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Abstract. Diffuse optical imaging probes deep living tissue enabling structural, functional, metabolic, and
molecular imaging. Recently, due to the availability of spatial light modulators, wide-field quantitative diffuse
optical techniques have been implemented, which benefit greatly from structured light methodologies. Such
implementations facilitate the quantification and characterization of depth-resolved optical and physiological
properties of thick and deep tissue at fast acquisition speeds. We summarize the current state of work and
applications in the three main techniques leveraging structured light: spatial frequency-domain imaging, optical
tomography, and single-pixel imaging. The theory, measurement, and analysis of spatial frequency-domain im-
aging are described. Then, advanced theories, processing, and imaging systems are summarized. Preclinical
and clinical applications on physiological measurements for guidance and diagnosis are summarized. General
theory and method development of tomographic approaches as well as applications including fluorescence
molecular tomography are introduced. Lastly, recent developments of single-pixel imaging methodologies and
applications are reviewed. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
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1 Introduction
The ability to probe deep tissues with light for biomedical
applications has been recognized since the scientific reports
published as early as the late 1800s for monitoring brain
hemorrhage1 and early 1900s for imaging breast cancer2 and
performing tissue oximetry.3,4 Since then, diffuse optical imag-
ing techniques have greatly benefited numerous biomedical
fields. Mainly, the goal of these optical techniques is to charac-
terize optical properties of tissue using light from the ultraviolet
to the infrared spectral region. The specific light–tissue interac-
tion enables monitoring of a vast array of tissue characteristics,
including structural, physiological, metabolic, and molecular
properties.

The early implementations of diffuse optics were performed
using wide-field sources that illuminated large areas of tissues.
Such implementations enabled fast and noncontact instruments
for ease of use in clinical settings.5,6 However, the collected sig-
nal is heavily surface-weighted and contrast in the biomarkers of
interests are blurred due to high scattering in biotissues.7 Such
inherent effects led to an undesirable number of false-positive
classifications in breast cancer detection.8,9

In parallel, great strides were made to derive more accurate
and efficient light propagation models.10,11 Coupled with the
wide spread use of personal computers, such progress led to
the development/establishment of quantitative methodologies
such as functional near-infrared spectroscopy12,13 and diffuse
optical tomography (DOT).14 However, such approaches were
mainly based on point source and detector configurations.

Thus, they were not amenable to imaging large surfaces with
high density source–detector configurations. Typically, they
relied on a few fibers coupled to the tissue of interest, which
led to sampling errors, difficulty in scaling, and high sensitivity
to the optode–tissue coupling efficiency.15 Due to the recent
advent of major developments in spatial light modulators
(SLMs), it is now possible to combine both wide-field imaging
and quantitative methodologies based on efficient light propa-
gation models to probe large tissue surfaces and retain sensitiv-
ity to deep tissues. In this review, we summarize the current
progresses in harnessing structured light strategies in diffuse
optical imaging. The review covers the three main applications
that have shown fast growth over the recent years: spatial fre-
quency-domain imaging, tomography, and single-pixel imaging.
Each section will outline the context and founding principles of
its technology, followed by advanced methods, current limita-
tions, and applications. The review will be concluded with an
outlook of these approaches.

2 Spatial Frequency-Domain Imaging
Quantitative sensing of deep tissues or tomography has been
largely based on point sources over the last three decades.16–18

Wilson was the first to use full-field structured illumination as
a measurement tool, noting that the defocus or blurring of the
structure could be used in microscopy for optical sectioning.19

In the diffuse regime, Dögnitz and Wagnières20 demonstrated
that this blurring of structured illumination could be processed
to a single value and analyzed as a spatial frequency response
that is characteristic of the medium’s optical properties. Wide-
field mapping (10 cm × 10 cm) of diffuse optical properties was
realized by Cuccia et al.21 with simple fringe pattern illumina-
tion, spatial frequency-domain measurement and analysis, and
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pixel-by-pixel processing to introduce a method termed spatial
frequency-domain imaging (SFDI).

The incorporation of readily available wide-field optical
components, the ease of processing in the frequency domain
(as opposed to deconvolution in the spatial domain), and the
quantitative nature of SFDI has made it a technology worth
mentioning—as of this article, Google Scholar shows over
300 citations of the Cuccia et al. 2009 paper and Web of
Science shows over 150 publications and over 800 citations
for SFDI since 2010.

2.1 Introductory Theory, Measurement, and
Analysis

2.1.1 Theory

In order to quantitatively map the multiple-scattered photons,
i.e., the diffuse reflectance, to tissue optical parameters,
a model system must be introduced. The original formulation
assumes a homogeneous, linear, time-invariant system. The
diffuse reflectance as a function of spatial frequency can be
described with a modulation transfer function (MTF) that is
characteristic of the sample’s optical properties. From the per-
spective of signal processing, the highly scattering nature of tis-
sue acts as a low-pass filter. The experimental and theoretical
results demonstrate the loss in signal and the shortening of
reflected photon pathlengths with increased spatial frequency.
This means that the illumination spatial frequency dictates
the optical length scale being probed. This mechanism enables
depth sensing and quantification techniques.21,22

The first complete measurement and analysis for wide-field
mapping of optical properties in the spatial frequency domain
was done by Cuccia et al.21 and is still the foundation for
most SFDI techniques. A brief walkthrough of the conceptual
framework will be reiterated here—a thorough description can
be found in Ref. 22. It should be noted that the framework is
expounded in the diffusion regime for clarity in this context
but is not limited therein.

Starting with the time-independent diffusion equation for
a homogeneous medium

EQ-TARGET;temp:intralink-;e001;63;319∇2Φ − μ2effΦ ¼ −3μtrq; (1)

gives the relationship between source q, medium properties
μtr ¼ ðμa þ μ 0

sÞ (transport coefficient with absorption and
reduced scattering coefficients μa and μ 0

s, respectively) and
μeff ¼ ð3μaμtrÞ1∕2, and fluence rate Φ. Assuming a semi-infinite
geometry, we now introduce a pure spatially modulating source
that is periodic and normally incident to the boundary surface

EQ-TARGET;temp:intralink-;e002;63;222q ¼ q0ðzÞ cosðkxxþ φÞ; (2)

which modulates in the x-spatial dimension with spatial fre-
quency fx ¼ kx∕2π and phase φ and is constant across the
y-spatial dimension with arbitrary depth dependence q0ðzÞ.
Assuming a linear medium, this modulated source will result
in a modulated fluence rate with the same frequency and phase

EQ-TARGET;temp:intralink-;e003;63;136Φ ¼ Φ0ðzÞ cosðkxxþ αÞ: (3)

Modulation is allowed for an arbitrary direction and the
y-spatial dimension is held constant here for convenience of
analysis. These equations are combined to form a one-dimen-
sional (1-D) second-order Helmholtz equation

EQ-TARGET;temp:intralink-;e004;326;752

d2

dz2
Φ0ðzÞ − μ 02

effΦ0ðzÞ ¼ −3μtrq0ðzÞ; (4)

where

EQ-TARGET;temp:intralink-;e005;326;707μ 0
eff ¼ ðμ2eff þ k2xÞ1∕2 ≡

1

δeff
: (5)

Here, δ 0
eff defines the effective penetration depth, a useful

construct for estimating and comparing the depth sensitivity
in the spatial frequency domain to other domains. First, note
that with kx ¼ 0 the penetration depth is simply 1∕μeff, as
expected from a constant, planar illumination source.23 Next,
the penetration depth decreases with increasing spatial fre-
quency—a key result that enables depth sensing and tomogra-
phy (see Secs. 2.2.1 and 3).21 Equation (4) is identical to the
diffusion equation for continuous planar illumination, and so
previous solutions can be utilized with partial-current boundary
conditions24 to yield the following expression for the diffuse
reflectance:

EQ-TARGET;temp:intralink-;e006;326;536RdðkxÞ ¼
3Aμ 0

s∕μtr�
μ 0
eff

μtr
þ 1

��
μ 0
eff

μtr
þ 3A

� ; (6)

where

EQ-TARGET;temp:intralink-;e007;326;474A ¼ 1 − Reff

2ð1þ ReffÞ
(7)

and

EQ-TARGET;temp:intralink-;e008;326;424Reff ≈ 0.0636nþ 0.668þ 0.710

n
−
1.440

n2
; (8)

where A is a proportionality constant formed from the effective
reflection coefficient Reff , obtained by integrating the Fresnel
reflection coefficient over all angles of incidence for unpolarized
light, and index of refraction ratio n, generalized as a bulk
property.

The diffuse reflectance RdðkxÞ is effectively the spatial
modulation transfer function of the medium, i.e., the spatial fre-
quency response function of the linear system. As demonstrated
in other domains, the diffuse nature of tissue characterizes its
response as a low-pass filter in the spatial frequency domain.
The diffusion approximation remains valid when μ 0

s ≫ μa and
when the spatial frequency fx illuminating the sample is much
less than the transport coefficient μtr. For tissue measurements,
in practice this means the maximum spatial frequency expected
to satisfy the diffusion model is ∼0.33 · μtr.

