyperthermia,” Adv. Exp. Med. Biol. 662,
393–398 (2010).

16. C. W. Song, H. Park, and R. J. Griffin, “Improvement of tumor oxy-
genation by mild hyperthermia,” Radiat. Res. 155(4), 515–528 (2001).

17. C. W. Song et al., “Improvement of tumor oxygenation status by mild
temperature hyperthermia alone or in combination with carbogen,”
Semin. Oncol. 24(6), 626–632 (1997).

18. B. T. Cox et al., “Two-dimensional quantitative photoacoustic image
reconstruction of absorption distributions in scattering media by use
of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).

19. L. Yao, Y. Sun, and H. Jiang, “Quantitative photoacoustic tomography
based on the radiative transfer equation,” Opt. Lett. 34(12), 1765–1767
(2009).

20. L. Yao, Y. Sun, and H. Jiang, “Transport-based quantitative photoacous-
tic tomography: simulations and experiments,” Phys. Med. Biol. 55(7),
1917–1934 (2010).

21. M. Haltmeier, L. Neumann, and S. Rabanser, “Single-stage
reconstruction algorithm for quantitative photoacoustic tomography,”
Inverse Prob. 31(6), 065005 (2015).

22. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: recov-
ery of optical absorption coefficient maps of heterogeneous media,”
Appl. Phys. Lett. 88(23), 231101 (2006).

23. A. Pulkkinen et al., “Direct estimation of optical parameters from photo-
acoustic time series in quantitative photoacoustic tomography,” IEEE
Trans. Med. Imaging 35(11), 2497–2508 (2016).

24. B. Cox, S. Arridge, and P. Beard, “Gradient-based quantitative photo-
acoustic image reconstruction for molecular imaging,” Proc. SPIE
6437, 64371T (2007).

25. M. Fink et al., “Time-reversed acoustics,” Rep. Prog. Phys. 63(12),
1933–1995 (2000).

26. Y. Hristova, P. Kuchment, and L. Nguyen, “Reconstruction and time
reversal in thermoacoustic tomography in acoustically homogeneous
and inhomogeneous media,” Inverse Prob. 24(5), 055006 (2008).

27. G. Bal and K. Ren, “Multi-source quantitative photoacoustic tomogra-
phy in a diffusive regime,” Inverse Prob. 27(7), 075003 (2011).

28. G. Bal and K. Ren, “On multi-spectral quantitative photoacoustic
tomography in diffusive regime,” Inverse Prob. 28(2), 025010 (2012).

Journal of Biomedical Optics 016014-9 January 2018 • Vol. 23(1)

Zhou et al.: Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical. . .

http://dx.doi.org/10.1088/0022-3727/38/15/015
http://dx.doi.org/10.1117/1.3247155
http://dx.doi.org/10.1117/12.809973
http://dx.doi.org/10.1117/1.JBO.17.6.061202
http://dx.doi.org/10.1121/1.406819
http://dx.doi.org/10.1023/B:IJOT.0000022336.83719.43
http://dx.doi.org/10.1002/jbio.v6.6/7
http://dx.doi.org/10.1117/12.909000
http://dx.doi.org/10.1117/12.842139
http://dx.doi.org/10.1109/EMBC.2016.7591418
http://dx.doi.org/10.1109/EMBC.2016.7591418
http://dx.doi.org/10.1109/EMBC.2016.7591418
http://dx.doi.org/10.1364/OL.38.005228
http://dx.doi.org/10.1364/OL.38.005228
http://dx.doi.org/10.1117/1.JBO.19.2.026003
http://dx.doi.org/10.1117/1.2940362
http://dx.doi.org/10.1117/12.2211190
http://dx.doi.org/10.1007/978-1-4419-1241-1_57
http://dx.doi.org/10.1667/0033-7587(2001)155<0515:IOTOBM>2.0.CO;2
http://dx.doi.org/10.1364/AO.45.001866
http://dx.doi.org/10.1364/OL.34.001765
http://dx.doi.org/10.1088/0031-9155/55/7/009
http://dx.doi.org/10.1088/0266-5611/31/6/065005
http://dx.doi.org/10.1063/1.2209883
http://dx.doi.org/10.1109/TMI.2016.2581211
http://dx.doi.org/10.1109/TMI.2016.2581211
http://dx.doi.org/10.1117/12.700031
http://dx.doi.org/10.1088/0034-4885/63/12/202
http://dx.doi.org/10.1088/0266-5611/24/5/055006
http://dx.doi.org/10.1088/0266-5611/27/7/075003
http://dx.doi.org/10.1088/0266-5611/28/2/025010


29. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore
distributions from multiwavelength photoacoustic images,” J. Opt.
Soc. Am. A 26(2), 443–455 (2009).

