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Abstract. Dynamic elastography is an attractive method to evaluate tissue biomechanical properties. Recently,
it was extended from US- and MR-based modalities to optical ones, such as optical coherence tomography for
three-dimensional (3-D) imaging of propagating mechanical waves in subsurface regions of soft tissues, such as
the eye. The measured group velocity is often used to convert wave speed maps into 3-D images of the elastic
modulus distribution based on the assumption of bulk shear waves. However, the specific geometry of OCE
measurements in bounded materials such as the cornea and skin calls into question elasticity reconstruction
assuming a simple relationship between group velocity and shear modulus. We show that in layered media the
bulk shear wave assumption results in highly underestimated shear modulus reconstructions and significant
structural artifacts in modulus images. We urge the OCE community to be careful in using the group velocity
to evaluate tissue elasticity and to focus on developing robust reconstruction methods to accurately reconstruct
images of the shear elastic modulus in bounded media. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JBO.24.7.076003]
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1 Introduction
Mapping tissue mechanical properties, or elastography, has
become an important medical imaging modality. There is a large
body of work using different imaging systems, such as MRI and
ultrasound, to track internal displacements and strains resulting
from either external or internal mechanical loads to infer tissue
mechanical properties.1–3

Recently, high-resolution optical coherence tomography
(OCT) systems have been used for elastography with both
static4 and dynamic5,6 loads. Although both load types can pro-
vide valuable information on tissue mechanical properties,
dynamic elastography has a distinct advantage because quanti-
tative elastic modulus maps can be obtained from local mechani-
cal wave speed estimates for a wide range of practical operating
conditions.5,6 Due to the very high line rates of spectral-domain
(tens of kHz5–9) and swept-source OCT (a few MHz10–13),
dynamic elastography can operate at sub-mm spatial resolution
using pulsed, temporally compact mechanical waves. In other
words, dynamic optical coherence elastography (OCE) can
acquire snapshots of shear wave temporal profiles in soft tissues
propagating with speed many times smaller (a few m/s typically)
than the speed of sound.

OCE has been used to evaluate tissue biomechanics14 and,
especially, in ophthalmology.5,6,8,15–19 Of particular note is dynamic
OCE to map corneal elasticity using noncontact mechanical loads
based on air-puffs6,8,11,20–22 or acoustic microtapping (AμT).5,15,23

To date, dynamic OCE is primarily used to provide local
elasticity information from estimates of the local group
velocity5,6,9,15,20,24–28 of mechanical waves generated at the

surface of the medium and propagating within that medium.
Indeed, high quality two-dimensional (2-D) three-dimensional
(3-D) maps of group velocity have been shown for the cornea
using noncontact mechanical loads.5,6,15,24

The group velocity is often interpreted as being a direct mea-
sure of bulk shear wave speed Cs, which leads to an estimate of
the shear elastic modulus (μ) using the simple relation

EQ-TARGET;temp:intralink-;e001;326;340μ ¼ ρC2
s ; (1)

where ρ is the material density. This is often the case for bulk
mechanical waves produced in magnetic resonance elastography
(MRE) and in ultrasound-based shear wave elastography,
where the medium viscosity is negligible but is not the case
in highly heterogeneous materials or in media greatly influenced
by mechanical boundary conditions (i.e., heterogeneous and
bounded media).

Here, we investigate how well group velocity images re-
present shear modulus information for the conditions typically
encountered in dynamic OCE of the cornea assuming a purely
elastic system (i.e., in the absence of viscosity). As will be dem-
onstrated below, not only do shear modulus estimates derived
from a simple assumption of bulk-waves differ greatly from the
actual modulus but significant spatial features in group velocity
images often interpreted as shear modulus heterogeneities are
actually artifacts produced by wave propagation in a bounded
medium.

2 Method
In this study, we performed both numerical simulations
and experimental studies of mechanical wave propagation in
bulk and bounded tissue-like phantoms with mechanical*Address all correspondence to Ivan Pelivanov, E-mail: ivanp3@uw.edu
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characteristics mimicking soft biological tissue in the purely
elastic limit (i.e., the effects of viscosity are negligible).

2.1 Numerical Simulation

Numerical simulations were performed with a finite element
method in OnScale (OnScale, Redwood City, California—for-
merly PZFlex). We extensively tested the OnScale solver for the
propagation of mechanical waves in nearly incompressible lin-
ear elastic media to ensure that numerical solution is not cor-
rupted by numerical dissipation or dispersion, a common
characteristic of commercially available software packages.
We summarize the simulation method and the medium geometry
in Appendix A and also provide Video 1 showing Rayleigh
wave propagation in a bulk medium [see Fig. 1(a)] versus
guided waves in a 1-mm thick layer [Fig. 1(b)] with the same
mechanical moduli but bounded with water on its bottom.