22 New analytical
models have been introduced to characterize the diffuse
reflectance beyond the diffusion regime where photons are min-
imally scattered due to increased absorption or shorter photon
pathlengths.25,26

2.1.2 Measurement

Equation (2) depicts a pure sinusoidal source illuminating
the sample, but in practice this is impossible—one cannot illu-
minate with negative intensity—and so a DC offset is necessary
to support the AC carrier frequency of source S along the
x dimension

EQ-TARGET;temp:intralink-;e009;326;93S ¼ S0
2
½1þM0 cosð2πfxxþ ϕÞ�; (9)
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where S0 is the source intensity andM0 is the modulation depth
(set to 1 for maximum AC signal). One can see that with a sim-
ple 1-D sinusoidal projection, the sample will simultaneously
be illuminated with a S0∕2 DC signal with no modulation and
a S0∕2½M0 cosð2πfxxþ ϕÞ� AC wave modulating at fx. It is
worth noting that this simultaneous AC and DC sampling
has been utilized for advanced acquisition methods (see
Sec. 2.2.2). For now, consider that the reflected AC intensity
IAC incorporates the tissue’s response in the amplitude envelope
MAC seen here

EQ-TARGET;temp:intralink-;e010;63;397IAC ¼ MACðx; fxÞ cosð2πfxxþ ϕÞ: (10)

To retrieve a single measurementMAC for a given frequency,
the most widely used method is the signal processing technique
of phase stepping, where three images are collected I1, I2, I3,
one at each step of ϕ ¼ ½0; 120 deg; 240 deg�. This procedure
is explained for multiple modalities by Mertz.27 These images
are processed together for demodulation, i.e., to remove the
carrier frequency along with the DC signal and to obtain the
amplitude envelope at each image pixel xi

EQ-TARGET;temp:intralink-;e011;63;278

MACðxi; fxÞ ¼
21∕2

3
f½I1ðxiÞ − I2ðxiÞ�2 þ ½I2ðxiÞ − I3ðxiÞ�2

þ ½I3ðxiÞ − I1ðxiÞ�2g1∕2: (11)

This amplitude envelope MAC is the product of the initial
source intensity I0, the optical system’s modulation transfer
function MTFsys, and the sample’s response contained in the
diffuse reflectance Rdðxi; fxÞ

EQ-TARGET;temp:intralink-;e012;63;174MACðxi; fxÞ ¼ I0 MTFsys Rdðxi; fxÞ: (12)

Because the measurement and analysis is done in the spatial
frequency domain, MAC is in fact the product of the response
functions, allowing for a simple ratio against a reference sample
of known optical properties to remove the systematic compo-
nents and retrieve the sample’s diffuse reflectance22

EQ-TARGET;temp:intralink-;e013;326;507Rdðxi; fxÞ ¼
MACðxi; fxÞ

MAC; refðxi; fxÞ
Rd;ref;predðfxÞ: (13)

A light propagation model is used to scale the referenced
measurement by Rd;ref;predðfxÞ and an inverse solver is then
used to retrieve optical properties from sample diffuse reflec-
tance measurements. As few as two spatial frequency measure-
ments, one AC and one DC (fx ¼ 0), can be used to properly
generate absorption and reduced scattering maps.22

2.1.3 Analysis

The above measurement is analyzed pixel-by-pixel, resulting in
a wide-field map of optical properties. Because each pixel is
processed independently, technology suited for wide-field use
can be readily implemented. System components vary with
application, but the most common implementations utilize a
digital micromirror device (DMD) for projection and a charged
couple device (CCD) or a complementary metal–oxide–semi-
conductor (CMOS) camera for imaging [see Fig. 1(a)].

To achieve optical property maps of the measured sample, an
inverse solver is required for mapping Rdðxi; fxÞ to μa and μ 0

s.
While diffusion theory [see Eq. (6)] might be preferred as
the forward model and inverse solver due to its speed and
ease of use, Monte Carlo models and empirical look-up tables
can be precalculated for rapid solutions beyond the diffusion
regime.22,28–30 While simulations in the spatial frequency
domain can be done with a complex weighting scheme,29 sim-
ulations are often done in the spatial domain as a point source
and then transformed to the spatial frequency domain, e.g., by
radially symmetric 1-D Hankel transform22 or by convolution to
a line source and a 1-D Fourier transform.31

Early analysis methods demonstrated the depth-sensitivity
dependence on spatial frequency in diffusive media21,32 and
its potential for increased contrast with fluorescent inclusions.33

Single wavelength analysis was expanded to multispectral
measurements, enabling quantitative chromophore concentration
measurements34 and mapping of physiological markers with as
few as two wavelengths.35 To extend SFDI’s clinical relevance,
a profile-correction scheme was developed so nonflat samples

Fig. 1 Schematics of typical systems for (a) SFDI, (b) tomography, and (c) single-pixel imaging.
Dotted lines indicate structured projection or detection, usually by DMD, and solid lines indicate 2-D
camera detection. (a) SFDI offers a simple model, rapid collection, and depth-averaged imaging.
(b) Tomography can be in reflection (gray) or transmission (blue) geometry, requires advanced models,
processing, and many acquisitions for 3-D reconstructions. (c) Single-pixel detection is highly flexible in
its geometry, detection (temporal, frequency, spectral, and/or spatial resolution), for N-D imaging.
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could be measured.36 Acquisition could be relatively fast (on the
order of seconds), but this is too slow to avoid certain motion
artifacts such as breathing. Therefore, a correction scheme was
devised to correct for these artifacts,37 though current methods
focus instead on rapid acquisition to avoid the issue (see
Sec. 2.2.2).38–40

2.2 Advanced Techniques

From the fundamentals discussed in the first section, research
has expanded the theory, processing, instrumentation, and mod-
eling to develop additional robust techniques that push the limits
of quantitative imaging technology.

2.2.1 Advanced theory

Using the diffusion theory result for reflectance [see Eq. (6)],
one can derive that with planar illumination (kx ¼ 0) absorption
has its maximum effect on the diffuse reflectance RdðkxÞ.22
Furthermore, the diffuse reflectance sensitivity to multiple light
scattering (μ 0

s) is also maximum in this regime, but increasing
spatial frequency, particularly passed the diffuse regime
(kx ≫ μeff ), decreases multiple light scattering and increases
sensitivity to the scattering phase function. Enabling both dif-
fuse and subdiffuse imaging into a single modality has further
demonstrated the utility of structured illumination for imaging
biological tissue.

Entering the subdiffuse regime [cf. Fig. 2(ii)], studies have
shown that with increasing spatial frequency, the reflectance

signal becomes increasingly sensitive to the medium’s scattering
phase function PðθsÞ.26,41 Sensitivity beyond the scattering
phase function’s first Legendre moment, anisotropy factor
g1 ¼ cosðθsÞ, is often characterized by combining the first two
Legendre moments to form scattering parameter γ ¼ 1−g2

1−g1
.42,43

With this added phase function sensitivity, studies have demon-
strated the characterization of the fractal size distribution of
Mie scatterers in phantoms26,44 and McClatchy et al.45,46 even
classified tumor grades in ex vivo human breast and murine
cancer models as compared to histopathology [see Fig. 2(iii)].

However, with the new rapid modeling capabilities of their
analytical radiative transport equation (RTE) solution,25,49

Liemert et al.47 showed that γ may be prone to errors due to
underestimating the number of high-angle scattering events for
high spatial frequency reflectance measurements. As a solution,
they proposed to weight the higher order Legendre moments of
the phase function PðθsÞ with a shaping factor c

EQ-TARGET;temp:intralink-;e014;326;192

X∞
i¼2

ð−cÞi−2 1− gi
1− g1

¼ γ − cδþ c2ε− c3ζþ : : : − : : : (14)

that determines the decreasing weight of the higher order param-
eters γ, ε, ζ, etc. After extensive modeling for various scattering
phase functions and collection geometries, the best average value
was c ¼ 0.5. This is used to define their scattering parameter σ

EQ-TARGET;temp:intralink-;e015;326;100σ ¼
X∞
i¼2

ð−0.5Þ2 1 − gi
1 − g1

(15)

Fig. 2 Acquisition, modeling, and application: (i) demonstration of structured illumination patterns,
collection, and demodulated reflectance images—adapted from Ref. 45. (ii) Average photon paths
get shorter and less diffuse with decreased source–detector separation, similar to increasing spatial
frequency—adapted from Ref. 47. (iii) Subdiffuse SFDI demonstrates its ability to measure scattering-
related parameters that correlate with histology of excised cancerous breast tissue—adapted from
Ref. 45. (iv) SFDI demonstrates sensitivity to the amount of anisotropy (top row) and fiber orientation
(bottom row)—adapted from Ref. 48.
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that outperforms γ in precision.47 However, the only testing of σ
thus far has been with simulation, and there is extensive literature
for comparison of γ measurements in other domains.42,43,50–52

Stepping up in length scales from the scattering phase func-
tion, wide-field optical imaging techniques generally have poor
sensitivity to microscopic scattering structures, such as fiber
orientation. However, Konecky et al.48 developed an anisotropic
diffusion model to simulate and experimentally validate the
sensitivity of structured illumination to fiber orientation [cf.
Fig. 2(iv)]. By analyzing the amplitude and phase shift of the
structured illumination, Konecky et al. deduced the fiber orien-
tations as well as assessed the strength of anisotropy in a scat-
tering orientation index (SOI) defined as

EQ-TARGET;temp:intralink-;e016;63;609SOI ¼ maxφ

�jgðφÞ − jgðφþ π∕2Þjj
jgðφÞ þ jgðφþ π∕2Þjj

�
; (16)

where gðφÞ is the angular-dependent anisotropy factor of the
medium and φ is the angle of the projected spatial frequency.

