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Introduction

Abstract. For patients undergoing surgical cancer resection of squamous cell carcinoma (SCCa), cancer-free
surgical margins are essential for good prognosis. We developed a method to use hyperspectral imaging (HSI), a
noncontact optical imaging modality, and convolutional neural networks (CNNs) to perform an optical biopsy of
ex-vivo, surgical gross-tissue specimens, collected from 21 patients undergoing surgical cancer resection. Using
a cross-validation paradigm with data from different patients, the CNN can distinguish SCCa from normal aero-
digestive tract tissues with an area under the receiver operator curve (AUC) of 0.82. Additionally, normal tissue
from the upper aerodigestive tract can be subclassified into squamous epithelium, muscle, and gland with an
average AUC of 0.94. After separately training on thyroid tissue, the CNN can differentiate between thyroid
carcinoma and normal thyroid with an AUC of 0.95, 92% accuracy, 92% sensitivity, and 92% specificity.
Moreover, the CNN can discriminate medullary thyroid carcinoma from benign multinodular goiter (MNG)
with an AUC of 0.93. Classical-type papillary thyroid carcinoma is differentiated from MNG with an AUC of
0.91. Our preliminary results demonstrate that an HSI-based optical biopsy method using CNNs can provide
multicategory diagnostic information for normal and cancerous head-and-neck tissue, and more patient data are

needed to fully investigate the potential and reliability of the proposed technique. © The Authors. Published by SPIE undera
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JB0O.24.3.036007]
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squamous cell carcinoma.
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Cancers of the head and neck are the sixth most common
cancer worldwide, including cancers that are predominantly
of squamous cell origin, for instance the oral cavity, nasophar-
ynx, pharynx, and larynx, and others such as carcinomas of
the thyroid gland.! Major risk factors include consumption of
tobacco and alcohol, exposure to radiation, and infection
with human papilloma virus.>* Approximately 90% of cancer
at sites including the lips, gums, mouth, hard, and soft palate,
and anterior two-thirds of the tongue are squamous cell carci-
noma (SCCa).* The diagnostic procedure of SCCa typically
involves physical examination and surgical evaluation by
a physician, tissue biopsy, and diagnostic imaging, such as
PET, MRI, or CT. Patients with SCCa tend to present with
advanced disease, with about 66% presenting as stage III or
IV disease, which requires more procedures for successful treat-
ment of the patient.” The standard treatment for these cancers
usually involves surgical cancer resection with potential
adjuvant therapy, such as chemotherapy or radiation, depending
on the extent, stage, and location of the lesion. Successful

*Address all correspondence to Baowei Fei, E-mail: bfei@utdallas.edu

Journal of Biomedical Optics

036007-1

surgical cancer resection is a mainstay treatment of these cancers
to prevent local disease recurrence and promote disease-free
survival.®

Previous studies have investigated the optical properties of
normal and malignant tissues from areas of the upper aerodiges-
tive tract.”'” Muller et al. acquired in-vivo reflectance-based
spectroscopy from normal, dysplasia, inflammation, and cancer
sites in the upper aerodigestive tract from patients with SCCa to
extract tissue parameters that yield biochemical or structural
information for identifying disease. Varying degrees of disease
and normal tissue could be distinguished because of their differ-
ent optical properties that were believed to be related to collagen
and nicotinamide adenine dinucleotide.’ Similarly, Beumer et al.
acquired reflectance spectroscopy measurements from 450 to
600 nm from patients with SCCa and implemented an inverse
Monte Carlo method to derive oxygenation-based tissue proper-
ties from the optical signatures, which were found to be signifi-
cantly different in malignant and nonmalignant tissues.'°

Hyperspectral imaging (HSI) is a noncontact, optical imag-
ing modality capable of acquiring a series of images at multiple
discrete wavelengths, typically on the order of hundreds of spec-
tral bands. Preliminary research demonstrates that HSI has
potential for providing diagnostic information for a myriad of
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diseases, including anemia, hypoxia, cancer detection, skin
lesion and ulcer identification, urinary stone analysis, enhanced
endoscopy, and many potential others in development.''~>2
Supervised machine learning and artificial intelligence algo-
rithms have demonstrated the ability to classify images after
being allowed to learn features from training or example images.
One such method, convolutional neural networks (CNNs), has
demonstrated astounding performance at image classification
tasks due to their capacity for robust handling of training sample
variance and ability to extract features from large training data
sizes.