The shear wave speed was chosen in simulations to be Cs ¼
5 m∕s (μ ¼ 25 kPa), typical for many soft tissues. To excite
mechanical waves, a spatially and temporally compact force was
applied to the medium with a Gaussian profile in space [char-
acteristic width of d ¼ 250 μm Eq. (3) in Appendix A]; and a
super Gaussian temporal profile with a characteristic time con-
stant T ¼ 100 μs [see Eq. (4) in Appendix A]. These parameters
are similar to those used inAμT5,15,23 experiments and define the
shape and bandwidth of the Rayleigh wave. However, these sim-
ulation results are fully valid for any excitation method outside
of the excitation zone.

In Fig. 1, the left column corresponds to the Rayleigh wave,
and the column on the right corresponds to the guided wave.
Figures 1(c) and 1(d) show XT plots of propagating Rayleigh
versus guided waves along the surface of the medium. A hori-
zontal slice of the XT plot (shown with a dashed white line)
presents the temporal profile of the propagating signal for that
spatial position at the medium surface (X ¼ 10 mm from the
excitation point) in Figs. 1(e) and 1(f), respectively.

As seen in Fig. 1(c) and 1(e), the temporal profile of the
Rayleigh wave has a simple shape that does not change with
distance outside the excitation zone. Thus, the cross-correlation
coefficient between two signal profiles measured at different
spatial positions along the surface will equal one, independent
of where measurement points are taken. This means that cross-
correlation-based calculation of the group velocity gives the
same propagation speed over all X positions. Because medium
viscosity is omitted in our analysis, the calculated group velocity
is equivalent to the phase velocity of the Rayleigh wave and,
therefore, can be directly used for shear modulus calculation
with Eq. (1), noting that the Rayleigh wave speed, CR, is related
to the shear wave speed Cs by a constant multiplicative factor of
0.955 in nearly incompressible materials such as soft
tissue.5,25,29 Consequently, elasticity reconstruction based on the
group velocity is accurate in this case.

If the medium is a layer bounded by water on its bottom [as
shown in Fig. 1(b)], the signal shape is not preserved during
propagation, showing dramatic perturbations of the signal tem-
poral profile [see Fig. 1(d), 1(f), and Video 1] even if there is no
viscosity. These effects result from highly dispersive guided
modes [see Fig. 1(h)] that coexist and propagate along the
medium surface instead of a simple nondispersive Rayleigh wave
[Fig. 1(g)]. Note that analytical solutions to wave propagation for
this case were reported previously and can be found in Ref. 5.

We used a 2-D Fourier transform to process signal wave
fields (XT plots) in wavenumber and frequency coordinates30,31

and, finally, to compute phase velocity dispersion (phase veloc-
ity and frequency coordinates) from simulated data; results are
superimposed on the analytical solution in Fig. 1(h).5 In general,
calculating the group velocity of multimode motion does not
produce quantitative elasticity estimates. Nevertheless, this
method has been used to evaluate tissue elasticity through
Eq. (1) in multiple studies.5,6,9,15,20,24–28 Here, we show that this
approach results in poor shear modulus maps, both in terms of
quantitative accuracy and the presence of image artifacts.

2.2 Tissue Mimicking Phantoms

Thin-plate polyvinyl alcohol (PVA)-based phantoms were cre-
ated using protocols adapted from Ref. 32. PVA phantoms

Fig. 1 Mechanical waves in the subsurface region of a nearly incom-
pressible linear elastic medium (mimicking soft tissue) simulated
in OnScale. Spatial and temporal parameters of the push are d ¼
250 μm and T ¼ 100 μs, respectively; shear wave speed is Cs ¼
5 m∕s (μ ¼ 25 kPa). Left column: semi-infinite material with air at the
upper boundary; and the right column: a 1-mm thick tissue layer
bounded with a liquid from the bottom. (a), (b) Diagrams for wave exci-
tation and propagation (taken from Ref. 5); (c), (d) wave fields (XT
plots) along the medium surface displayed over an arbitrary dynamic
range scaled to the signal maximum; (e), (f) temporal profiles of
Rayleigh and guided waves at a 10-mm distance from the excitation
point (shown with a white dashed line), respectively; and (g), (h)
phase velocity dispersion plots for Rayleigh and guided waves,
respectively: numerical simulation (red crosses) superimposed on the
analytical solution (solid lines).5 Dynamic variations of the waveforms
are presented in Video 1 (MP4, 498 MB [URL: https://doi.org/10.1117/
1.JBO.24.7.076003.1]).
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provide nearly pure elasticity, can be tuned to closely mimic the
mechanical properties of soft tissue due to their extracellular
matrix, and can be easily fabricated into thin plate shapes that
serve the purpose of this study. They were made by first mixing
4:1 ratio dimethyl sulfoxide (DMSO, CAS: 67-68-5, EMD
Millipore Corp.) into water using a stir plate. The phantom’s
optical properties were tuned by introducing titanium dioxide
nanoparticles. A concentrated stock solution of 0.3 wt. % tita-
nium nanoparticles suspended in water was prepared, and a tip
sonicator (Digital Sonifier 450, Branson, Danbury, Connecticut)
was used for 3 min (30% duty cycle) at an amplitude of 30% to
help disperse nanoparticles in solution.