Broader still, the original modeling of SFDI requires a homo-
geneous medium, but several studies have developed models
and evaluated two-layer systems for a compromise between
the gain in depth resolution and the cost of processing and
acquisition speed.53–55 These models would go on to support
studies evaluating the effects of melanin concentrations in
skin on optical measurements,56,57 as well as the layering of
intralipid during the phantom experiments.58 In addition to cor-
recting for the confounding effects of melanin on chromophore
reconstruction using spectroscopy, the depth resolution enables
a density measure that is compared to and confirmed with non-
fluorescent multiphoton microscopy measurements.56

With concern for robustness and quantitation, limitations and
sources of error have also been well studied for diffuse struc-
tured illumination imaging. A thorough study by Bodenschatz
et al.59 has developed a list of guidelines to minimize error and to
assess the sensitivity of measurement-related parameters. In
short, these guidelines state to avoid analyzing the boundary
of the illumination field, eschew over-binning camera pixels
(though this is minor), limit changes the camera-sample distance
or use a correction scheme,36,39,60 and ensure accurate determi-
nation of the projected spatial frequency. Another confounding
factor is the popular use of cross-polarization without the proper
modeling of polarized photon transport. While cross-polariza-
tion is useful to remove specular reflections, this lack of consis-
tency can lead to errors in μa of up to 25%.31

2.2.2 Advanced processing

The development of SFDI had immediate appeal because of its
wide-field, quantitative imaging, but SFDI was mostly utilizing
tools and techniques developed for separate spatial, temporal, or
frequency domains. With tools and processing built specifically
for spatial frequency-domain measurements, new applications
are possible and clinical relevance materializes (see Sec. 2.3).

Speed is a major concern for a clinically relevant imaging
system. To map the optical properties of a given sample at a
single wavelength using SFDI with phase-stepping demodula-
tion for AC signal and DC background subtraction, at least
six images need to be processed using Eq. (11) [cf. Fig. 2(i)].
Although this approach is robust, it requires a static sample or
a motion-correction algorithm,37 though the latest demodulation
techniques have minimized the number of required images.
A simple approach to cut down the number of acquisitions is

to average any three AC images to form the DC image for
processing. Nadeau et al.40,61 reduced acquisition requirements
down to two images by utilizing a two-dimensional (2-D)
Hilbert transform technique. The Hilbert transform technique
avoids digital DC filtering by subtracting the DC image from
the AC image and seems to keep most of the original image’s
resolution, though there is an added complexity of rapidly pro-
ducing and alternating two patterns and syncing with collection
hardware. Nadeau et al.61 further advanced rapid acquisition
methods by demonstrating the multifrequency capabilities of
a square-wave projection. Work by Vervandier and Van de
Giessen has pushed acquisition down to a single image using
single snapshot of optical properties (SSOP) imaging.38,39,62,63

SSOP requires digital separation of DC and AC frequencies
that adds complexity to keeping image resolution, though its
single image acquisition allows for highly simplified pattern
production and image collection. SSOP has been further
extended to three-dimensional (3-D) height corrections using
3D-SSOP and has demonstrated real-time imaging of a heartbeat
waveform with 50 frames per second.39,62 Another variation that
involved single snapshot and multiple frequency modulation
also has been proposed, where MTF with respect to spatial
frequency provides quantification of absorption and scattering
parameters.64

Beyond acquisition, further developments have pushed for
forward and inverse model solving. Martinelli et al.65 developed
scaling relationships from the RTE that enable the forward mod-
eling of spatially and temporally resolved reflectance using
a single Monte Carlo simulation. Yang and Choi66 accelerated
Monte Carlo simulations using a graphical processing unit
(GPU) specifically with SFDI in mind. Though memory transfer
from CPU to GPU is still a limiting factor, a 3400-fold improve-
ment was shown over other GPU-based approaches for multiple
diffuse reflectance simulations. Furthermore, recent work by
Pera et al.67 has demonstrated a method to provide uncertainty
estimates of SFDI Monte Carlo solutions for optical properties
and chromophore fitting. Based on analytical solutions to the
RTE, Liemert et al.25,49,68 demonstrated several solutions for
rapid, highly accurate simulations for various domains in a mat-
ter of seconds. This enables quick and extensive parameter test-
ing for model error and measurement sensitivity.41,47 With the
aim of enabling real-time processing for clinical use, Angelo
et al.30 developed rapid look-up table methods that demonstrate
a 100-times faster solution over previously published methods.

2.2.3 Advanced systems

The relatively simple and inexpensive instrumentation needed
for structured illumination imaging means that expansion and
development are inevitable. Demonstrating structured illumina-
tion imaging’s potential for broad accessibility, groups have
developed low-cost systems made from commercial compo-
nents that are simplified, portable, and capable of accurate quan-
titative imaging.69,70 SFDI has also been expanded from the
visible and near-infrared (NIR) into the short-wave infrared
region by utilizing InGaAs detector arrays.71 The spectral den-
sity was also increased with work by Singh-Moon et al.72 using
a line-scan hyperspectral detector. Previous work by Saager
et al.34,57 demonstrated spatial frequency-domain spectroscopy
point measurements, but 2-D imaging potential lies with hyper-
spectral point detection using compressed-sensing SFDI.73

With an even deeper focus on translation, several groups
have developed systems for specific clinical problems. While
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most are custom in-house systems, the FDA has given its first
510(k) approval to a commercial SFDI system for application
in oxygenation imaging for diabetic foot ulcers.74–76 While
this brings the standard wide-field system to fruition, efforts by
other groups have been made to develop structured illumination
endoscopic imaging systems for minimally invasive clinical
guidance.77–80 Applying standard three-phase SFDI processing
to a fiber-contact endoscope system enables high spatial fre-
quency imaging (fx ¼ ½2.7 to 14.5� mm−1) for cancer detection
[cf. Figs. 3(i) and 3(iii)], yet suffers the same reduced overall
frame rate as wide-field processing and care must be taken to
avoid motion artifacts.79 Higher frame rates are achieved with
a noncontact, three-dimensional (3-D) corrected endoscopic im-
aging approach [shown in Figs. 3(ii) and 3(iv)] by utilizing SSOP
acquisition and processing, enabling real-time imaging of optical
and vascular properties for dynamic samples.77,78 With new tech-
nical developments, clinical usage and accessibility of SFDI
become practical.

The simplicity of structured illumination imaging lends itself
to multimodal measurements with other clinical techniques.
Ghassemi et al.82 combined out-of-plane Stokes polarimetry
with multispectral SFDI to study hypertrophic scars for surface
roughness and pathophysiology with a single system. Though
each modality has a unique illumination pathway, the shared col-
lection pathway produces inherently coregistered measurements
for direct correlation. To better aid surgery and photodynamic

therapy (PDT), Rohrbach et al.83 performed a feasibility study
with SFDI alongside high frequency ultrasound for the combined
functional and structural information. Similarly, Lin et al.84

obtained multimodal and multiscale images using SFDI, Doppler
optical coherence tomography (OCT), and confocal microscopy
to study Alzheimer’s disease-dependent changes in a mouse brain
model. Furthermore, McClatchy et al.85 combined microcom-
puted tomography (micro-CT) with SFDI to potentially aid in
the assessment of tumor margin status in breast conserving
surgery. These works open new pathways to clinical efficacy,
although much work is needed from the field before multimodal
systems come to full form.

2.3 Applications

Advanced theory, analysis, and instrumentation have bolstered
the understanding of structured illumination imaging while
pushing the boundaries of which applications seemed possible.

2.3.1 Photon gating and quantification

The simple projection and collection scheme of structured
illumination make it readily adaptable and practical. Slightly
different than multimodal systems, some techniques implement
the theory, analysis, or processing of structured illumination to
directly augment another technique by either gating photons
selectively or providing a quantitative foundation.