30. L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging,
John Wiley & Sons, Hoboken, New Jersey (2012).

31. R. J. Zemp et al., “A photoacoustic method for optical scattering mea-
surements in turbid media,” Proc. SPIE 7177, 71770Q (2009).

32. J. C. Ranasinghesagara et al., “Photoacoustic technique for assessing
optical scattering properties of turbid media,” J. Biomed. Opt. 14(4),
040504 (2009).

33. P. Shao, B. Cox, and R. J. Zemp, “Estimating optical absorption, scat-
tering, and Grueneisen distributions with multiple-illumination photo-
acoustic tomography,” Appl. Opt. 50(19), 3145–3154 (2011).

34. M. Alaeian, “Parameter and temperature estimation using photoacoustic
technique based on computational simulation,” PhD dissertation,
Universidade Federal do Rio de Janeiro (2017).

35. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob.
15(2), R41 (1999).

36. S. Arridge et al., “A finite element approach for modeling photon trans-
port in tissue,” Med. Phys. 20(2), 299–309 (1993).

37. M. Xu and L. V. Wang, “Universal back-projection algorithm for photo-
acoustic computed tomography,” Phys. Rev. E 71(1), 016706 (2005).

38. M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992).

39. D. Hyde et al., “Performance dependence of hybrid x-ray computed
tomography/fluorescence molecular tomography on the optical forward
problem,” J. Opt. Soc. Am. A 26(4), 919–923 (2009).

40. A. Neumaier, “Solving ill-conditioned and singular linear systems: a
tutorial on regularization,” SIAM Rev. 40(3), 636–666 (1998).

41. A. Jordan et al., “The effect of thermotherapy using magnetic nanopar-
ticles on rat malignant glioma,” J. Neuro-Oncol. 78(1), 7–14 (2006).

42. S. Maenosono and S. Saita, “Theoretical assessment of FePt nanopar-
ticles as heating elements for magnetic hyperthermia,” IEEE Trans.
Magn. 42(6), 1638–1642 (2006).

43. S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of
time-domain diffuse optical tomography with lp sparsity regulariza-
tion,” Biomed. Opt. Express 2(12), 3334–3348 (2011).

44. J. Dutta et al., “Joint L1 and total variation regularization for fluores-
cence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476
(2012).

45. C. Hoelen et al., “Three-dimensional photoacoustic imaging of blood
vessels in tissue,” Opt. Lett. 23(8), 648–650 (1998).

46. M. Pramanik, “Improving tangential resolution with a modified delay-
and-sum reconstruction algorithm in photoacoustic and thermoacoustic
tomography,” J. Opt. Soc. Am. A 31(3), 621–627 (2014).

47. S. Park et al., “Adaptive beamforming for photoacoustic imaging,” Opt.
Lett. 33(12), 1291–1293 (2008).

48. D. Yang et al., “Fast multielement phase-controlled photoacoustic im-
aging based on limited-field-filtered back-projection algorithm,” Appl.
Phys. Lett. 87(19), 194101 (2005).

49. P. Burgholzer et al., “Temporal back-projection algorithms for photo-
acoustic tomography with integrating line detectors,” Inverse Prob.
23(6), S65 (2007).

50. Y. Wang et al., “Photoacoustic imaging with deconvolution algorithm,”
Phys. Med. Biol. 49(14), 3117–3124 (2004).

51. L. Zeng et al., “High antinoise photoacoustic tomography based on a
modified filtered backprojection algorithm with combination wavelet,”
Med. Phys. 34(2), 556–563 (2007).

52. J. Laufer et al., “Quantitative determination of chromophore concentra-
tions from 2D photoacoustic images using a nonlinear model-based
inversion scheme,” Appl. Opt. 49(8), 1219–1233 (2010).

53. H. Grün et al., “Photoacoustic tomography using a fiber based Fabry-
Perot interferometer as an integrating line detector and image recon-
struction by model-based time reversal method,” in European Conf. on
Biomedical Optics (2007).

54. X. L. Dean-Ben et al., “Accurate model-based reconstruction algorithm
for three-dimensional optoacoustic tomography,” IEEE Trans. Med.
Imaging 31(10), 1922–1928 (2012).

55. A. Ishimaru, Wave Propagation and Scattering in Random Media,
Academic Press, New York (1978).

56. W. Cong et al., “Modeling photon propagation in biological tissues
using a generalized Delta-Eddington phase function,” Phys. Rev. E
76(5), 051913 (2007).

57. S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature
dependence of the optoacoustic transformation efficiency in ex vivo tis-
sues for application in monitoring thermal therapies,” J. Biomed. Opt.
17(6), 061214 (2012).