The concentrated nanoparticle solution was then added to the
DMSO solution to achieve a nanoparticle concentration of 0.025
wt. %. Two (2) wt. % PVA (146 to 186 kDa, >99% hydrolyzed,
CAS: 9002-89-5, Sigma-Aldrich) was then added to the solu-
tion. It was covered and stirred on a hot plate maintaining a tem-
perature of 120°C for ∼1 h to dissolve the PVA. Once fully
dissolved, the solution was degassed using a vacuum chamber
to remove any bubbles before casting in molds and storing at
−20°C for up to 12 h to solidify.

Multiple thin-plate phantoms were cast in circular molds
with a diameter of 5 cm. The thickness was controlled by adding
just enough molten PVA solution to cover the bottom of the
mold and then rotating the mold to evenly distribute the solution.
Multiple thin slabs were created and then physically sized using
OCT structural imaging. Finally, casted, hardened phantoms
were placed in a water bath. During this process, DMSO slowly
diffused out of solution in exchange for water. The bath was
regularly changed for a minimum of 48 h to remove all
DMSO. Phantoms were stored in deionized water to prevent
dehydration.

During imaging, the PVA phantom was suspended on top of
water to force asymmetric boundary conditions and match the
medium diagram used in numerical simulations (see Fig. 2). To
estimate the true shear wave speed of the phantoms, we per-
formed group velocity estimates at the surface of a separate thick
layer (15 mm thick) phantom made using the same protocol.
Note that in the case of a thick layer, dispersive guided wave
modes do not develop and the group velocity provides an accu-
rate estimate of the shear wave speed, in this case Cs ¼ 3.8 m∕s.

2.3 Experimental Setup

Elastic waves were tracked in the phantom using a phase-sen-
sitive OCT (PhS-OCT) system operating in M-B mode, as
detailed previously.5,9,23,33 The A-line rate of the system was
46.5 kHz, and the optical resolution was ∼15 μm axially and
∼24 μm laterally. Each M-scan consisted of 512 A-scans in the
same location repeated at 256 locations (B-scans) horizontally
across the imaging plane (dx ¼ 58.6 μm), forming one com-
plete M-B scan (1024 depth × 256 lateral locations × 512
frames) with an effective imaging range of 1.5 mm × 15 mm
(axial × lateral). The total acquisition time for one M-B scan
was 3.66 s.

To generate quasiplanar guided waves, AμT was used
with a cylindrically focused air-coupled ultrasound (US)
transducer.5,15,23 It was fixed at an angle (20 deg to 30 deg to
vertical) normal to the phantom to avoid blocking the laser light
from the OCT system, providing a push beam with dimensions
of d ≈ 0.5 mm lateral and L ≈ 9 mm elevational. The push was
applied for T ¼ 100 μs (same as in numerical simulation) and
focused to the edge of the OCT imaging range.

Note that the push width of d ≈ 0.5 mm in the experiment is
close to the minimum width that can be applied with our current
air-coupled transducer tilted to the surface normal by ∼30 deg.
This value can be made smaller by positioning the transducer
normal to the surface or by using a higher frequency ultrasound
excitation. In one set of simulations, we intentionally used
d ¼ 0.25 mm, i.e., twice narrower, to demonstrate the develop-
ment of higher order guided modes.

2.4 Signal Processing

Similar to speckle tracking in ultrasound to detect shear
waves,34,35 PhS-OCT can be used to detect motion by analyzing
the differential signal between successive A-scans at a single
location following an applied load.5,36–41 The displacement term
is defined as the change in scatterer position between scans and
is more appropriately reported by the depth-resolved vertical
component (along z) of vibration speed:5,15,33

EQ-TARGET;temp:intralink-;e002;326;330Uzt ¼
Δφoptðx; z; tÞλ

4πnf−1s
; (2)

where fs is the scan rate, Δφoptðx; z; tÞ is the optical phase dif-
ference between successive scans, λ is the optical wavelength,
and n ¼ 1.33 is the medium refractive index.

The vibration speed recorded at different time points in the
XZ imaging plane can be used to plot the mechanical wave field
[see Figs. 1(c) and 1(d)] for a fixed depth position. A 2-D FFT
was then applied30,31 to compute phase velocity dispersion
curves [like those presented in Figs. 1(g) and 1(h)].