Fig. 3 Endoscopic structured illumination imaging: (i) fiber-based probe with structured illumination for
diffuse optical microscopy (DOM). (ii) 3D-SSOP enables real-time, quantitative endoscopic wide-field
imaging with simplified components: lenses L, mask M, and polarizers P. (iii) (a–d) In vivo imaging
using DOM of cervical tissue (e–h) with corresponding H&E histology– columns (a) and (c) are benign
and columns (b) and (d) are precancerous. (iv) Endoscopic SSOP producing 3-D profile, absorption, and
reduced scattering maps from a single raw frame, enabling video-rate imaging in vivo. (i) and (iii) are
adapted from Ref. 79 and (ii) and (iv) are adapted from Ref. 81.
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Because pattern projection is often done with a laser source,
laser speckle is a free product that can be utilized for enhanced
laser speckle imaging (LSI).86,87 The marriage of wide-field
quantitative optical property measurements from SFDI and
flow contrast from LSI can be combined to a quantitative,
depth-resolved measure of particle flow.88 Furthermore, SSOP
processing can be implemented to provide real-time quantitative
flow imaging.62 With the clinic in mind, SFDI/LSI has thor-
oughly demonstrated potential for real-time burn assessment
(see Sec. 2.3.2).89–91

Quantitation has been a long-time goal for fluorescence im-
aging, so the advent of a wide-field quantitation technique
brought a flurry of research to merge the two.63,92–96 SFDI meas-
urement and analysis of the sample acquire wide-field diffuse
optical properties that are then used in a correction model for
PDT92,94 and surgical guidance63,93,95 to account for excitation
and/or emission wavelength losses due to absorption and scat-
tering. For SFDI to keep up with fluorescence imaging speeds,
SSOP processing can enable real-time optical-property-cor-
rected fluorescence imaging.63 While demonstrating substantial
improvement over standard fluorescence imaging corrections,
SFDI-corrected fluorescence imaging has depth, solvent, and
pH conditions that potentially confound the precise quantification
of fluorophore concentration, though work has demonstrated that
pH quantitation is possible through quantum yield mapping.96

Much like polarization, structured illumination can be used
as a gating tool to preferentially filter photons by pathlength.97

Imaging with increased spatial frequency decreases the average
collected photon path length, resulting in a decreased average
photon penetration depth21,22,33 and increased sensitivity to
shorter path length interactions.41,98 The spatial pattern can be
adjusted during fluorescence imaging to vary the depth and con-
trast,33,99,100 or pushed high such that sensitivity to absorption is
lost [cf. Fig. 4(ii), top].101 This loss of absorption sensitivity
comes with added sensitivity to scattering structures and can
be utilized for highlighting scattering anisotropies due to fibrous
tissue102 [cf. Fig. 4(ii), bottom] or skin pathologies.98,103

The benefit of gating with structured light is that it can be
dynamically adjusted to suit the depth and contrast needed for
the sample’s optical properties. This potentially enables any
planar illumination, wide-field imaging technique to capture
subdiffuse contrast.

2.3.2 Physiological measurement for guidance and
diagnosis

Applying spatial frequency-domain analysis to structured illu-
mination measurements, especially over several wavelengths,
provides quantitative ground for further analysis. Some physio-
logical correlations are made directly from optical properties,

Fig. 4 Toward clinical applications using SFDI: (i) SFDI predicts burn severity in a porcine model within
1 h using scattering coefficient imaging—adapted from Ref. 89. (ii) Photon-gating with increased spatial
frequency enables absorption-reduced fluorescence imaging (top) and surface fiber orientation imaging
(bottom)—adapted from Refs. 101, 102. (iii) Preclinical longitudinal study of tumor growth and chemo-
therapy response demonstrate feasibility for quantitative tracking of cancer therapies with SFDI—
adapted from Ref. 76. (iv) Actinic skin damage assessment using mesoscopic SFDI (top-left) for mapping
chromophores (top-right) and the reduced scattering coefficient (bottom) to highlight photodamage in
patient P3—adapted from Ref. 116.
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whereas some techniques perform spectroscopy to recover
vascular parameters, and others use fluorescence for guidance
and diagnosis.

A first-in-human pilot study for clinical SFDI used during
breast reconstructive surgery was performed in 2010.104 This
feasibility study presented SFDI’s capability for performing
oxygenation imaging during a skin flap transplant procedure.
Similar models have since been studied in animals to
validate the utility of SFDI evaluation of flap profusion and
viability.105–107 While skin flap viability is classically assessed
by visual inspection, SFDI has shown promise in detecting pro-
fusion changes before they are perceptible to the eye by tracking
vascular parameters such as total hemoglobin concentration and
oxygen saturation.108

The functional and structural changes associated with burn
wounds, along with their clinically difficult assessment, make
the endogenous contrast and noncontact measurement of
structured illumination an attractive choice as a monitoring
tool. Work has largely focused on the ability of SFDI to predict
and distinguish burn wound severity in rat and pig models,
demonstrating that vascular parameters can distinguish between
partial-superficial and full thickness burns after 1 day109 and the
structural parameter, i.e., the reduced scattering coefficient, is
able to separate all second degree burn severities within 1 h
[cf. Fig. 4(i)].89,110 While histopathology is the gold standard for
evaluating burn depth, it is often avoided due to its invasiveness.
However, a recent study successfully correlated the invasive
histopathology of a porcine burn model with the noninvasive
combined sensitivity of SFDI and LSI to corroborate their
potential for clinical use.90 Similarly, other combinations for
multimodal systems, e.g., polarimetry with spectral SFDI82

and laser Doppler imaging with SFDI,111 have been used to
investigate burn wound infections and scar formation with
noncontact endogenous imaging.

Brain imaging with structured illumination has shown poten-
tial for several applications. Alzheimer’s disease in mouse models
can be detected with the functional imaging of SFDI,84,112 and the
corresponding neuronal cell death correlates to its scattering
parameter.113 A major push for quantitative-fluorescence imaging
is for tumor targeting, particularly for precious tissue such as the
brain. As demonstrated by Konecky et al.114 and Sibai et al.,115

SFDI can be used to quantify the fluorophore concentrations in
a wide-field mapping for glioma resection. In addition, brain im-
aging with hyperspectral SFDI was correlated with point-based
optical pharmacokinetics measurements to successfully trace
drug delivery concentrations to glioma tumor sites.72

The spatial heterogeneity of cancer growth and the associated
high rates of secondary excisions make the spatial mapping and
quantitative sensing of structured illumination a potentially
powerful clinical aid. In a broad view, SFDI has been used
in preclinical models to monitor the efficacy of cancer therapies
to aid diffuse optical methods in the clinic [cf. Fig. 4(iii)].76

Aimed at direct clinical intervention, several studies have dem-
onstrated the potential of structured illumination for specific
tissue-type diagnosis in ex vivo tissue, such as breast tissue
(diffuse74,117 and subdiffuse45) and ovarian tissue.118 Both the
functional and structural properties measured with structured
illumination help quantify tissue viability.46,74 Furthermore,
the pilot study for a nonmelanoma skin cancer clinical trial with
SFDI optical and vascular parameters presented a clear separa-
tion of healthy tissue and each lesion stage of precancerous
actinic keratosis as seen in Fig. 4(iv).116

3 Tomography

3.1 Introduction and General Theory

Fast and quantitative mapping of optical contrasts over large sur-
faces benefits numerous biomedical applications, but the funda-
mentals of light–matter interaction typically limit the use of
single-projection imaging techniques to the superficial sensing
of tissues without the ability to retrieve depth information and
3-D shapes. When deeply embedded contrasts are targeted and
3-D volumetric imaging is required, more sophisticated methods
that involve an inverse optical problem are employed and are
broadly labeled optical tomography. Optical tomography can
be performed at multiple length scales ranging from optical
projection tomography, which focuses on millimeter-scale
transparent specimens,119 to mesoscopic fluorescence molecular
tomography (FMT) and macroscopic DOT, both of which
harness scattering photons to retrieve the biodistribution of
biomarkers of interest a few millimeters deep or over centimeter
scales, respectively. Herein, we will focus on macroscopic DOT
and the readers interested in the mesoscopic regime can refer to
Ref. 120.

Macroscopic optical tomography principles were developed
in the late 1980s and early 1990s with focus on retrieving
absorptive inhomogeneities deep within a sample. Over the
years, the technique(s) has been improved to image multiple
endogenous biomarkers and termed DOT. In addition, the prin-
ciples of DOT have been adapted to image fluorescence signals
and for fluorescence applications, termed FMT.121–125 In both
cases, traditional macroscopic tomography systems were
designed around multiple point sources or detectors that were
raster-scanned or consisted of large fiber bundles, and some sys-
tems contained a stage for rotation of the sample or the source
and detector planes.126 Eventually, many researchers adopted
CCD cameras as the detection scheme for parallel acquisition
and illumination. DOT can be performed efficiently using
continuous wave (CW)127,128 systems with the advantage of
robustness and ease of implementation. More challenging are
frequency-domain126,129,130 and time-domain instrumental
implementations.125,131,132 However, these implementations en-
able the measurement of time-dependent data sets such as modu-
lated amplitude and phase,14,133 time gates,134 or transformed
data135 with the benefit of higher information content for more
accurate optical tomographic reconstructions.

