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Abstract. The optical attenuation coefficient (AC), an important tissue parameter that measures how quickly
incident light is attenuated when passing through a medium, has been shown to enable quantitative analysis
of tissue properties from optical coherence tomography (OCT) signals. Successful extraction of this parameter
would facilitate tissue differentiation and enhance the diagnostic value of OCT. In this review, we discuss the
physical and mathematical basis of AC extraction from OCT data, including current approaches used in model-
ing light scattering in tissue and in AC estimation. We also report on demonstrated clinical applications of the
AC, such as for atherosclerotic tissue characterization, malignant lesion detection, and brain injury visualization.
With current studies showing AC analysis as a promising technique, further efforts in the development of meth-
ods to accurately extract the AC and to explore its potential use for more extensive clinical applications are
desired. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.9.090901]
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1 Introduction
Optical coherence tomography (OCT) is an established tech-
nique that provides noninvasive, volumetric, and real-time
in vivo images of tissue microstructure.1 One longstanding criti-
cism of traditional OCT images (i.e., B-scans), however, is that
they only provide morphological information about the tissue.2,3

Quantitative analysis of tissue properties would facilitate more
accurate differentiation between diseased tissue and normal tis-
sue. Several researchers have proposed that the optical attenu-
ation coefficient (AC), which measures how quickly incident
light is attenuated when passing through a medium, may enable
such analysis. Indeed, analysis of the AC has been used for
quantitative assessment and differentiation of several tissue
types:4 for example, quantification of the AC from OCT data
enables in vivo diagnostic applications, such as imaging of ath-
erosclerotic plaques,3 assessment of glaucoma,5 identification
of axillary lymph nodes,6 differentiation between normal and
cancerous tissue in the bladder7 and colon,8 and imaging of the
cerebral cortex after stroke.9 In addition, measurement of the
AC also serves to assess vascularity in human burn scars10 and
development of acne scars,11 as well as to monitor the effect of
photodynamic therapy in skin lesions.12

The purpose of this review is to discuss the physical and
mathematical basis that underlies extraction of the AC from
OCT data and present a summary of demonstrated clinical
applications of the OCT-derived AC, as well as a historical per-
spective, contemporary assessment, and futuristic outlook on
methods used to estimate the AC with OCT. Our chief aim is
that readers gain an appreciation for the importance, complexity,
and applicability of this parameter, as well an appreciation of
the tradeoffs of different implementations, in order to guide

decisions about how to employ it for analysis of their clinical
datasets.

We begin with some background of principles of OCT
measurement and a definition of the AC. Then, we discuss rel-
evant mathematical models, methods, and clinical applications
of the AC.

2 Background

2.1 Principle of OCT

The general strategy for implementing OCT is based on low-
coherence interferometry. Traditionally, infrared light of low
temporal coherence is used to illuminate the tissue; the choice
of wavelength depends on the type of tissue being illuminated
and is largely governed by the goal to minimize loss of signal
due to absorption. Light incident on the tissue of interest is
collected in a backscattering geometry and mixed with light
returning from a reference path. The resulting signal is presented
in the form of an axial scan (A-scan), which describes the rel-
ative position and intensity of reflecting structures (correspond-
ing to interfaces of different cell or tissue properties) in the
tissue. Thus, OCT provides a profile of the underlying tissue
microstructure. A spatial series of A-scans form a two-dimen-
sional dataset and create a cross-sectional image, termed a
B-scan.

The maximum depth into tissue that an A-scan can measure
is governed by at least three factors. First, the optics of the sys-
tem affect how light is distributed to different tissue depths: the
maximum concentration of illuminating light will occur at the
focus of the objective and will taper as one moves deeper into
the tissue. The shape of this focusing profile is determined by
the confocal function of the system. Second, Fourier-domain
OCT systems,13 which are more popular than their time-domain
counterparts, have a maximum imaging depth determined by the
sampling frequency and subject to the Nyquist sampling limit.
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Most researchers, however, typically choose the optics and
design of their system, such that the imaging depth of most
OCT systems is practically limited by a third factor, which is
light attenuation by the tissue.