Group velocity maps in the XZ plane were obtained with the
correlation method described in detail in Refs. 5, 42, and 43.
Finally, the average group velocity over the 2-D image was
calculated.

3 Results
Using the numerical model, we first explore the effects of intrin-
sic (shear modulus) and extrinsic (geometry and mechanical
wave bandwidth) parameters on group/phase velocity measure-
ments and their relation to elasticity maps. To simplify the
analysis, we assume infinite signal-to-noise ratio (SNR) with the
goal of identifying key experimental parameters that produce

Fig. 2 (a) Experimental setup showing a 0.5-mm-thick PVA phantom
suspended on water boundary. An air-coupled AμT transducer can be
seen in the upper left. A red dotted line denotes an OCT B-scan line.
(b) OCT structural image of thin-plate phantom. Note: uneven aspect
ratio displayed to highlight phantom structure.
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the best quantitation of shear modulus and minimize artifacts in
elasticity maps.

One of the important experimental parameters is the high fre-
quency cutoff (or bandwidth) of propagating waves. Indeed, dif-
ferent excitation methods used in OCE produce different
characteristic frequencies of generated mechanical waves. For
example, air-puff techniques can generate broadband signals
up to 400 Hz bandwidth. The newer AμT technology can pro-
duce mechanical waves with significant components up to
8 kHz.15 Note that the high frequency cutoff in AμT5,15,23

depends mainly on the operating frequency of the driving
air-coupled US transducer. Increasing the transducer carrier fre-
quency can produce a much higher cutoff frequency, extending
even to tens of kHz.

The main question here is how shear modulus estimates
using Eq. (1) differ from actual material properties when
tracking guided mechanical waves of different bandwidths.
Figure 3 provides an answer for a specific illustrative example.

To properly analyze guided waves, the frequency should be
scaled to the medium thickness and shear wave speed, as in the
central column of Fig. 3. Indeed, geometric dispersion of the
guided-wave phase velocity has a universal character when plot-
ted in dimensionless coordinates. For example, fd ¼ fh∕Cs can
be obtained in multiple ways with different shear wave speed
and medium thickness, yet the character of wave propagation
will be the same for the same dimensionless frequency. This
means that our analysis can be applied to a wide range of exper-
imental conditions encountered in OCE.

Fig. 3 Mechanical wave propagation in a layer of nearly incompressible linear elastic medium bounded
with water on the bottom [see Fig. 1(b)] simulated in OnScale. Spatial and temporal parameters of the
push are d ¼ 250 μm and T ¼ 100 μs, respectively; shear wave speed is Cs ¼ 5 m∕s (μ ¼ 25 kPa);
layer thickness is h ¼ 1 mm. (a) XT plots (wave fields) calculated along the tissue surface and obtained
for different signal bandwidths (BW ) measured at −6 dB cut-off so that (BW � h

Cs
¼ 1; 0.5;0.25;0.1),

respectively, for the rows from top to bottom. (b) The phase velocity dispersion computed from the wave
fields of (a) red crosses, superimposed on the analytical solution5 (solid lines), respectively. (c) 2-D group
velocity images normalized to the true shear wave speed (i.e., displayed value is 1 for a group velocity
estimate equaling the true shear wave velocity) obtained for every point of the XZ plane with the corre-
lation method for the same BW � h

Cs
values, respectively.
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Note that the large majority of prior experiments performed
on the cornea, or other thin media such as the sclera and dermis,
are over a range of fd smaller, or much smaller, than 1 (one). For
example, a typical human cornea (thickness h ¼ 0.5 mm,
Cs ≅ 5 m∕s) probed over a 800-Hz bandwidth (typical for air
puff20–22) would result in fd ≅ 0.04 ÷ 0.08; whereas a 5-kHz
bandwidth for AμT5,15,23 results in fd ≅ 0.5.

To explore how the group velocity estimate depends on sig-
nal bandwidth (i.e., speed over a specific range on the dimen-
sionless frequency scale), we applied a low-pass (LP) Gaussian
filter to simulated data, artificially limiting the signal bandwidth.
The filter cutoff frequency is indicated by a vertical dashed
arrow in the central column of Fig. 3. For geometries without
geometric dispersion (e.g., for Rayleigh wave propagation on a
bulk material), the group velocity does not depend on signal
bandwidth. For guided waves, it most certainly does.

The upper row of Fig. 3 presents the case where the signal
spectrum is limited by fd ≅ 1. Here, a complicated wave field,
shown in the left panel as the XT plot, produces (three propa-
gating guided modes5,29 shown by red crosses in the phase veloc-
ity dispersion panel (central panel). The elasticity map in the
right panel is produced by calculating the group velocity at every
position in the medium and normalizing it to the true shear wave
speed. Clearly, this image is very heterogeneous, with severe
deviations from the true shear wave speed. These heterogeneities
have nothing to do with intrinsic material parameters (the shear
elastic modulus is constant within the bounded medium) and are
artifacts. Their details are dominated by extrinsic parameters
such as the medium thickness and signal bandwidth.