The need for an imaging modality that can perform diagnos-
tic prediction could potentially aid surgeons with real-time guid-
ance during intraoperative cancer resection. This study aims
to investigate the ability of HSI to classify tissues from the
thyroid and upper aerodigestive tract using CNNs. This work
was initially presented as a conference proceedings and oral
presentation.? First, a simple binary classification is performed,
i.e., cancer versus normal, and second, multiclass subclassifica-
tion of normal upper aerodigestive tract samples is investigated.
If proven to be reliable and generalizable, this method could
help provide intraoperative diagnostic information beyond pal-
pation and visual inspection to the surgeon’s resources, perhaps
enabling surgeons to achieve more accurate cuts and biopsies, or
as a computer-aided diagnostic tool for physicians diagnosing
and treating these types of cancer.

2 Methods

To investigate the ability of HSI to perform optical biopsy,
we recruited patients with thyroid or upper aerodigestive tract
cancers into our study, acquired and processed gross-level
HSI of freshly excised tissue specimens, trained our CNN, and
evaluated system performance.

2.1 Experimental Design

In collaboration with the Otolaryngology Department and the
Department of Pathology and Laboratory Medicine at Emory
University Hospital Midtown, 21 head and neck cancer patients
who were electing to undergo surgical cancer resection were
recruited for our study to evaluate the efficacy of using HSI
for optical biopsy.?**” From these 21 patients, a total of 63
excised tissue samples were collected. From each patient,
three tissue samples were obtained from the primary cancer
gross specimen in the surgical pathology department after the
primary cancer had been resected. The specimens were selected
to include tumor, normal tissue, and a tissue specimen at the
tumor—normal interface. Each specimen was typically around
10 X 10 mm in area and 3 mm in depth. The collected tissues
were kept in cold phosphate-buffered saline during transport to
the imaging laboratory, where the specimens were scanned with
an HSI system.?®?

Two regions of interest (ROIs) were used for this study: first,
the upper aerodigestive tract sites, including tongue, larynx,
pharynx, and mandible; second, the thyroid and associated car-
cinomas. Head and neck squamous cell carcinoma (HNSCCa)
of the aerodigestive tract represented the first group, composed
of seven patients. Normal tissue was obtained from all patients
in the HNSCCa group, and SCCa was obtained from six of these
patients. In head and neck cancers, the noncancerous tissues
adjacent to SCC may be dysplastic, inflammatory, or keratin-
ized, which could affect the HSI results. Therefore, the normal
tissues included in this study were regions of normal tissue that
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were not dysplastic or heavily inflamed tissues. The thyroid
group consisted of 14 patients totally and included 1 benign neo-
plasm and 3 malignant neoplasms: benign multinodular goiter
(MNG, 3 patients), classical-type papillary thyroid carcinoma
(cPTC, 4 patients), follicular-type papillary thyroid carcinoma
(fPTC, 4 patients), and medullary thyroid carcinoma (MTC,
3 patients), respectively.

After imaging with HSI, tissues were fixed in formalin,
underwent hemotoxylin and eosin staining, paraffin embedded,
sectioned, and digitized. A certified pathologist with head and
neck expertise confirmed the diagnoses of the ex-vivo tissues
using the digitized histology slides in Aperio ImageScope
(Leica Biosystems Inc., Buffalo Grove, Illinois). The histologi-
cal images serve as the ground truth for the experiment.