To perform optical tomography, the volume to be imaged is
discretized in elements of volume and the inverse problem aims
at retrieving the value of the biomarker of interest in each of
these volume elements (or x below). To do so, a photon propa-
gation model of the light fluence is generated in order to calcu-
late the contribution, or “weight,” of each volume element in the
sample to the overall measurements. Then, a classical inverse
problem is formulated, i.e., Ax ¼ b, where A is the Jacobian
(or sensitivity) matrix generated from the forward model
and b is the measured data, and then solved to determine
the values of x over the whole volume. The main principles
for reconstruction have not altered significantly over time,
but due to developments in computational power, there have
been great improvements in the efficiency and accuracy of
reconstruction algorithms. For simple geometries, researchers
have generated the sensitivity matrix analytically, but
higher-complexity samples require numerical solutions com-
puted via the finite element method136 or Monte Carlo
methods.126,137,138 Computationally efficient Monte Carlo
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platform for structured light applications can be found at http://
mcx.space/.139 Solving the inverse problem is not trivial and
many different methods have been developed,124,125,128,137 but
a description of these methods is beyond the scope of this
review. Overall, these traditional DOT/FMT methods enable
reconstruction of properties (position, absorption/scattering
coefficient, and fluorescence yield) in vitro122,132 as well as
in vivo in small animals140 with high sensitivity and relatively
high resolution.

Despite the widespread use of DOT/FMTwith point sources
and detectors, there are many limitations. On the acquisition
side, raster-scanning point illumination and detection methods
can lead to overly long acquisition times due to the necessity to
acquire dense spatial data sets. The use of point sources also limits
the power density that can illuminate the sample at each point, to
avoid photobleaching in fluorescent samples or damage to tissue
for in vivo samples. Moreover, such methodologies are not
amenable to scaling to large volumes without loss of volume
sampling. On the reconstruction side, since there are many
sampled source–detector pairs, the measured data sets become
very large as does the sensitivity matrix generated from the for-
ward model used in solving the inverse problem. This results in
high computational burden, which limits the postprocessing
method despite improvements in hardware and software.

3.2 Method Development

Early techniques such as phased array141 were proposed to
mitigate the above-mentioned issues and boost the sensitivity142

and resolution of DOT.143 However, these early concepts of
structured excitation of tissue are based on photon density
wave interference that can be challenging to generate and
control. It is nowadays relatively straightforward to generate
spatially modulated wide-field illumination and detection meth-
odologies using DMDs to harness the potential of structured
light strategies. Hence, researchers have increasingly begun
to investigate wide-field detectors and structured illumination
to efficiently perform DOT.

As a more general tomographic approach, utilizing structured
light of any arbitrary shape can be utilized for tomographic im-
aging. Some of the main expected benefits of structured light
strategies are reduced number of required measurements due
to the inherent wide-field nature of structured light and the
potential for harnessing compressive sensing methodologies.
Indeed, CS methodologies have been developed over the last
decade to help reduce the size of digitally large data sets during
the acquisition step. Since CS can take advantage of the sparsity
of the image sample plane when illuminated with a determined
patterned basis, the desired image can be recovered with far
fewer measurements. Conveniently, structured light approaches
enable one to efficiently implement this by selecting a sparse
illumination basis. Therefore, CS allows for data compression
during the acquisition step, which is beneficial for acquisition
time reduction.144 In addition, the samples can be illuminated
with a decreased overall power density due to the large illumi-
nation areas leading to relaxation of safety and photobleaching
issues. Since one can change the shape and intensity at or close
to region of interest where the signal is relatively low due to high
absorption (e.g., liver in small animal imaging), an increased
SNR can be achieved in those areas due to efficient illumination
strategy related to the target site.

These implementations come at the cost of slightly increased
computational complexity as modeling of spatially complex

sources is required in the forward model simulation for gener-
ation of the sensitivity matrix [cf. Fig. 5(i)]. However, flexible,
accurate, and universal computational Monte Carlo tools are
now widely available to generate such sensitivity matrices both
in the case of structured illumination as well as detection.139

The first investigations of the potential of structured illumi-
nation in DOTwere performed using simulations. Lukic et al.149

proposed the use of structured illumination for tomography in
the frequency domain, and they demonstrated in silico that
reconstructions performed with structured illumination patterns
provided comparable resolution to those generated using point-
source illumination. In addition, they showed that the amount of
data acquired using structured light was decreased by a factor of
five compared to a previously tested point-source illumination
system. Similarly, Joshi et al.150 proposed the use of structured-
light tomography in the time-domain in silico but in the reflec-
tance geometry. The researchers compared a scanned line pat-
tern, scanned Gaussian spot patterns, patterns such as a cross,
and a series of equally spaced lines that can be generated with
diffractive elements, and point sources on simulated phantoms
with fluorescence inclusions. They showed that structured illu-
mination patterns outperform point-source illumination in terms
of resolution and location accuracy for multiple fluorescent
inclusions close to the surface. Each pattern type provided
a slightly different reconstruction result, which suggested that
the patterns need to be optimized according to the sample of
interest. In this regard, Dutta et al.151 developed an optimization
framework for generating optimal spatial illumination patterns
for CW FMT based on an approach that seeks to improve the
condition number of the Fisher information matrix. However,
this methodology is computationally expensive and requires
prior knowledge of sample surface topography and tissue optical
properties, which makes it difficult to implement practically
in vivo.

These simulation studies paved the way for current imple-
mentations of structured-light tomography. Spatial frequency-
domain tomography utilizing sinusoidal spatial illumination
was first implemented in reflectance geometry by Konecky
et al.32 by solving the heterogeneous diffusion equation
with a linear perturbative approximation in Fourier space.
The authors demonstrated the feasibility of fast tomographic
reconstruction of absorption contrast due to the analytical
expressions based on Green’s functions and the Rytov pertur-
bation model. The work was later extended for 3-D reconstruc-
tions of fluorescence contrast with the clinical application of
surgical guidance of glioma resection (cf. Fig. 5).114 For full
volume tomography beyond a couple of millimeters, Bélanger
et al.146 implemented structured-light-based strategies in trans-
mission and compared two initial sets of 36 wide-field patterns,
namely checkerboard and low spatial frequency bar patterns that
illuminated half of the sample area in each pattern, in a system
with structured illumination and wide-field detection. These pat-
terns were tested in centimeters-thick simulated phantoms as
well as liquid phantoms containing graphite rods with 100%
absorption. Their results showed that it was possible to recon-
struct inclusions with high resolution and accurate locations
with a smaller number of measurements compared to the
data sets collected with traditional tomography systems, leading
to near-real-time acquisition speeds. In addition, it was deter-
mined that the set of bar patterns provided better reconstruction
of absorption contrast and showed higher robustness to noise
compared to the checkerboard pattern set [cf. Fig. 5(ii)]. This
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work was closely followed by the implementation of structured
illumination for time-resolved preclinical studies.147 The sche-
matic of the system developed by Venugopal et al. is provided in
Fig. 5(iii). Using the same bar patterns as Bélanger et al., Chen
et al.145 demonstrated in vitro that these bar patterns provided
accurate reconstruction of absorptive inhomogeneities. Also,
leveraging the time-resolved data sets, Venugopal et al.147

demonstrated the ability to quantitatively reconstruct both
absorption and scattering contrast with minimal cross talk.
Lastly, Venugopal et al.152 were the first to demonstrate the
utility of the technique in imaging fluorescence signals in small
animals at fast acquisition speeds. The combination of Monte
Carlo-based forward simulations153 that enable harnessing of
the early photons for improved resolution and late photons

for quantification134 led to accurate reconstructions even in
the case of a single-projection system.154 An example of time-
resolved enhanced FMT reconstruction is provided in Fig. 5(iv).
Ducros et al.128 also compared these data types in the reflectance
and transmission geometries, and they came to similar conclu-
sions regarding the use of time-resolved data.