If the signal spectrum is limited by fd ≅ 0.5 (see second row
in Fig. 3), the XT plot dramatically changes and results in two
guided modes and a totally different 2-D spatial distribution of

estimated elasticity (again, not related to true medium elastic
properties because the medium is homogeneous). This happens
because limiting the signal bandwidth not only smooths the
group velocity distribution but also affects the guided mode con-
tent that, in turn, creates a different group velocity structure.

Limiting the signal spectrum by fd ≅ 0.25 (see third row in
Fig. 3) results in a single propagating guided mode and further
changes the XT plot and the 2-D distribution of estimated elas-
ticity. Further narrowing the signal spectrum by fd ≅ 0.1 (bot-
tom row in Fig. 3) makes the 2-D group velocity distribution
more homogeneous, but dramatically reduces the average group
velocity relative to the true shear wave speed due to strong
dispersion in the low fd range.

Experimental results shown in Figs. 4–6 show behavior sim-
ilar to that of the simulations. To simplify the comparison,
experimental results are split into three figures corresponding
to a different range of dimensionless frequency fd and com-
pared to numerical simulations in Onscale for the same medium
parameters. The maximum value of the dimensionless band-
width we could reach experimentally was BW � h

Cs
≅ 0.5 and,

thus, the upper row in Fig. 3 corresponding to BW � h
Cs

¼ 1
is absent from the experimental study. The shear wave speed
was measured to be Cs ¼ 3.8 m∕s for the bulk 15-mm thick
sample using the group velocity method. The same speed was
used to compute theoretical curves for phase velocity dispersion
[solid blue lines in (b) and (e) in Figs. 4–6]. Note that the layer
thickness measured with OCT structural imaging is h ≅ 0.5 mm
(typical for human cornea), compared to 1 mm (close to that for
porcine cornea) used to obtain Fig. 3.

Wave fields (XT plots) of propagating mechanical waves
near the sample surface from experimental data are represented
in (d) in Fig. 4–6 for different signal bandwidths. To reduce the

Fig. 4 (d)–(f) Experimental study of mechanical wave propagation in a layer of PVA phantom (mimicking
soft tissue) bounded with water on the bottom (see Fig. 2) is compared to numerical simulations in
(a)–(c) OnScale for the same medium parameters. The dimensionless signal bandwidth BW � h

Cs
¼ 0.5

(maximum achievable in the experiment). Spatial and temporal parameters of the push are d ≅ 500 μm
and T ¼ 100 μs, respectively; the elastic modulus measured for a thick phantom is μ ¼ 14.44 kPa (shear
wave speedCs ¼ 3.8 m∕s). The layer thickness was measured from the OCT structural image [Fig. 2(b)]
to be h ≅ 0.5 mm. (a) An XT plot (wave field) calculated along the phantom surface. (b) The phase veloc-
ity dispersion computed from the wave field of (a) red crosses, superimposed on the analytical solution5

(solid lines), respectively. (c), (f) 2-D group velocity images normalized to the true shear wave speed (i.e.,
displayed value is 1 for a group velocity estimate equaling the true shear wave velocity) obtained for
every point of the XZ plane with the correlation method.
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signal bandwidth, LP filtering was applied to experimental data
in the same way as described above. To improve SNR, measured
wave fields were averaged in Z and X with a 2-D Gaussian filter
having kernel size corresponding to one-tenth (1/10) of the char-
acteristic signal wavelength Cs∕BW. They were then used to
compute phase velocity dispersion via a 2-D Fourier transform
[see red crosses in (e) in Fig. 4–6], which closely matches theo-
retical curves [see red crosses in (b) in Figs. 4–6].

To compare with experimental data, XT plots were also
obtained from numerical simulations for the same medium
parameters [(a) in Fig. 4–6]. Clearly, experimentally obtained

wave fields match quite closely to numerically simulated ones.
A little mismatch between (a) and (d) in Fig. 4 (BW � h

Cs
≅ 0.5)

is related to high-frequency attenuation of mechanical waves
during propagation [high-frequency wave field “modulation”
disappears at distances larger than ∼5 mm from the source].
This behavior is clearly related with the medium viscosity not
taken into account in simulations. On the other hand, for
BW � h

Cs
≅ 0.1, i.e., for the narrowest bandwidth considered, the

experimental wave field is affected by missing very low frequen-
cies (below 100 Hz) due to high-pass filtration of experimental
data to reduce environmental noise.