2.2 Hyperspectral Imaging and Processing

The hyperspectral images were acquired using a CRI Maestro
imaging system (Perkin Elmer Inc., Waltham, Massachusetts),
which is composed of a xenon white-light illumination source,
a liquid crystal tunable filter, and a 16-bit charge-coupled device
camera capturing images at a resolution of 1040 X 1392 pixels
and a spatial resolution of 25 um per pixel.>”?33%3! The hyper-
cube contains 91 spectral bands, ranging from 450 to 900 nm
with a 5-nm spectral sampling interval. The average imaging
time for acquiring a single HSI was about 1 min.

The hyperspectral data were normalized at each wavelength
(1) sampled for all pixels (i, j) by subtracting the inherent dark
current (captured by imaging with a closed camera shutter) and
dividing by a white reference disk according to the following
equation:>"3!

Iraw(/lv i’j) B Idark currem(/lv i’j)
Iwhite ref(/l’ L ]) - Idark current(ﬂ’ i ])

Inorm(/l’ lv]) =

Specular glare is created on the tissue surfaces due to wet sur-
faces completely reflecting incident light. Glare pixels do not
contain useful spectral information for tissue classification
and are hence removed from each HSI by converting the
RGB composite image of the hypercube to grayscale and exper-
imentally setting an intensity threshold that sufficiently removes
the glare pixels, assessed by visual inspection.

A schematic of the classification scheme is shown in Fig. 1.
For binary cancer classification, the classes used are normal
aerodigestive tissue versus SCCa, and medullary and papillary
thyroid carcinoma versus normal thyroid tissue. For multiclass
classification of oral and aerodigestive tract tissue, squamous
epithelium, skeletal muscle, and salivary glands in the oral
mucosa are used. For binary classifications of thyroid cancer,
cPTC, MTC, and multinodular thyroid goiter tissue are used.
The spectral signatures obtained from the HSI after postprocess-
ing are plotted as each class in Fig. 2.

To avoid introducing error from registration of tissue samples
that contain a tumor—normal boundary, only samples that con-
tain exactly one class were used for binary classification. For
example, the tumor sample and normal sample are held out
for testing, so that validation performance can be evaluated
on both class types. Out of the initial 63 samples acquired
from 21 patients recruited for this study, this elimination process
excluded 22 tissue samples because it was found that 2 tumor—
normal margin samples were obtained from 1 patient. The nor-
mal samples from the patients with MNG thyroid neoplasm
were not included in the binary cancer detection experiment.
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Fig. 1 Tissue classification scheme. (a) For classification of the HNSCCa group, first a binary classi-
fication is considered to test the ability of the classifier to distinguish normal samples from SCCa samples.
Next, histologically confirmed normal samples are subclassified as squamous epithelium, skeletal
muscle, and mucosal salivary glands. (b) For classification of the thyroid group, first a binary classification
is considered to test the ability of the classifier to distinguish normal thyroid samples from thyroid carci-
noma of multiple types. In addition, thyroid HSI classification is tested to discriminate MNG from MTC and

to discriminate MNG from classical-type PTC.

Additionally, after clinical histological evaluation, it was deter-
mined that one ex-vivo specimen from one papillary thyroid car-
cinoma patient was an adenomatoid nodule. This type of lesion
is reported in the literature to commonly cause misdiagnoses in
initial needle biopsies,*>*> and importantly, this lesion type was
not adequately represented in this study. Therefore, the two

remaining tissue samples from this patient were removed
from this study because we aimed to have balanced tissue spec-
imens from the thyroid carcinoma patients, normal, and tumor.
After all exclusionary criteria were determined, there were 36
tissue specimens from 20 patients, 7 HNSCCa and 13 thyroid,
incorporated in this study, and the epithelium, muscle, and gland
tissue components were selected as ROIs from 7 tissue samples
from the HNSCCa group. The number and type of tissue spec-