2.2 Principle of AC

The AC measures how quickly incident light is attenuated when
passing through a medium and is a function of the underlying
medium properties. Loss of light in tissue can be caused by
absorption, scattering, or a combination of both. When propa-
gating through a medium, the irradiance of the light beam fol-
lows the equation:

EQ-TARGET;temp:intralink-;e001;63;612I ¼ I0e−μz; (1)

where z is the distance light travels into tissue and μ is the AC of
light in that tissue. When μ is small, the irradiance of light will
experience a slow exponential decay, as happens when the tissue
sample has low absorption and weakly scattering properties. In
contrast, when μ is large, the irradiance will decrease quickly
and exponentially, as happens in highly scattering or absorbing
tissue types. Because AC is an underlying tissue property, accu-
rate estimation of the AC allows differentiation of dissimilar
tissue types. This information is complementary to information
about the tissue microstructure provided by standard OCT
B-scans, which represents the backscatter intensity at each
depth. In fact, a true picture of the backscatter intensity at each
depth should take into account the fact that the light incident at
each depth of the tissue is reduced by attenuation of light from
anterior structures. Figure 1 shows a conventional OCT B-scan
of a healthy human retina compared to ACmapping. Note that to
some degree, the intensity of scattering correlates with the mag-
nitude of the AC, as one would expect.

2.3 Models for AC Extraction

Multiple methods have been proposed to extract AC measure-
ments from OCT images. These methods are associated with
two general models that have been proposed: the single-scatter-
ing (SS) model15,16 and the multiple-scattering (MS) model17

and the tissue type of interest determines which model should
be used. The SS model assumes the backscattering of photons
only occurs once and is applicable to AC measurement in
weakly scattering tissue samples or superficial layers of a highly
scattering tissue sample, such as human axillary lymph nodes6

and the retinal nerve fiber layer (RNFL).5 The MS model takes
multiple backscattering events and larger probing depths18 into

consideration, and it has been used for extracting optical proper-
ties from human skin19 and blood vessels.20 The SS model is
more widely used, especially as SS is a general assumption of
OCT image reconstruction.

2.3.1 Single-scattering model

Within the SS model, two main approaches have been described,
which are known as curve-fitting (CF) and depth-resolved
(DR),15,16 respectively. The general idea behind CF methods
is to fit the exponential decay described by Eq. (1) to the A-scan
data of interest and determine the AC as the exponential
parameter that best fits this curve. In contrast, DR methods
use differences in the intensity of adjacent voxels to recover
the amount of attenuation that occurs on a per-pixel basis.
Historically, CF methods were the first to be introduced, and
the majority of OCT literature on the AC still relies on this
method. However, the use of DR methods, first introduced in
2014,15 is increasing as attempts to streamline and automate the
process of AC extraction become popular.

While these two methods have been successful, the utility of
the AC for clinical diagnoses has inspired many recent works
that are dedicated to improving their performance. For example,
van Soest et al. developed an automated optimization-based
CF method, with the assumption that the region of interest is
homogenous.21 Gargesha et al. employed a three-dimensional
approach, where groups of A-lines with close proximity were
analyzed together, as opposed to single A-line analysis, to
extract AC values from atherosclerotic tissue.22 Smith et al.
modified the DR method to take the confocal function into
account (DRC), which allows the focal plane to be placed within
the sample.23 Dwork et al. introduced an automated DRC algo-
rithm, which computes the AC at each pixel without requiring
prior knowledge of the OCT system parameters.14 We next
review the basic mathematical models associated with the two
SS methods and overview the innovations that have been
recently developed.

CF method. An early approach used to measure the optical
AC relies on a simplified model in which either an exponential
curve is fit to a one-dimensional OCT signal (A-scan) or a linear
function is fit to the logarithm of that signal; a nonlinear least
square fitting is then invoked to find the estimated values.16 A
limitation with this classical CF approach is that it requires tak-
ing the average over a large amount of measured data points
to obtain reliable estimations from fitting the exponential curve,
and therefore, only relatively global AC measurements can be
achieved.

a. General CF method

The CF method was first introduced by Faber et al.16 The
detected OCT signal is purported to follow the Lambert–
Beer’s law shown in Eq. (1). In order to accurately extract
AC values, Faber et al. also take the effect of the confocal point
spread function into consideration by introducing the following
expression:

EQ-TARGET;temp:intralink-;e002;326;135hðzÞ ¼
��

z − zcf
zR

�
2

þ 1

�
−1
; (2)

where h is the confocal function, zcf denotes the focal plane
depth, and zR is the apparent Rayleigh range. The term zR is