The bar patterns used in these pioneering studies were
selected based on the work of Bélanger et al.146 but also due
to the experimental ease of implementation for complex geom-
etries such as in small animal imaging. Still, numerous spatial
bases can be considered and implemented such as typically done
in the field of compressive sensing. To date, a few studies have
investigated the use of well-known bases for structured-light
tomography with the goal of improved compression of the

Fig. 5 Light tomographic implementations: (i) simulated detector readings for the central source-pattern
and associated Jacobians for the three gates selected: point source–point detector (top row), patterned
illumination–point detector (middle row), and patterned illumination–patterned detection (bottom row
adapted from Ref. 145). (ii) Simulated phantom reconstructions based on two types of patterns: phantom
used for the simulations (top left), two types of patterns for illumination and detection (top right), recon-
structions for each pattern type (bottom), cross sections and quantitative values of the differential absorp-
tion across a z-slice. The volume for the reconstruction is divided in 16z-slices, each having 1.25-mm
thickness; even z-slices are shown (top middle adapted from Ref. 146). (iii) Wide-field fluorescence life-
time imaging system for ex vivo and in vivo imaging. The schematics of the time-domain fluorescence
lifetime imaging system based on a gated ICCD detection are shown (from Ref. 147). (iv) 3-D volume
from the CT scan showing the position of the tube in the chest cavity (left). Coronal slice of the recon-
structed volume at z ¼ 6∶5 mm. (Bottom right) Transverse slice of the volume at y ¼ 21∶5 mm (top right
adapted from Ref. 148).
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measurement space, such as measurements obtained with
wavelet-based patterns155 and piecewise-constant functions.156

Moreover, theoretical CS bases typically contain negative
components that cannot be directly projected onto the sample.
Following well-established imaging protocols in CS-based 2-D
imaging, Ducros et al.157,158 proposed a virtual source pattern
method in which the patterns, which can be negative or have
a complex component, are transformed into a projectable pattern
with positive intensities using a transformation matrix. This
transformation matrix is then applied to the measured data as
well as the calculated sensitivity matrix for reconstruction of
the inclusion. Methods have also been developed to decrease
the overall computation time of tomography, such as the initial
projection of sinusoidal fringe patterns to construct a priori
surface profiles for generation of the forward model.159–161 In
addition, structured light strategies are well-suited to benefit
from CS-based preconditioning of the illumination and detec-
tion fields for improved performance.162 Beyond the potential
of using optimal illumination patterns based on theoretical con-
siderations, structured light methodologies are also amenable to
implementing strategies to improve the SNR of the measured
data set. For instance, Zhao et al.163,164 demonstrated that by
iteratively optimizing the local illumination field, sensitive
topographic imaging in preclinical models was achievable.
Venugopal and Intes165 proposed a similar concept for 3-D
imaging and demonstrated that the number of useful data sets
could be increased by twofold using this methodology. Such
an approach is poised to enable the collection of optimal data
sets without requiring any prior knowledge. These develop-
ments have laid the foundation for wide dissemination of
structured-light tomography. As the technique is adopted by
an ever-increasing number of research groups in the world,
more applications are benefiting from such improvements.

3.3 Applications and Further Developments

3.3.1 In vivo fluorescence molecular tomography

FMT has become popular over the last two decades due to
improvements in and availability of NIR fluorescent dyes, bio-
markers, and reporter genes that can be used in vivo. The three
major benefits of FMT for in vivo molecular studies are its high
sensitivity that can rival nuclear imaging, its ability to simulta-
neously image multiple biomarkers via spectral and lifetime
encoding, and the unique wealth of information that can be
derived from lifetime sensing such as microenvironment param-
eters or protein–protein interactions. To date, FMT in preclinical
settings has been the main application of structured-light
tomography.

Venugopal et al.152 were first to demonstrate in vivo accurate
reconstructions of fluorescent inclusions inserted into a freshly
euthanized mouse. The performance of this single-projection
structured light approach was cross-validated with nonconcur-
rent CT scans. Of note is that no a priori information was
included in the optical reconstruction. As shown in Fig. 5(iv)
in an overlay with coregistered microCT data, the inclusion
was reconstructed with high accuracy due to the early gate
data type and sparsity-enhancing solvers.154 Similarly, Ducros
et al.166 later demonstrated the use of experimentally adapted
virtual source Haar wavelet patterns for FMT of a fluorescent
inclusion implanted within a euthanized mouse in a system
with a rotating stage. First, the mouse was imaged at multiple
rotation angles using a wide-field pattern for generation of

adapted patterns as well as the model for forward calculations.
These patterns were then used for imaging of the mouse at eight
rotation angles to enable reconstruction of the fluorescence
inclusion. As shown in Fig. 6(i), the inclusions were accurately
reconstructed in terms of the locations and dimensions, but the
authors note that there are still artifacts within the reconstruction
that can be improved with the use of a priori information. Still in
both the cases of Venugopal et al. and Ducros et al., the 3-D data
acquisition was performed at fast acquisition speeds and enabled
whole-body 3-D imaging.

Demonstration of the ability to image an ex-vivo preclinical
model was also demonstrated by Pimpalkhare et al.167 The
specimen employed was a dog spine model injected with a
small dose of indocyanine green (ICG), a common NIR fluoro-
phore. Multiview time-resolved-structured light tomography
was performed and accurate distribution of the fluorophore as
retrieved in this complex sample was validated by microMRI
cross-validation [cf. Fig. 6(iii)]. Interestingly, the authors noted
that improvements in resolution were more pronounced when
using multiple views compared to leveraging of early gate
data sets. However, implementation of multiview systems
for preclinical studies is cumbersome and typically done by
rotating the sample in a vertical position. This is not a natural
physiological posture for animals and leads to challenges when
performing nonconcurrent imaging with other common modal-
ities that are designed around a prone position.

There are currently still more efforts to improve efficiency
and accuracy of structured light FMT. For instance, noncontact
and nonrestrained preclinical imaging leads to the projection of
theoretical patterns on complex boundary conditions. SLMs are
flexible enough to enable the scaling of patterns in real-time
to encompass the boundaries of the animal. Then, to ensure
reconstruction accuracy, a priori information about the pro-
jected patterns should be included in the forward model via a
complex modeling scheme such as a mesh-based method.138,139

Current forward solvers such as GPU-enhanced finite element
Monte Carlo are particularly adept for such complex
modeling.138 Moreover, in combination with computationally
efficient formulations,168 whole Jacobians, even in the time-
resolved cases, can be computed in a matter of minutes on
a personal computer. Combined with mesh optimization
techniques,169 they offer the unique attributes of accuracy for
all kinds of diffuse regimes, fast computational times, and
improved resolution via mesh refinement.

3.3.2 Lifetime-based tomography

Beyond establishing the potential of structured-light tomogra-
phy for retrieving the biodistribution of fluorescent markers,
Venugopal et al.148 demonstrated the utility of the methodology
to image lifetime-based contrast. Fluorescence lifetime can be
defined as the intrinsic property of a fluorophore of reaching
an excited state that will lead to the emission of photons, to
then return to its initial ground state.170 Since it is an intrinsic
property, it is independent of concentration, tissue depth, or
photobleaching, being only affected by extrinsic factors such
as temperature or quenching.170 More precisely, the authors
demonstrated the ability of time-resolved structured-light
tomography to quantify Förster resonance energy transfer
(FRET) occurrence via sensing of the donor lifetime.

In brief, FRET is a phenomenon that occurs when two
molecules that have high spectral overlap, denoted the donor
and acceptor, are within 2 to 10 nm apart. At this distance,
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the donor transfers energy to the acceptor, which causes the
intensity and lifetime of the donor to decrease while those of
the acceptor increase. By measuring the changes in intensity
or lifetime of the donor, FRET can be used as a nanoscale prox-
imity assay in vivo. Lifetime-based FRET has already been
established as a useful tool for monitoring ligand–receptor
engagement in vivo in wide-field planar imaging of cancerous
tissue.172–174 Tomography of FRETwas validated by Venugopal
et al.148,175 using an NIR FRET pair, AF700-AF750. For the
in vivo study, the moving low spatial frequency bar patterns
optimized with the adaptive optimization method165 were
utilized on a freshly euthanized mouse with two inclusions of
different FRET ratios. As shown in Fig. 6(ii), the locations
and fluorescence yields of the two inclusions were accurately

reconstructed. In addition, it is shown that the tomographic
reconstruction of the donor population that interacts with the
acceptor (denoted the FRETing donor and characterized by a
quenched lifetime) is consistent with the two inclusions from
tomographic reconstruction of FRET in a phantom experiment
as well as from direct nontomographic imaging. The quantifi-
cation of the FRET donor via tomographic imaging was
reported to be within 5% of the value quantified on the same
system but without any surrounding scattering tissue.

3.3.3 Functional imaging

Structured-light tomography is also well-suited to image endog-
enous markers. The improvement in acquisition speed positions

Fig. 6 Applications of tomographic reconstruction using structured illumination: (i) of fluorescent tubes
implanted within a freshly euthanized mouse. The data shown were taken by moving low spatial
frequency quantized bar pattern illumination and wide-field detection. The data shown were collected
with virtual source Haar wavelet patterns, (a) the raw fluorescence data for multiple views and
(b) the reconstructed inclusions within the 3-D mesh.166 (ii) Tomographic quantification of FRET.
Reconstruction of the fluorescence quantum yield is shown in (a) overlay onto a coregistered microCT
model in 3-D and (b) in a cross-sectional slice. (c) The quantification of FRET through use of the FRETing
donor fraction of the two FRET inclusions is similar to the values extracted from tomographic imaging
of the mouse, a separate phantom with four FRET inclusions, and direct planar imaging.148

(iii) Reconstructions of ICG distribution in an ex vivo dog spine using multiview time-resolved structured
light illumination and mesh-based Monte Carlo with nonconcurrent MRI.167 (iv) Structured light tomog-
raphy of brain activation in a live mouse. (a) The imaging area is shown in axial and coronal slices. The
paw of the mouse was stimulated at the beginning of the imaging session, and (b) the distribution of
total hemoglobin HbT within the brain was seen to change according to activation of various areas of
the brain. (c) The time-course response in terms of total hemoglobin, oxygenated hemoglobin (HbO2),
and deoxygenated hemoglobin (HbR).171
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the technology favorably for any applications targeting hemo-
dynamics. This is a nascent application with great promise.
Recently, Reisman et al.,171 following the pioneering develop-
ments highlighted above, implemented structured-light tomog-
raphy for functional brain imaging of the intact mouse brain
(through the scalp and skull). The researchers collected the data
by projecting sinusoidal patterns of different spatial frequencies,
phases, and orientations. The sensitivity matrix was generated
using a finite element mesh and the diffusion equation, and
the local absorptive perturbations associated with modulation of
the hemodynamics were reconstructed. As shown in Fig. 6(iv),
changes in blood flow were realized upon stimulation of
a limb, which was characteristic of activation of the specified
brain region. This method is especially powerful since it allows
for monitoring of different hemodynamic properties noninva-
sively in a live mouse. Imaging of brain activation has typically
been performed using NIR spectroscopy, but incorporating
structured-light tomography shows improved recovery of focal
brain functional activation. Such implementations may find
numerous other applications in functional imaging such as opti-
cal mammography176 or monitoring of perivascular diseases.