(@) o3 o imens are detailed in Table 1.
o a‘l’l';’::“m For training and testing the CNN, each patient HSI needs to
~ |- ==Gland i g be divided into patches. Patches are produced from each HSI
s . .
?,5 0.2 F——SCcCa after normalization and glare removal to create 25 X 25 X 91
o Y
£ prm—
3 M S T m—— - Table 1 Number of ex-vivo tissue specimens included in this study
B 01r S ," from the 13 patients with thyroid neoplasms and 7 patients with SCC.
@ I~ Mmeme ’ The number of image patches for CNN classification obtained from
each specimen type is also reported.
0 . . . . ,
500 600 700 800 900
Wavelength (nm) No. of tissue Total
(®) 03 , Class specimens patches
= = =Thyroid
Thyroid Normal thyroid 10 14,491
S —MTC
< MNG 3 9778
@
o
s MTC 3 10,334
[0}
& Classical PTC 3 6836
0 . . . . ) fPTC 4 13,200
500 600 700 800 900 . .
Wavelength (nm) HNSCCa Squamous epithelium 4 6366
- . . Skeletal muscle 3 5238
Fig. 2 Normalized spectral signatures that were averaged between !
all patients of the classes of tissues that were included in this Mucosal gland 4 5316
study. Presented by anatomical location: (a) normal tissue and
SCCa of the upper aerodigestive tract, and (b) normal, benign, and SCCa 6 4008
carcinoma of the thyroid.
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nonoverlapping patches that do not include any “black holes”
where pixels have been removed due to specular glare; see
Table 1 for the total number of patches per class. Glare pixels
are intentionally removed from the training dataset to avoid
learning from impure samples. In addition, patches were aug-
mented by 90-deg, 180-deg, and 270-deg rotations and vertical
and horizontal reflections, to produce 6 times the number of
samples. For cancer classification, the patches were extracted
from the whole tissue. While for multiclass subclassification
of normal tissues, the ROIs composed of the classes of target
tissue were extracted using the outlined gold-standard histopa-
thology images.

2.3 Convolutional Neural Network

The CNNs used in this study were built from scratch using the
TensorFlow application program interface for Python. A high-
performance computer was used for running the experiments,
operating on Linux Ubuntu 16.04 with 2 Intel Xeon 2.6 GHz
processors, 512 GB of RAM, and 8 NVIDIA GeForce Titan
XP GPUs. Two distinct CNN architectures were implemented
for HNSCCa classification, which incorporated inception mod-
ules as shown in Fig. 3, and thyroid classification, which used
a three-dimensional (3-D) architecture. Both architectures are
detailed below and shown schematically in Fig. 4. During the
following experiments, only the learning-related hyperpara-
meters that were adjusted between experiments, which include
learning rate, decay of the AdaDelta gradient optimizer, and
batch size. Within each experiment type, the same learning rate,
rho, and epsilon were used, but some cross-validation iterations
used different numbers of training steps because of earlier or
later training convergence.

To classify thyroid tissues, a 3-D CNN based on AlexNet, an
architecture originally designed for ImageNet classification, was
implemented using TensorFlow.?*** The model consisted of six
convolutional layers with 50, 45, 40, 35, 30, and 25 convolu-
tional filters, respectively. Convolutions were performed with
a convolutional kernel of 5 X5 x 9, which correspond to the
x —y — A dimensions. Following the convolutional layers were
two fully connected layers of 400 and 100 neurons each. A drop-
out rate of 80% was applied after each layer. Convolutional units
were activated using rectified linear units (ReLu) with Xavier
convolutional initializer and a 0.1 constant initial neuron
bias. Step-wise training was done in batches of 10 patches
for each step. Every 1000 steps, the validation performance