Fig. 1 (a) Images of human retina obtained by commercialized OCT
(a) in comparison with AC mapping. Dashed arrow in (b) points to
the RNFL of the retina. Solid arrows in (a) and (b) point to a shadow
resulting from a superficial retinal blood vessel (reprinted with permis-
sion from Ref. 14).
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defined as zR ¼ αnzr, where α ¼ 2 for diffuse reflection (α ¼ 1

for specular reflection), n is the index of refraction of the tissue
sample, and zr is the Rayleigh range of the scanning lens. Faber
showed that when the focal plane of the optical system is located
within the sample, the confocal function needs to be taken into
account in order to best describe the resulting OCT signal.
Therefore, by combining Eqs. (1) and (2), Faber concludes that
the recorded OCT signal intensity can be modeled as

EQ-TARGET;temp:intralink-;e003;63;664IðzÞ ∝ hðzÞe−2μz; (3)

where the factor of 2 accounts for the light being attenuated
twice due to the round-trip backscattering event measured with
OCT. The estimated AC (μ) in a given medium can then be
found by fitting the averaged OCT A-scans to the model
described in Eq. (3). The CF algorithm used in Faber’s method
finds the maximum likelihood estimation by minimizing χ2,
which is given by

EQ-TARGET;temp:intralink-;e004;63;556χ2 ¼
XN
i¼1

�
yi − fðxi; a1: : : aMÞ

σi

�
2

; (4)

where yi are the recorded intensities, xi are depths, f is the
model written in Eq. (2), and aj are the fitted parameters to
be determined [in this case, the fitted parameters are μ and a
multiplier A to Eq. (2)]. An example of an application of the CF
method is shown in Fig. 2, where different types of athero-
sclerotic tissue can be differentiated3 on the basis of different
attenuations.

b. CF with a reference layer

Vermeer et al.24 applied and updated Faber’s CF method for
extraction of the AC in the RNFL of the eye by using the retinal
pigment epithelium (RPE) as a reference layer to normalize the
OCT data. The reason for normalization is that before reaching
the retina, the incident light is first attenuated by the anterior
segment and the vitreous region of the eye, so the power of light
that reaches the top layer of the retina (RNFL) is already a frac-
tion of the initial incident light power. In essence, they recog-
nized that the total power incident on the retina fluctuates due to
the differences in opacity and the amount of vitreous humor the
light must travel through (i.e., different positions on the retina).

Because the RPE is another highly scattering layer in the retina
that is assumed to be uniformly scattering, it was chosen as a
reference to normalize the total OCT signal of the RNFL.

The referenced CF method can be understood in the follow-
ing way. According to Lambert–Beer’s law, the differential
equation for an attenuated light beam is given by24

EQ-TARGET;temp:intralink-;e005;326;686dIðzÞ ¼ −μðzÞIðzÞdz; (5)

which makes μ a depth-dependent AC and establishes a linear
relationship between the incident light intensity and the attenu-
ated light intensity. The power of incident light at depth z into
the medium can be expressed as IðzÞ ¼ I0e−μz, where μ is the
AC specific to the medium. The backscattered light is a fraction
of the attenuated light, which has a power of αμI0e−μz at depth z
and a power of αμI0e−2μz at the detector. The additional factor of
2 accounts for the roundtrip attenuation.

By integrating over a depth range d, the total power of
backscattered light from this depth range can be expressed as

EQ-TARGET;temp:intralink-;e006;326;545S ¼
Z

d

z¼0

γαμI0e−2μzdz ¼
γαI0
2

ð1 − e−2μdÞ; (6)

where S is the total OCT signal, I0 is the incident light intensity,
γ is the conversion factor that converts the detected backscat-
tered OCT signal to digital signal, and α is the fraction of
light arriving at the layer of interest. Therefore, the total
OCT signal backscattered from the RNFL is given by SRNFL ¼
γαRNFLI0

2
ð1 − e−2μRNFLdRNFLÞ, and the total OCT signal reflecting

from the RPE layer is SRPE ¼ γαRPEI0
2

ð1 − e−2μRPEdRPEÞ
e−2μRNFLdRNFL , assuming the intensity loss between the RNFL and
RPE layers is negligible. Then, Vermeer et al. compute the ratio
R of the total signal in the RNFL over the total signal in the RPE:

EQ-TARGET;temp:intralink-;e007;326;392R ¼ SRNFL
SRPE

¼
γαRNFLI0

2
ð1 − e−2μRNFLdRNFLÞ

γαRPEI0
2

ð1 − e−2μRPEdRPEÞe−2μRNFLdRNFL

¼ αRNFLðe2μRNFLdRNFL − 1Þ
αRPEð1 − e−2μRPEdRPEÞ : (7)