58. R. Brinkmann et al., “Real-time temperature determination during reti-
nal photocoagulation on patients,” J. Biomed. Opt. 17(6), 061219
(2012).

59. E. Petrova et al., “Imaging technique for real-time temperature monitor-
ing during cryotherapy of lesions,” J. Biomed. Opt. 21(11), 116007
(2016).

60. D. Kingma and J. Ba, “Adam: a method for stochastic optimization,”
arXiv preprint arXiv:1412.6980 (2014).

61. X. Cao et al., “Accelerated image reconstruction in fluorescence
molecular tomography using dimension reduction,” Biomed. Opt.
Express 4(1), 1–14 (2013).

62. M. Chen et al., “Fast direct reconstruction strategy of dynamic
fluorescence molecular tomography using graphics processing units,”
J. Biomed. Opt. 21(6), 066010 (2016).

Yuan Zhou is a PhD student at the Department of Biomedical
Engineering, Tsinghua University, Beijing, China. He is currently a
visiting scholar at the Department of Biomedical Engineering, Duke
University, North Carolina, USA. His research interests are modeling
and algorithms in optical molecular imaging and photoacoustic
imaging.

Eric Tang is an undergraduate student at the Department of
Biomedical Engineering and Computer Science, Duke University,
North Carolina, USA. He currently works at Duke Photoacoustic
Imaging Lab.

Jianwen Luo received his BS and PhD degrees in biomedical engi-
neering from Tsinghua University, Beijing, China, in 2000 and 2005,
respectively. He became a Principal Investigator (Tenure Track
Associate Professor) in the Department of Biomedical Engineering
and the Center for Biomedical Imaging Research at Tsinghua Univer-
sity in 2011, and obtained his tenure position (associate professor) in
2017. His research interest includes ultrasound imaging, fluorescence
imaging, and signal processing. He is a senior member of IEEE and
serves as an advisory editorial board member of Journal of Ultra-
sound in Medicine and associate editor of Medical Physics.

Junjie Yao is an assistant professor of biomedical engineering at
Duke University, North Carolina, USA, and a faculty member of Duke
Center for In-Vivo Microscopy, Fitzpatrick Institute for Photonics,
and Duke Cancer Institute. He received his BE and ME degrees
at Tsinghua University, and his PhD in biomedical engineering at
Washington University, St. Louis, Missouri, USA. His research inter-
est is in photoacoustic tomography technologies in life sciences,
especially in functional brain imaging and early cancer detection.

Journal of Biomedical Optics 016014-10 January 2018 • Vol. 23(1)

Zhou et al.: Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical. . .

http://dx.doi.org/10.1364/JOSAA.26.000443
http://dx.doi.org/10.1364/JOSAA.26.000443
http://dx.doi.org/10.1117/12.809276
http://dx.doi.org/10.1117/1.3200922
http://dx.doi.org/10.1364/AO.50.003145
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1118/1.597069
http://dx.doi.org/10.1103/PhysRevE.71.016706
http://dx.doi.org/10.1109/58.156174
http://dx.doi.org/10.1109/58.156174
http://dx.doi.org/10.1364/JOSAA.26.000919
http://dx.doi.org/10.1137/S0036144597321909
http://dx.doi.org/10.1007/s11060-005-9059-z
http://dx.doi.org/10.1109/TMAG.2006.872198
http://dx.doi.org/10.1109/TMAG.2006.872198
http://dx.doi.org/10.1364/BOE.2.003334
http://dx.doi.org/10.1088/0031-9155/57/6/1459
http://dx.doi.org/10.1364/OL.23.000648
http://dx.doi.org/10.1364/JOSAA.31.000621
http://dx.doi.org/10.1364/OL.33.001291
http://dx.doi.org/10.1364/OL.33.001291
http://dx.doi.org/10.1063/1.2119417
http://dx.doi.org/10.1063/1.2119417
http://dx.doi.org/10.1088/0266-5611/23/6/S06
http://dx.doi.org/10.1088/0031-9155/49/14/006
http://dx.doi.org/10.1118/1.2426406
http://dx.doi.org/10.1364/AO.49.001219
http://dx.doi.org/10.1109/TMI.2012.2208471
http://dx.doi.org/10.1109/TMI.2012.2208471
http://dx.doi.org/10.1103/PhysRevE.76.051913
http://dx.doi.org/10.1117/1.JBO.17.6.061214
http://dx.doi.org/10.1117/1.JBO.17.6.061219
http://dx.doi.org/10.1117/1.JBO.21.11.116007
http://dx.doi.org/10.1364/BOE.4.000001
http://dx.doi.org/10.1364/BOE.4.000001
http://dx.doi.org/10.1117/1.JBO.21.6.066010