Fig. 5 (d)–(f) Experimental study of mechanical wave propagation in a layer of PVA phantom (mimicking
soft tissue) bounded with water on the bottom (see Fig. 2) is compared to numerical simulations in
(a)–(c) OnScale for the same medium parameters. The dimensionless signal bandwidth BW � h

Cs
¼ 0.25.

Medium parameters and spatial and temporal parameters of the push are the same as for Fig. 4.

Fig. 6 (d)–(f) Experimental study of mechanical wave propagation in a layer of PVA phantom (mimicking
soft tissue) bounded with water on the bottom (see Fig. 2) is compared to numerical simulations in
(a)–(c) OnScale for the same medium parameters. The dimensionless signal bandwidth BW � h

Cs
¼ 0.1.

Medium parameters and spatial and temporal parameters of the push are the same as for Fig. 4.
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The 2-D group velocity images computed with experimental
data [(f) in Figs. 4–6] and compared with numerically simulated
[(c) in Figs. 4–6] show very strong variations in the XZ plane.
They are mostly due to multiple dispersive modes propagating
in the bounded layer. Image artifacts depend on multiple param-
eters, such as signal bandwidth, layer thickness, shear wave
speed, and the temporal profile of the excited mechanical wave.
Note that in addition to structural artifacts, there is some high-
frequency noise present in group velocity images [especially in
Fig. 4(f)]. Because the signal shape changes drastically from
point to point, quite a small kernel size (on the order of the spa-
tial signal wavelength, Cs∕BW) was used to calculate the group
velocity. In addition, structural artifacts are smoothed at distan-
ces larger than 5 mm for BW � h

Cs
¼ 0.5 [Fig. 4(f)] due to

medium viscosity limiting the signal bandwidth. The cross-cor-
relation coefficient between signals was always better than 0.9.
Further increasing the kernel size leads to signal decorrelation
and, thus, reduces the accuracy of group velocity estimates. The
2-D group velocity images computed for BW � h

Cs
¼ 0.25

[Fig. 5(f)] and for BW � h
Cs

¼ 0.1 [Fig. 6(f)] closely match simu-
lated images [Figs. 5(c) and 6(c) respectively] in most details.

Figure 7 shows estimates of the group velocity averaged over
the 2-D distributions (over 10 mm × 1 mm area in case of a
1-mm thick medium and over 10 mm × 0.45 mm for a 0.5-mm
thick medium) shown in Figs. 3–6. The near field area (0.8 mm
from the AμT source) was excluded from group velocity aver-
aging. Clearly, the broader the bandwidth, the closer the average
group velocity is to the true shear wave speed (shown by a red
dashed line in Fig. 7). However, broader bandwidths also yield
higher variance, as evidenced by the artifacts seen in elasticity
maps shown in Figs. 3 and 4. For fd significantly lower than 1,
the group velocity estimate generally follows the dispersion
curve for the guided mode of the lowest order, approaching zero
in the limit of fd → 0. We note that the high frequency asymp-
tote for the lowest order mode is a Scholte wave having a propa-
gation speed of CSch ¼ 0.846CS. Both numerical simulations

and experimental studies result in very similar average group
velocity estimates (both being wrong) when the signal spectra
are limited with the same fd even though the details of the mea-
surements (e.g., medium thickness, excitation width, and shear
wave speed) are different.

4 Discussion and Conclusions
In this paper, we have analyzed the most common situation in
dynamic OCE in which a high frame rate OCT system tracks
propagating mechanical waves in soft tissue. We have confirmed
that for a homogeneous bulk material, and negligibly small vis-
cosity (no frequency dispersion in the phase velocity), the group
velocity of Rayleigh waves propagating along the air/tissue
interface is equal to its phase velocity and can, therefore, be used
in Eq. (1) (noting that CR ¼ 0.955Cs

5,29) to directly evaluate tis-
sue elasticity.

For a bounded material [Figs. 1(b)], however, the situation is
very different due to the tissue/liquid (or other) interfaces on
wave propagation. This situation is exactly what OCE faces
in evaluating corneal biomechanics and is very close to that for
skin. In other words, when OCE is used to image layered tissue,
multiple dispersive propagating modes should be expected.

As shown in Sec. 3, the group velocity estimate is quantita-
tively incorrect (due to multiple propagating guided modes), has
strong artificial fluctuations in the XZ plane (see images in right
columns of Figs. 3–6), and the average value is highly under-
estimated due to a nearly linear reduction in velocity for the
lower order mode in the low frequency limit.