4 Single-Pixel Imaging

4.1 Introduction

Another rising application of structured light strategies in dif-
fuse optics is the implementation of single-pixel camera meth-
odologies. The combination of SLMs with compressed-sensing
approaches enables the development of imaging systems based
on one detector that nevertheless can provide 2-D imaging
capabilities without any moving parts. Even though CCD and
CMOS light sensors have improved throughout the years, their
application for spectral bands beyond the visible regime is still
limited since they mostly operate in the visible range and
producing them for the NIR and infrared range is complex
and expensive.177 Conversely, single-pixel systems can leverage
detectors sensitive to these spectral bands and provide 2-D
imaging capabilities at a reduced cost. The standard setup of
a single-pixel system is composed of a DMD, which is used
to project patterns onto the sample plane, and a single-pixel
detector that collects the sample emissions after illumination.
This classical setup has been often modified into more complex
systems with enhanced detectors or illumination schemes. These
systems can also adopt different scanning methodologies that
can yield better intensity reconstructions or improved acquisi-
tion times.177

As described by Welsh et al.,178 ghost imaging, the precursor
of single-pixel imaging, initially consisted of two detectors with
low and high resolutions, respectively. The first one collected
the light scattered from the sample and the second one detected
the unscattered illumination scheme. The incident light could be
generated by pseudothermal light sources179 that produced
speckle-like illumination. A beam splitter would duplicate the
illumination arrangement for it to be sampled by the high-
resolution detector. The data collected from both detectors
could later be used to retrieve the sample’s image. The use
of this detector–beam splitter complex was later unnecessary
once SLMs were introduced. An SLM would computationally
produce structured illumination where parameters such as phase
and intensity were regulated. Therefore, the use of known illu-
mination fields removed the need of a high-resolution detector.
Hence, the setup was simplified to one detector and an SLM for

illumination, which is the basic scheme of a single-pixel detec-
tion system. Combining the single-pixel detection scheme with
compressive sensing,177 which takes advantage of the sparseness
of the acquired data, reduces the amount of required data to
reconstruct the sample’s image.

The main advantages of single-pixel implementation are two-
fold. First, compared to other imaging schemes that depend on
expensive pixelated detectors that respond only to visible wave-
lengths of light, single-pixel imaging uses a single detector
which can, when selected judiciously, sense desired wave-
lengths outside the visible range.180 Numerous applications in
the biomedical field can benefit from cheaper and better sensi-
tivity in these spectral bands,7,181 such as infrared imaging,182

hyperspectral imaging,183 or 3-D imaging.184,185 Second,
single-pixel detectors can work better under poor light
conditions.181 This is mainly associated with more sensitive
detectors but also due to the spatial integration of the optical
signals collected at each illumination pattern. It is also of
note that single-pixel systems can be extended to the time-
domain for efficient wide-field lifetime imaging applications.
The basic setup can be enhanced by adding a time-correlated
single-photon-counting unit (TCSPC), resulting in a time-corre-
lated single-pixel system.183 Time-correlated systems can be
later analyzed to investigate properties such as fluorescence
lifetime186 or FRET.187 Unfortunately, in the classical single-
pixel detection configuration, a high number of patterns are
needed to yield a good image reconstruction, which also corre-
lates to higher exposure times for the sample. Moreover, the
quality of the reconstructed images is lower than the one
obtained using a common pixelated detector. These disadvan-
tages have been overcome through the years by fusing the tech-
nique with theories such as compressive sensing.

4.2 Methods

A single-pixel system typically follows the design proposed by
Duarte et al.177 with slight modifications based on the applica-
tion at hand. Overall, a single-pixel camera is composed of
a single-pixel detector, an SLM for pattern illumination, and
relay optics as shown in Fig. 7(i) by Rousset et al.181 The
SLM typically is a DMD, which gives the advantage of produc-
ing both binary and grayscale structured illumination. The angle
of the DMDmicromirrors can be digitally manipulated to filter a
determined amount of light for that specific area. All the mirrors
in conjunction can then produce grayscale patterns with up to
10-bit resolution.181 The characteristics of the basic components
are dependent on the application of the system. The detectors
can vary from “bucket” detectors189 that have no spatial resolu-
tion and directly detect all the scattered photons, e.g., single
photodiodes and photomultiplier tubes, to multichannel
detectors187 that detect dispersed light in multiple wavelength
channels. The relay optical elements vary depending on the
type of detector and illumination scheme, for example, they
can adopt lensless configurations190,191 or use elements such as
physical masks.192 Optical setups can also vary from single-pixel
microscopy systems193,194 to macroscopic approaches.188,195

4.2.1 Scanning methodologies

Beyond the consideration of the best optical elements and
detectors for the application at hand, one must also select
a proper scanning methodology. Indeed, as mentioned by
Duarte et al.177 a single-pixel camera can operate under different
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acquisition methodologies such as the basic principle of acquir-
ing N measurements to reconstruct an N-resolution image or
under multiplexing strategies such as compressive sensing.
These scanning methodologies must take into consideration
the signal-to-noise ratio during the acquisition process, which
can be diminished by Poisson noise or the general instrument
response. If an N-pixel image is to be reconstructed through sin-
gle-pixel measurements, it can be typically done by using a ras-
ter scan, a pixel array, or a basis scan. In the latter case, basis
scanning is constructed using a single sensor that will detect N
measurements acquired one after the other with patterned illu-
mination, where the patterned light will target diverse arrange-
ments of the N pixels on the image plane.177 Multiple types of
illumination basis can be employed, the most commonly used
include Hadamard, speckle, Fourier, and orthogonal, or bio-
rthogonal wavelets such as Haar, LeGall, and Daubechies.
Furthermore, basis scanning can take advantage of the image
plane sparseness to only require part of the full basis patterns

to reconstruct the image plane through compressive sensing
algorithms.177,196,197 Basis scanning performs better than raster
scanning by reconstructing similar intensity images at much
lower capture times.177 Therefore, compressive sensing reduces
the number of patterns per total acquisition, consequently reduc-
ing the exposure time. This is key in cases where the sample is
sensitive to photodamage within the expected complete acquis-
ition time.

4.2.2 Image recovery approaches

For single-pixel camera systems, the 2-D image sought is not
obtained via direct imaging but via an inverse problem.
Indeed, the data acquired during basis scanning with a sin-
gle-pixel camera is the inner product of the illumination patterns
and the sample, therefore retrieving the sample’s intensity pro-
file through processing algorithms is necessary. This inverse
problem is rather simple and can be expressed as

Fig. 7 (i) Simplified optical setup of the single-pixel camera using a DMD. The image is noted x , P is a
DMD pattern, andM is the corresponding measurement.181 (ii) Living human eye imaging using a single-
pixel camera ophthalmoscope.188 (iii) Spectrally resolved FRET intensity imaging in vitro and in vivo.187
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EQ-TARGET;temp:intralink-;e017;63;752M ¼ ΔtPx; (17)

where M is the single-pixel measurement over a Δt acquisition
period, P denotes the set of illumination patterns used for
acquisition, and x represents the image of the sample plane.181

Compressive sensing assumes that the sample can be sparsely
represented by a basis α. Therefore, x ¼ αs, where s represents
the sparse image plane. Note that the illumination basis has to
satisfy the “restricted isometry property.”198 Solving a minimi-
zation-optimization problem for that particular transform-
domain can then retrieve the sample’s image.181

4.2.3 Pattern selection

One area of focus for the field of single-pixel imaging is the
selection of optimal basis for fast and accurate 2-D image recon-
structions. Common bases include Hadamard, speckle, Fourier,
and wavelet-based patterns. Streeter et al.199 explained that
Hadamard multiplexing is known to improve the SNR in the
acquired data by decreasing additive noise. Two main types
of Hadamard matrices are commonly used, the H-matrix
which is composed of ones (1’s) and minus ones (−1’s) and
the S-matrix which is formed by zeros (0’s) and ones (1’s).
Since the S-matrix is easier to implement in SLMs, it is
more commonly employed for structured illumination than
the H-matrix, even though the latter should provide an
even better SNR boost. Although the additive noise is
decreased, Hadamard patterns are affected by Poisson noise
generated by photons, which can decrease the SNR of the
measurements.199–201

As described by Guo et al.,191 speckle patterns can also be
implemented in single-pixel systems, where the resolution of the
reconstructed image will be dependent on the size of the speckle
features. Speckle patterns are nonuniform illumination, which
have been previously used in microscopy systems to improve
the image resolution beyond the diffraction limit.191,202

According to Zhang et al.,180 Fourier patterns can also be
employed for the image acquisition process. When compared
to Hadamard patterns, Fourier patterns are more efficient,
while Hadamard patterns are more resistant to noise. The
efficiency of Fourier patterns comes from their ability to con-
centrate the energy of the image plane. In addition, using multi-
step Fourier illumination in certain cases can help reduce the
number of measurements and therefore the acquisition time.