Previous layer

1x1 convolution 1x1 convolution 1x1 convolution

1x1 convolution

3x3 convolution | | 5x5 convolution | | 7x7 convolution

Filter
concatenation

Next layer

Fig. 3 Modified inception module for use in the 2-D CNN architecture
for classifying HSI of tissues from the upper aerodigestive tract.
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(a) Thyroid group: 3-D CNN  (b) HNSCCa group: 2-D inception CNN

Layer Shape Layer Shape

Input | [(25x25x91x1) Input | | (25 x 25 x 91)

(Conv1| [(21x21 x83x50) \@/ (25 x 25 x 496)
Conv2| [(17x 17 x 75 x 45) (Incep2| [(25 x 25 x 494)
[Convt] [[(17x17x36)]
\ln—c'ep—3‘ (17 x 17 x 464)

FC1 (1 x 1024)
FC2 (1x512)

Soft (1xN)

3| (183 x 13 x 67 x 40)

Conv2]
Conva
Convs|

5 (5% 5x51x30)
6 (1 x1x43x25)

FC1 (1 x 400)
FC2 (1 x 100)

Soft (1x2)

Fig. 4 CNN architectures implemented for classification of (a) HSI of
thyroid tissue and (b) tissue from the upper aerodigestive tract.

was evaluated, and the training data were randomly shuffled
for improved training. Training was done using the AdaDelta,
adaptive learning, optimizer for reducing the cross-entropy loss
with an epsilon of 1 x 1078 and rho of 0.9.% For thyroid normal
versus carcinoma, the training was performed at a learning rate
of 0.1 for 2000 to 6000 steps depending on the iteration.
For MNG versus MTC and for MNG versus cPTC, the training
was done at a learning rate of 0.005 for exactly 2000 steps for
all iteration.

Classification of upper aerodigestive tract tissues was
hypothesized to be a more complex task, so a two-dimensional
(2-D) CNN architecture was constructed to include a modified
version of the inception module appropriate for HSI that does
not include max-pools and uses larger convolutional kernels,
implemented using TensorFlow.”***** As shown in Fig. 3,
the modified inception module simultaneously performs a series
of convolutions with different kernel sizes: a 1 X 1 convolution;
and convolutions with 3 X 3, 5 X 5, and 7 X 7 kernels following
a 1 x 1 convolution. The model consisted of two consecutive
inception modules, followed by a traditional convolutional
layer with a 9 X 9 kernel, followed by a final inception module.
After the convolutional layers were two consecutive fully con-
nected layers, followed by a final soft-max layer equal to the
number of classes. A drop-out rate of 60% was applied after
each layer. For binary classification, the numbers of convolu-
tional filters are 355, 350, 75, and 350, and the fully connected
layers had 256 and 218 neurons. For multiclass classification,
the numbers of convolutional filters are 496, 464, 36, and
464, and the fully connected layers had 1024 and 512 neurons.
Convolutional units were activated using ReLu with Xavier con-
volutional initializer and a 0.1 constant initial neuron bias.®
Step-wise training was done in batches of 10 (for binary) or
15 (for multiclass) patches for each step. Every 1000 steps,
the validation performance was evaluated, and the training
data were randomly shuffled for improved training. Training
was done using the AdaDelta, adaptive learning, optimizer
for reducing the cross-entropy loss with an epsilon of
1 x 107% (for binary) or 1x 10~ (for multiclass) and rho of
0.8 (for binary) or 0.95 (for multiclass).*® For normal oral tissue
versus SCCa binary classification, the training was done at a
learning rate of 0.05 for 5000 to 15,000 steps depending on
the patient-held-out iteration. For multiclass subclassification
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of normal aerodigestive tract tissues, the training was done at a
learning rate of 0.01 for 3000 to 5000 steps depending on the
patient-held-out iteration.