Artifacts in group velocity images make it difficult to probe
heterogeneous layered tissues because artificial spatial fluctua-
tions in the group velocity cannot be distinguished from real
structural heterogeneities in the elastic modulus. Furthermore,
both artifacts in group velocity images and inaccurate group
velocity average values are hard to predict and estimate in real
experiments. The problem is that the position of the measure-
ment point on the dispersion diagram C∕Cs versus fh∕Cs (see
central columns in Figs. 3 and 4) depends on Cs itself, i.e.,
depends on the value to be measured! Thus, even if the medium
thickness is known (can be evaluated with OCT structural
image), it is still unclear how far the group velocity is from the
true shear wave speed. For example, when fd ≪ 1 (which is
typical for many OCE cases), the group velocity can be 10
to 100 times smaller than Cs depending on which fd corre-
sponds to the mechanical wave signal bandwidth, which is not
known a priori. Note that the problems associated with using the
group velocity for elasticity evaluation were briefly discussed in
our previous study of ex vivo porcine corneas.15 Replacing esti-
mated group velocities with phase velocities was also mentioned
in Ref. 44.

In conclusion, we urge the OCE community to be careful
using the group velocity to evaluate tissue elasticity and be
extremely careful in describing 2-D and 3-D group velocity
images. In many practical cases, when the medium under study
consists of one or more layers, wave propagation splits into
multiple, highly dispersive, guided modes producing group
velocity estimates greatly influenced by extrinsic parameters and
very far from the true value of the shear wave speed. Inversion of
group velocity images in such cases using Eq. (1) will produce
very poor renditions of true tissue elasticity maps.

A similar analysis applies when the wavelength of propagat-
ing waves is of the same order as the object size as, for instance,
when dynamic elastography is used to quantify elasticity within

Fig. 7 Mean value of group velocity as a function of signal bandwidth.
Blue (obtained for a 1-mm thick medium) and red (obtained for a 0.5-
mm thick medium) circular dots correspond to averaging over numeri-
cally simulated 2-D group velocity distributions [(c) in Fig. 3 and (c) in
Figs. 4–6, respectively]. Black triangles correspond to averaging over
experimentally obtained distributions [(f) in Figs. 4–6] for a 0.5-mm
thick PVA sample. Solid blue line presents the dispersion curve for
a guided mode of the lowest order (same as in Figs. 4–6). Dashed
black line corresponds to the Scholte wave velocity asymptote for this
mode (derived from Ref. 5 for an air/tissue/water system). Dashed red
line corresponds to the true shear wave velocity. Error bars show vari-
ance of group velocity estimates in the ZX plane.
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a single cell. For example, an impressive study was recently per-
formed to evaluate the elasticity of a mouse oocyte with propa-
gating mechanical waves generated at a frequency of 15 kHz.45

The authors reported not only the mean shear wave speed in the
cell (∼1 m∕s) but also images of shear modulus across the cell.
Wave propagation in the oocyte is most likely severely influ-
enced by guided wave modes in the zona pelludica
(thickness ≈ 10 μm). For these experimental parameters, even
an optimistic estimate of the dimensionless frequency gives
fd ≈ 0.15. This means that the true shear wave speed is at least
twice the measured estimate and, therefore, the shear modulus is
at least four times higher than the reported value. In addition, the
dimensions and boundary conditions of the cell clearly affect the
shear modulus image of the cell, leading to artifacts that cannot
be ignored or considered insignificant.

Finally, the OCE community must develop correction meth-
ods to accurately convert the group velocity into the shear wave
speed, which may work for some experimental cases, or create
alternative methods to reconstruct the shear modulus (elasticity)
from wave field data. For example, a model-based wave speed
dispersion diagram can be used to fit experimental data and
determine both viscosity and elasticity, as recently demonstrated
in Ref. 46. Alternatively, high frequency asymptotes of guided
waves approaching the Rayleigh and Scholte wave speeds when
fd → ∞ can provide a careful estimate of tissue elasticity.5,15

For more complex geometries, wave field inversion algorithms
similar to those used in MRE47 must be considered. In any event,
there is a great need to develop robust reconstruction methods
for dynamic OCE to convert wave field data into quantitative
maps of tissue shear modulus.

5 Appendix A

5.1 Finite Element Model for a Semi-Infinite Medium

To model the propagation of elastic waves in soft tissue, we con-
structed a 2-D finite element model using OnScale (Onscale,
Redwood City, California – formerly PZFlex). This approxi-
mation matches well to our experimental situation of a line
excitation source,15,23 avoids diffraction effects during wave
propagation, and maximizes the cross-correlation coefficient
between signal profiles at different spatial locations (under this
approximation the Rayleigh wave signal shape does not change
during propagation29).

First, we wanted to ensure that the simulation provides accu-
rate results for nearly incompressible media, demonstrating no
significant artifacts (numerical dispersion or attenuation) during
wave propagation. To do this, Rayleigh wave excitation and
propagation in a bulk linear-elastic material were investigated
[see Fig. 8(a)].