Rousset et al.181 assert that since the compressive sensing
reconstruction process based on minimization is computation-
ally expensive, approaches that could yield better reconstruction
times are necessary, especially for applications where a fast
acquisition time is necessary. Adaptive basis scanning by wave-
let prediction has been proposed to allow a more straightforward
image recovery than fundamental compressive sensing. This
approach involves the use of a wavelet basis such as Haar or
LeGall for illumination and is based on predicting the most sig-
nificant set of patterns to be used for a particular image plane.
For the prediction process, a set of initial single-pixel measure-
ments with low-resolution patterns needs to be acquired. This
data set can later be used for predicting the significant wavelet
coefficients of the image. These coefficients are indexed to spe-
cific patterns that will be further used for the main acquisition
process. The use of wavelet patterns is justified by the fact
that most images can be sparsely characterized in this basis and
by the accessibility to inverse wavelet algorithms for image
reconstruction.181,203,204

Another approach that has been proposed to reduce computa-
tional time for the image reconstruction process is adaptive
compressive sensing imaging. Adaptive approaches have been
pursued since the use of basis will often involve measuring
background pixels that are not within the sample’s region of
interest. If the acquisition patterns can be selected to target
the interest area from the sample, the acquisition times may
be lowered and the reconstruction process enhanced.

Soldevila et al.189 indicated that methods that are based on a
priori information can be disadvantageous in cases where the
imaged sample can unpredictably change. Even though these
techniques are beneficial because they define regions of interest
on the image plane, it would be better to have a method where
no a priori information is needed. Adaptive compressive imag-
ing is based on recovering the image under a compressive
sensing approach that defines regions of interest during the
acquisition process but without the need for a priori informa-
tion. The method involves using sets of masks that will adap-
tively change depending on the regions of interest on the
image plane. The masks can iterate in size depending on
the desired resolution. Like other acquisition techniques,
it uses inverse wavelet transforms for the image reconstruction
process.189 The small acquired matrices can then be processed
without the need of high computational demand. The image
plane is first sampled and delimited by low-resolution masks.
Then, a one-level wavelet transform and an edge detection algo-
rithm discard the borderless regions and determine the regions
of interest. The high-resolution masks are only applied to these
areas. This process can be repeated until the high-resolution
masks are only applied to the areas with finer details. Further
improvements are still desired on the recognition algorithms
to increase the efficiency of the process.

4.3 Applications

Single-pixel imaging can be used to monitor fluorescence
lifetime.205 In the medical imaging field, this new modality
has found applications in microscopy206 as well as in macro-
scopic systems.207 Pian et al.187 reported a single-pixel system
that combines hyperspectral detection in the time-domain. A
multichannel detector is coupled to a TCSPC unit to perform
macroscopic fluorescence lifetime imaging at different detection
wavelengths. The structured illumination is produced by DMDs
arranged in a transmission or reflection configuration. The sys-
tem uses the compressive sensing multiplexing scanning meth-
odology and utilizes Hadamard basis as the illumination pattern
set. The system has been employed to quantify and image fluo-
rescence lifetime both in vitro for tissue-simulating phantoms
and in vivo for mice. Macroscopic fluorescence lifetime imaging
is highly sensible and serves to “unmix” the fluorescence life-
time values of different biomarkers. In addition, the described
system187 has been used to measure FRET, which describes
the interactions of the sample at the molecular level by quanti-
fying the ratio of donor molecules to acceptor molecules and
estimating the distance between them.208 Figure 7(iii) highlights
results obtained from FRET-fluorescence lifetime imaging. Pian
et al.195 also reported a single-pixel imaging system that can
be used for time-resolved hyperspectral tomographic imaging
when combining DMD detection and illumination structures
in transmission geometry. It has been used to map the concen-
tration of targeted fluorophores.

Finally, Lochocki et al.188 proposed that single-pixel imaging
systems can be an alternative to the ophthalmoscopes that are
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necessary to determine a variety of eye illnesses. Even though
ophthalmoscopes have been improved throughout the years,
they are not fully useful in cases where the ocular structures
are opaque. As proposed, a single-pixel camera approach was
implemented to image the retina in real-time. The technique
was validated in human and artificial eyes to image the fundus
of the eye at 15 deg of visual angle. The results obtained from
artificial eyes, shown in Fig. 7(ii), highlight the potential of
the technique for this application, yet further improvement is
needed to correct for eye movements on human subjects.

5 Conclusions
The benefits of utilizing spatially structured light projection and
collection are manifold, stemming from the ability to create
nearly any desired set of spatial input or output configurations
in a fast, repeatable manner. This ability helped push the devel-
opment of spatial frequency-domain photon propagation theory
from imaging22 to tomographic reconstruction32 with contempo-
raneous development of single-pixel imaging.177 Since 2010,
diffuse optics has been burgeoning with structured-light tech-
niques taking a lead role in its progress.

Quantitative, noncontact imaging techniques have since been
developed for real-time, wide-field acquisition38–40 and have
been pushed toward endoscopic implementation.80,81 Models
have also been moving toward new speeds and higher
accuracy49 while becoming robust via subdiffuse sensing.45,47

Many developments in modeling, processing, and instrumenta-
tion have helped push efforts toward clinical efficacy, combining
SFDI with modalities such as laser speckle,89,90 laser Doppler,111

and polarimetric imaging82 to accurately predict burn wound
severity within 1 h of infliction. Brain imaging with SFDI
techniques have demonstrated the potential for identifying
Alzheimer’s disease,84,112 its correlated neuronal death,113 and
for fluorescence-guided tumor resection. 114,115 Oxygenation
sensing with SFDI has demonstrated potential in clinical utility
for imaging breast cancer,74 skin cancer,56,116,209 skin flap viabil-
ity,107,210 and has just gained FDA approval for identifying lower
limb vascular issues.75

DOT has seen new growth due to the flexibility and precision
of DMDs. They enable rapid pattern generation for illumination-
detection pairs to be sampled fast enough for real-time tomo-
graphic sensing146 and are sensitive enough for in vivo recon-
structions with high fidelity.152 Rapid acquisition has been
coupled with GPU processing138 and computationally efficient
formulations for reconstructions that take mere minutes on
a personal computer.168,169 The use of FRET with structured-
light tomography has pushed this limit further and has been
demonstrated as a nanoscale proximity assay in small
animals.148,165 Endogenous sensing continues to improve with
structured light, as real-time tomographic maps of cerebral
hemodynamics in a mouse (through the scalp and skull)171

are possible and mammogram reconstructions improve.176

Single-pixel imaging with a point detector allows for low
light level detection and has much greater flexibility than 2-D
detection in the chosen optical frequency and bandwidth.
Models continue to optimize the selection of illumination pat-
terns for increased image resolution and speed,181,189 while also
blending into instrumentation to enable lensless imaging.190,191

Expanding upon and combining these advantages, single-pixel
imaging is now capable of hyperspectral, real-time sensing for
cancer detection.207 In addition, researchers have combined
those attributes with fluorescence lifetime imaging and achieve

3-D reconstruction to reach the state-of-the-art in diffuse optical
imaging.187

The goal of these diffuse optical technologies is to provide
quantitative measurements to clinical and preclinical studies. Of
these, 2-D imaging techniques such as those based on SFDI
have simpler instrumentation and a much simpler model than
that of 3-D methods, allowing it to develop more quickly
into physiological studies. However, the lack of depth resolution
can be a confounding factor for certain layered media,76,115,117

and so the improvement and utilization of 3-D imagers could
greatly enhance our understanding of optical contrast in research
and clinical settings. On the other hand, commercially available
instruments continually improve, making the 2-D imagers more
robust, affordable, and capable every year; impressive studies
have been done using even office supply equipment.70,72

As technology simplifies, it is then available for integration
with clinical instrumentation such as endoscopes78,81,116,211 and
begins to provide quantitative imaging in vivo, in real-time
where was once impossible.
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