2.4 Validation

The final layer of the CNN labels each test case as the class with
the highest probability overall, so each test patch has exactly one
label. In addition, the probabilities of each test patch belonging
to all classes are output from the network. All testing is done on
a patch-based level to ensure class accuracy. The typical clas-
sification time for one patient’s entire HSI was on the order
of several minutes. The class probabilities for all patches of a
test patient case are used to construct receiver operator charac-
teristic (ROC) curves using MATLAB (MathWorks Inc, Natick,
Massachusetts). For binary classification, only one ROC curve
is created per patient test case, but for multiclass classification,

each class is used to generate a respective ROC curve; true
positive rate and false positive rate are calculated as that
class against all others. The CNN classification performance
was evaluated using leave-one-patient-out external validation
to calculate the sensitivity, specificity, and accuracy, defined
below, using the optimal operating point of each patient’s
ROC curve.?’?® The area under the curve (AUC) for the ROC
curves is calculated as well and averaged across patients.

True Positives

Sensitivity = — —,
y True Positives 4 False Negatives

True Negatives
True Negatives + False Positives’

Specificity =

Table2 Results of interpatient CNN classification (leave-one-patient-out cross validation). Values reported are averages across all patients shown

with standard deviation.

No. of tissue specimens AUC Accuracy Sensitivity Specificity
Thyroid Normal versus carcinoma 20 0.95 +0.07 92+9 92+8 92+10
cPTC versus MNG 7 0.91+0.10 86+ 13 86+ 14 86+13
MTC versus MNG 6 0.93 +0.04 87+5 88+4 85+7
HNSCCa Normal versus SCCa 13 0.82+0.13 81+ 11 8115 80+ 16
Multiclass 7 0.94 +0.08 90+9 93+ 6 89+ 13
(a) HNSCCa Group: Normal vs. SCCa Binary (b) HNSCCa Group: Normal Multiclass
1 - -
08} - 0.8 o g
o -7 2 -7
© -’ © s
[i4 L -
.g 06 /// E 0.6 -
2 - 5
204 e 204
3 - =]
= e = ———Epithelium
5 177 Muscle
0.2 - 028/ | 7 Gland
0 . N . . . 0 . . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate False Positive Rate
(c) , Thyroid Group: Normal vs. Cancer Binary (d) Thyroid Group: MNG vs. MTC binary (e) ; Thyroid Group: MNG vs. cPTC binary
> 1 =
_f'"_— 7 - P .7
0.8 7 08 ol -
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& -7 & S e
2 0.6 // e 0.6 e 06| //
g e G 3 I
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= e = = e
02f s 0.2 0.2 s
0 0 0 Z
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

False Positive Rate

False Positive Rate

False Positive Rate

Fig. 5 Classification results of HSI as ROC curves for HNSCCa and thyroid experiments generated
using leave-one-out cross validation. (a) Binary classification of SCCa and normal head-and-neck tissue;
(b) multiclass subclassification of normal aerodigestive tract tissues; (c) binary classification of normal
thyroid and thyroid carcinomas; (d) binary classification of MNG and MTC; (e) binary classification of
MNG and classical PTC.
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True Positives + True Negatives
Total Number of Samples

Accuracy =

3 Results

Using a leave-one-patient-out cross-validation paradigm with
HSI obtained from different patients, the CNN can distinguish
SCCa from normal oral tissues with an AUC of 0.82, 81% accu-
racy, 81% sensitivity, and 80% specificity. Table 2 shows the full
results. The ROC curves for all HNSCCa patients are shown
in Fig. 5. A representative HNSCCa patient classification is
visualized in Fig. 6. Additionally, normal oral tissues can be
subclassified into squamous epithelium, muscle, and glandular
mucosa using a separately trained CNN, with an average AUC
of 0.94, 90% accuracy, 93% sensitivity, and 89% specificity.
Representative normal subclassification results are shown in
Fig. 7, and full results are detailed in Table 3.