To simulate a spatiotemporally sharp push, we apply a time-
and spatially dependent pressure load to the top (z ¼ 0) boun-
dary of the domain. The spatial push profile is taken to be a
Gaussian function [Eq. (3)] with full-width-at-half-max
(FWHM) given by the push width d. The temporal push profile
is given by a super-Gaussian function [Eq. (4)] with FWHM
given by the push duration T. A time delay t0 is introduced
to avoid impulsive loading at time t ¼ 0. The full pressure load
Pðx; tÞ is given by Eq. (5). In addition, we assume that the top
boundary is free of shear stress.

EQ-TARGET;temp:intralink-;e003;63;100gðxÞ ¼ e−4·log 2·ðxdÞ2 ; (3)

EQ-TARGET;temp:intralink-;e004;326;563sðtÞ ¼ e−16·log 2·ðt−t0T Þ4 ; (4)

EQ-TARGET;temp:intralink-;e005;326;539Pðx; tÞ ¼ P0 · gðxÞ · sðtÞ: (5)

Boundary conditions are assigned as follows. We assume the
solutions are symmetric about the x ¼ 0 boundary. The lower
and right boundaries are set to be absorbing layers that minimize
the reflection of incident waves back into the domain. Because
absorbing boundaries do not always perfectly prevent reflection
of incident shear waves, the right boundary was set sufficiently
far away from the region of interest so any partially reflected
waves did not affect the results.

The domain was discretized with linear finite elements on a
regular rectangular grid with a minimum of 40 elements per
wavelength. The equations were integrated in time using an
explicit time-stepping method and the vertical component of the
vibration velocity field, equivalent to data recorded in OCE
experiments, was extracted for analysis.

Because the Rayleigh wave speed does not depend on the
longitudinal wave speed Cl in a nearly incompressible
medium,5,29 the numerical solution should converge in the limit
Cs ≪ Cl. We checked this hypothesis by varying the Poisson
ratio (see Fig. 9). For nearly incompressible media such as this,
underintegrated linear finite elements are prone to spurious sol-
utions. To prevent this, Belytchko–Bindeman strain hourglass
suppression was applied to all models.48

Figure 9(a) shows how Rayleigh wave profiles change with
increasing Poisson’s ratio. Clearly, signal shapes converge to the
analytic solution (defined by the Green’s function49) for
Poisson’s ratios higher than 0.4995. This is also seen in the
quantitative error estimate in Fig. 9(b), which shows that for suf-
ficiently high longitudinal wave speed, the numerical solution
approaches the analytic solution at Cl ¼ 1550 m∕s and changes
very little. The longitudinal wave velocity necessary for this
convergence is Cl ¼ 158.2 m∕s. Thus, it is not necessary to set
the true value of Cl ¼ 1550 m∕s (typical for soft tissues) in sim-
ulations; any Cl values corresponding to Poisson’s ratio larger
than 0.4995 will produce the same wave propagation over the
time scales used in these simulations. Using this fact, simulation
times can be dramatically reduced (from 8 h to 50 min per full
simulation on a standard, 128 GB RAM workstation), spurious
solutions due to hourglassing can be virtually eliminated, and
floating point error in the numerical solution can be minimized.

To ensure that the numerical solution provides the correct
outcome, we varied the grid size (number of points per wave-
length). The results are shown in Fig. 10. As seen, profiles

Fig. 8 Finite element model in OnScale (formally PZFlex): (a) geom-
etry and boundary conditions for a nearly incompressible semi-infinite
medium and (b) a layer bounded on its bottom with water.
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converge at more than 40 points per wavelength. In addition, we
see that the solution does not change with propagation distance,
which verifies the absence of significant numerical attenuation
and dispersion within the simulation volume for the parameters
used. The validity of results is further supported by a nearly per-
fect match of simulated wave speed dispersion curves to the ana-
lytical solution for guided waves5 shown in Fig. 3.

5.2 Finite Element Model for a Bounded Medium

The bounded tissue model consisted of two layered regions,
both of which are assumed to be linear elastic materials under
plane strain [Fig. 8(b)]. The upper layer models a medium under
study with a thickness h, shear wave speed Cs, density ρ ¼
1000 kg∕m3, and longitudinal wave speed Cl ¼ 158.2 m∕s.
These properties correspond to a Poisson’s ratio of about
0.4995, depending on the shear wave speed Cs.

We set the longitudinal wave speed in the lower medium to
that of water (closely approximating the anterior chamber of the
eye). This region can support longitudinal waves but not shear
waves and generates appropriate reflections back into the upper
tissue layer. To achieve this, we match the density and longi-
tudinal wave speeds to the upper region (ρ ¼ 1000 kg∕m3,
Cl ¼ 158.2 m∕s) but set the shear wave speed to Cs ¼ 0 m∕s.
The thickness of the lower layer is set to four times the estimated

wavelength in the top layer to minimize interactions between the
“leaky” longitudinal wave and the lower boundary.
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