Because the author assumes that the attenuation in the RPE
and the thickness of the RPE, dRPE, are constant for a given per-
son, the above expression can be simplified to

EQ-TARGET;temp:intralink-;e008;326;280R ¼ βðe2μRNFLdRNFL − 1Þ; (8)

where β is a constant and equals αRNFL
αRPEð1−e−2μRPEdRPE Þ. Then β and

μRNFL can be estimated by fitting the model to the ratio R deter-
mined from intensity measurements, and the optimal fit is found
by minimizing the error defined by the L1-norm of the difference
between the model and the actual data:

EQ-TARGET;temp:intralink-;e009;326;189fβ; μg ¼ arg min
β;μ

X
i

���� log
�
βðe2μdi − 1Þ

Ri

����� (9)

With known β, the attenuation of the RNFL layer can be
solved as follows:

EQ-TARGET;temp:intralink-;e010;326;119μRNFL ¼
log

�
R
β þ 1

�
2dRNFL

: (10)
Fig. 2 CF method applied to ex vivo atherosclerotic plaque charac-
terization, where thick lines show the fitting over areas of interest
(reprinted with permission from Ref. 3).
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This work underscores the importance of understanding the
physiology of the underlying tissue to extract meaningful mea-
surements of the AC.

DR method. As previously mentioned, one drawback of the
CF method is that a large amount of data is needed to accurately
fit a curve, leading to an inability to extract values over small
tissue regions. In the past few years, however, new approaches
have emerged for extracting AC that offer higher resolution than
CF. For example, the DR model developed by Vermeer et al.15 in
2014 allows for estimation of the AC for each pixel, which ena-
bles pixelwise tissue-type differentiation in both homogeneous
and heterogeneous tissues. This is in contrast to the CF method,
which only works with a single, uniform tissue type or requires
an additional step of segmenting the tissue manually or using
automated methods.15,16

a. General DR method

The DR method relies on two fundamental assumptions:
first, light is attenuated almost completely within the measured
imaging depth range; second, the fraction of backscattered light
collected by the photodetector of the OCT system from the
attenuated light is a constant.15 Note that the latter assumption
may not be true in the case of significant attenuation due to
absorption. Vermeer’s method enables pixelwise estimation of
the OCT data, and this is also based on the SS model.
According to the linear relationship between the incident light
intensity and the attenuated light intensity in Eq. (5), at the zero-
depth condition (z ¼ 0, boundary condition), Eq. (5) can be
solved as follows:

EQ-TARGET;temp:intralink-;e011;63;418LðzÞ ¼ I0e
−
R

z

0
μðuÞdu; (11)

where LðzÞ is the attenuated light intensity at depth z and the
incident light intensity is given by I0. The actual detected
OCT signal can be expressed in Eq. (12):

EQ-TARGET;temp:intralink-;e012;63;344IðzÞ ¼ AκμðzÞI0e−2
R

z

0
μðuÞdu; (12)

where the factor 2 accounts for the round-trip attenuation of
light in tissue, A is the constant ratio of backscattered light
to total attenuated light, and κ is the conversion factor during
digitizing and integrating of the signal. Then, the AC in a given

region of the medium can be estimated by solving for μðzÞ with
a depth range D:

EQ-TARGET;temp:intralink-;e013;326;730μðzÞ ≈ IðzÞ
2
R
D
z IðuÞdu : (13)

Equation (13) allows the definition of AC on a continuous
domain, so if a pixelwise coefficient value is desired, then the
intensity measurements need to be integrated and averaged
over the pixel size Δ, which is commonly related to the coher-
ence length of the light source. When the integral is solved
for each pixel, the expression can be written as: μ½i� ¼
1
2Δ log

�
1þ I½i�P

∞
iþ1

I½i�

�
. Simplifying the logð1þ xÞ term with a

first-order linearization, which is equivalent to x assuming x
is small, the expression can be rewritten as

EQ-TARGET;temp:intralink-;e014;326;578μ½i� ≈ I½i�
2Δ

P∞
iþ1 I½i�

: (14)

Vermeer’s DR method improves estimation of the AC in that
it does not require fitting a curve to OCT signals, which may be
affected by noise in the data. Pixelwise estimation enables appli-
cation on multilayered tissues, as shown in Fig. 3, and because
this method compares the local OCT signal to the integral of
signals from deeper layers, it allows accurate estimation from
thin or superficial layers.