After separately training on thyroid tissue, the CNN differ-
entiates between thyroid carcinoma and normal thyroid with an
AUC of 0.95, 92% accuracy, 92% sensitivity, and 92% speci-
ficity. The ROC curves for all thyroid patients are shown in
Fig. 5, and representative thyroid carcinoma classification
results are visualized in Fig. 6. Moreover, the CNN can discrimi-
nate MTC from benign MNG with an AUC of 0.93, 87% accu-
racy, 88% sensitivity, and 85% specificity. cPTC is differentiated

RGB

HNSCCa

Thyroid carcinoma

Histology

l(a,‘\
(5

from MNG with an AUC of 0.91, 86% accuracy, 86% sensitiv-
ity, and 86% specificity.

4 Discussion

We developed a deep learning-based classification method for
hyperspectral images of fresh surgical specimens. The study
demonstrated the ability of HSI and CNNs for discriminating
between normal tissue and carcinoma. The results of normal tis-
sue subclassification into categories of squamous epithelium,
skeletal muscle, and glandular mucosa demonstrate that there
is further classification potential for HSI.

A review of surgical cases found that head and neck surgery
has the most intraoperative pathologist consultations (IPC)
per surgery, typically around two consultations per surgery,
compared to other organ systems.’” The average time at our
institution was about 45 min per IPC. Despite being currently
unoptimized and performed off-line, our method takes around
5 min, including imaging time, classification, and postprocess-
ing. The main benefit is that the proposed method does not
require excising tissue or any tissue processing to provide diag-
nostic information of the surgical area. Additionally, our method
is demonstrated to be significantly faster than an average IPC.
However, we do not suggest that the proposed method could
replace an IPC but rather provide guidance during surgery to
reduce the number or increase the quality of IPCs.

Classified image

cSeaawemo--

Normal

M Cancer

Fig. 6 Representative results of binary cancer classification. (a) HSI-RGB composite images with cancer
ROI outlined. (b) Respective histological gold standard with corresponding ROI outlined. (c) Artificially
colored CNN classification results. True positive results representing correct cancer identification are
visualized in red, and false negatives representing incorrect normal identification are shown in yellow.
Tissue shown in grayscale represents tissue that is not classified due to the tissue surface containing
glare pixels causing insufficient area to produce the necessary patch size for classification.

Journal of Biomedical Optics

036007-6

March 2019 « Vol. 24(3)



Halicek et al.: Optical biopsy of head and neck cancer using hyperspectral imaging. ..

Histology

Epithelium

Skeletal muscle

Mucosal gland

Classified image

B TP B FN

Fig. 7 Representative results of subclassification of normal oral tissues. (a) HSI-RGB composites are
shown with ROI of the tissue type outlined. (b) Respective histological gold standard with corresponding
ROI outlined. (c) Artificially colored CNN classification results of the ROI only. True positive results rep-
resenting correct tissue subtype are visualized in blue, and false negatives are shown in red. Tissue
within the ROI that is shown in grayscale represents tissue that is not classified due to glare pixels
or insufficient area to produce the necessary patch size.

Table 3 Results of interpatient CNN classification of subclassified
normal upper aerodigestive tract tissues. Values reported are aver-
ages across all patients shown with standard deviation.

No. of
tissue Accuracy Sensitivity Specificity
specimens AUC (%) (%) (%)

Squamous 4 094+0.06 90+5 91+3 91+7
epithelium
Skeletal 3 0.99+0.01 98+3 98+3 97 +4
muscle
Mucosal 4 0.89+0.10 83+13 90+8 79+18
gland

In this study, the limited patient dataset reduces the general-
izability of the results. In addition, the ROI technique for out-
lining tissues of interest for normal multiclass subclassification
creates the potential to introduce error into the experiment. Both
of these issues could be resolved by utilizing a large number of
patient data. Moreover, the gross-tissue specimens utilized in
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this study are entirely cancer or normal, so the cancer samples
are composed of sheets of malignant cells. For the proposed
method to be extended to the operating room to aid in the resec-
tion of cancer, the method needs to be investigated on detecting
cancer cells extending beyond the cancer edge. Therefore, future
studies will investigate the ability of the proposed method to
accurately predict the ideal resection margin of cancerous
tissues.

When the diagnosis of thyroid cancer is suspected, a needle
biopsy is performed, which can provide information on the his-
tological and intrinsic type of cancer that is present. It is not
uncommon for thyroid cancer to be present with benign hyper-
plasia of the nonmalignant portions of the effected lobe.
However, the co-occurrence of both MTC and PTC is rare,
although cases have been documented.*®*° We hypothesized
that HSI has further potential than binary cancer detection, as
we explored in this work, and that different types of cancer
can be identified from benign hyperplasia. Therefore, we per-
formed a set of two binary classifications (MTC versus
MNG and PTC versus MNG) to show both can be successfully
identified from MNG. To determine if HSI can detect normal
thyroid and the range of thyroid neoplasms—MTC, PTC,
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hyperplasia, follicular carcinoma, adenomas, and nodules—all
in one multiclass approach, more patient data collection and
more investigation into the robustness HSI and the classifiers
need to be performed.

We acknowledge that with a limited patient set for the experi-
ments detailed, we do not have a fully independent test set and
employ a leave-one-patient-out cross-validation approach, as
was reported in Sec. 3. This approach has several limitations
with regards to potential overfitting from hyperparameter tun-
ing. However, to avoid bias, the CNN architectures and number
of filters in each network were not adjusted during the experi-
ments conducted. As stated, a more complex CNN design was
used for SCCa because it was deemed a more complex problem.
During the experiments, the only parameters that were adjusted
were the learning-related parameters, which are detailed in
Sec. 2. These included the learning rate and the epsilon and
rho of AdaDelta, which control the decay of learning rate
and gradient optimization. Importantly, the same learning rate,
rho, and epsilon were used within each experiment type so that
all cross-validation iterations had the same hyperparameters.
We found that different experiments, for example, HNSCCa
binary compared to multiclass, required different learning-based
parameters because they were trained at different rates.

Another potential source of errors from the cross-validation
experiments was the effect of overfitting during training of each
cross-validation iteration, within an experiment type. With the
relatively small sample sizes employed in this study, swapping
one patient from the validation to training set could drastically
change the training time of the network. Therefore, performance
of each cross-validation iteration was evaluated every 1000
training steps, and different training steps for cross-validations
were sometimes used. In Sec. 2, we report the range of training
steps for each experiment type; to reduce bias, the same training
step number was used when it was possible for all or most cross-
validation iterations.

Another limitation of this work is the issue of specular glare.
Glare was systematically removed during preprocessing, so that
training patches did not contain any glare pixels. This was done
to avoid any training biases or error that could have been intro-
duced from glare. Moreover, since glare was removed from
training, it was also removed from the testing dataset to ensure
that the quantified results were unblemished by glare artifacts to
fully evaluate the classification potential of HSI. Regions that
were not classified due to large amount of surface glare can
be seen as grayscale in Figs. 6 and 7. However, for visualization
purposes, the representative result of HNSCCa in Fig. 6 was
fully classified, including patches with glare. This was done
to demonstrate the classification robustness when the CNN is
trained on clean, preprocessed data.

5 Conclusion

The preliminary results of this proof of principle study demon-
strate that an HSI-based optical biopsy method using CNNs can
provide multicategory diagnostic information for normal head-
and-neck tissue, SCCa, and thyroid carcinomas. By acquiring
and processing more patient HSI data, the deep learning meth-
odology detailed will allow studies of more tissue types and
potentially produce results with a more universal application.
Further work involves investigating the multiple preprocessing
approaches and refining the proposed deep learning architec-
tures. Additionally, future studies will investigate the ability
of the proposed technology to detect microscopic cancer near
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the resection margin of cancerous specimens by focusing on
areas adjacent to the cancer tissue; this line of research will
be important in determining if the proposed technique has
the potential to aid the surgeons during an operation, as our
preliminary results suggest.
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