Sensitivity fall-off is a phenomenon that affects the perceived
OCT intensity in SD-OCT systems. This phenomenon leads to a
decrease of system sensitivity with depth due to the greater
reduction of fringe visibility by the finite resolution of the
spectrometer at higher fringe frequencies.25 The effect caused
by this sensitivity decay was also considered in Vermeer’s
method, where they employ a Gaussian model of imaging depth
z and width σ:

EQ-TARGET;temp:intralink-;e015;326;368SðzÞ ¼ e
−z2

σ2 ; (15)

where the width of the Gaussian model σ can be determined
from sensitivity measurements. Vermeer’s group corrects this
fall-off effect by dividing each A-line measurement by this
sensitivity factor SðzÞ.

One limitation of the classical DR method is that it does
not take the confocal function into consideration. In low AC
regions, the dependency on the confocal function is significant.

Fig. 3 (a) Depth profile (A-scan) of a layered phantom and (b) the pixelwise attenuation estimated using
the DR method. With DR estimation, pixel-specific AC measurement can be achieved. Thick red lines
indicate depth ranges, where measurements were taken (reprinted with permission from Ref. 15).
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Vermeer et al. circumvent the need to account for confocal
parameters in their algorithm by placing the focal plane above
the sample (i.e., with the effect of forcing the region of interest to
be acquired in a domain where the confocal function is almost
constant), but this leads to overestimation in low-attenuation
regions.

b. DR confocal

In 2016, Smith et al. introduced a modification of the DR
method, termed the depth-resolved confocal (DRC) method that
accounts for both the confocal function hðzÞ and sensitivity fall-
off effect in processing the OCT signal.23 The DRC method
addresses the issue with the DR method that accurate ACs can
only be extracted when the focal plane is not located in the tissue
sample, a condition that does not hold true for many common
clinical applications and also leads to reduced signal-to-noise
ratio (SNR).15 With DRC, AC can be extracted while the focal
plane is placed within the sample.

In Smith’s work, a more comprehensive sensitivity fall-off
model25 is used, allowing more accurate estimation of AC to
be extracted than the Gaussian model used by Vermeer’s DR
method. The comprehensive model accounting for the sensitiv-
ity fall-off effect used in Smith’s paper is expressed as SðzÞ:

EQ-TARGET;temp:intralink-;e016;63;495SðzÞ ¼
�
sin ζ

ζ

�
2

· exp

�
−

�
δλ
Δλ

�
2

2 ln 2
ζ2
�
: (16)

In this model, SðzÞ is the magnitude of signal decay and ζ ¼
π·z

2·zRD
describes the depth z, normalized by the maximum ranging

depth zRD, which is equal to
λ2
0

4Δλ, where λ0 is the central wave-
length of the light source, Δλ is the wavelength spacing between
pixels, and δλ is spectral resolution of spectrometer (FWHM).
By combining Eqs. (2), (12), and (16), the final light attenuation
model used in Smith’s work becomes

EQ-TARGET;temp:intralink-;e017;63;365IfhðzÞ ¼ SðzÞhðzÞκL0αμðzÞe−2
R

z

0
μðθÞdθ; (17)

where the confocal function hðzÞ is determined experimentally
with known locations of the focal plane and the Rayleigh range
of OCT system, and the parameters of the sensitivity fall-off
function were determined by imaging a neural density filter and
fitting the data to Eq. (15). Bilayer simulation results comparing
the performance of DRC and DR are shown in Fig. 4. With the
updates Smith et al. made in DRC, AC measurement can be
extracted without restrictions on focal plane position, which per-
mits imaging with enhanced SNR and enables AC measurement
for a wider range of clinical applications.

c. Optimized depth-resolved estimation

Liu et al. address another assumption made in Vermeer’s
method,26 which is that all light is attenuated at the bottom
of the image range [i.e., boundary condition Ið∞Þ ¼ 0].
Notably, this assumption may fail in cases, where the light does
not completely decay at the penetration depth. In Vermeer’s
paper, this infinite detection depth is replaced with a limited
depth range N, and

P
N
i¼zþ1 I½i� ≈

P∞
i¼zþ1 I½i�. While this

approximation works for small depths z, issues arise when the
imaging depth increases, leading to an increasing difference
between

P
N
i¼zþ1 I½i� and

P∞
i¼zþ1 I½i�. This estimation error is

greatest at z ¼ N − 1. Liu et al. recently developed an optimized
depth-resolved estimation (ODRE) method to minimize this
error. In their method, they rewrite the attenuation equation
at the last data point z ¼ N as follows:

EQ-TARGET;temp:intralink-;e018;326;462μ½z� ¼ I½z�
2Δ

P
N
i¼zþ1 I½i� þ 2Δ

P∞
i¼zþ1 I½i�

¼ I½z�
2Δ

P
N
i¼zþ1 I½i� þ I½N�

μ½N�
; (18)

where μ½N� is unknown and the best approximation of μ½N� can
be determined using exponential CF. From their numerical sim-
ulation in Fig. 5, the error associated with increasing depth,
which is apparent in conventional DR results, is eliminated

Fig. 4 Simulation results of the effect of (a) AC contrast and (b) layer thickness on DR, DRC, and DRC
with various filters [gSmooth, total variance (TV), and intensity weighted horizontal total variation (iwhTV)
denoising]. The energy error depth figure of merit is defined as the depth at which the excess energy
exceeds 5%; hence, larger energy error depth equates to better performance. Stars indicate positions
of the boundary between the layers. From the results, it is evident that DRC outperforms DR with and
without denoising (reprinted with permission from Ref. 23).
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using the ODRE method. The difference in the estimation
results using the two methods is due to the assumption made
in the DR algorithm, which is that all light is attenuated within
the depth range of the image. Liu et al. have demonstrated that
when light is not fully attenuated, the assumption of the DR
method is violated, which causes the estimation error to peak
at the bottom of the image, as shown in Fig. 5(b). This is a flaw
of the DR algorithm that is corrected by ODRE. In ODRE, the
error is minimized, as shown in Fig. 5(c), by approximating μ½N�
with fitting an exponential curve at the last 120 pixels of an aver-
aged A-scan.

2.3.2 Multiple-scattering model

In 2015, Almasian et al. developed a comprehensive model for
OCT signal analysis that considered effects of both MS and con-
centration-dependent scattering, as well as system parameters
including the confocal point spread function and sensitivity
fall-off.17 For weakly scattering samples, the total AC of OCT
signals μt equals the sum of the scattering coefficient μS and
absorption coefficient μA, because the effect of multiple-
scattered light is negligible. Therefore, the expression can be

simplified as: μt ¼ μS þ μA. However, in situations of samples
with a high scattering coefficient and forwardly directed scatter-
ing, the effect of MS in OCT signals needs to be considered,
as MS leads to a decreased AC: μt < μS þ μA. In their paper,
Almasian et al. proposed the following expression and included
the mapping function fNA;g:

EQ-TARGET;temp:intralink-;e019;326;686μt ¼ fNA;gðμSÞ þ μA; (19)

where g is the scattering anisotropy (g ≈ 1 for MS). The MS
mapping function is dependent on properties of both the confo-
cal function and the angular scattering of the sample.

The author based the analysis of the MS effect on the
extended Huygens–Fresnel (EHF) model introduced by Thrane
et al.18 In the EHF model, there are three terms contributing to
the mean squared OCT signal A2ðzÞ, which are the single back-
scattered field, the multiple scattered field, and a coherent cross
of the two fields:

EQ-TARGET;temp:intralink-;e020;326;556hA2ðzÞi ∝ e−2μSz þ 2e−μsz½1 − e−μSz�
1þ w2

SðzÞ
w2
HðzÞ

þ ½1 − e−μSz�2 w
2
SðzÞ

w2
HðzÞ

:

(20)

In Eq. (20), w2
HðzÞ is the square of the local beam waist of the

single backscattered beam and w2
SðzÞ is the square of the local

beam waist when multiple forward scattering. By substituting
Δz ¼ z − z0, the expression for w2

HðzÞ becomes

EQ-TARGET;temp:intralink-;e021;326;446w2
HðΔzÞ ¼ w2

0

	�
z − zf
2nZRO

�
2

þ 1



; (21)

where w2
0 is the square of the beam waist measured at the focus

in air, zf is the depth position of the focus, and ZRO ¼ πw2
0∕λ0

with λ0 being the center wavelength of the light source. The term
w2
SðzÞ can be expressed as follows:

EQ-TARGET;temp:intralink-;e022;326;357w2
SðΔzÞ ¼ w2

HðΔzÞ þ
1

3
ðμSΔzÞθ2rms

Δz
n

; (22)

where θrms is the root-mean-square scattering angle describing
the angular distribution of the scattered light.

In an MS situation, the confocal point spread function
hðz − zfÞ and sensitivity fall-off SðzÞ effects can also be taken
into consideration. The confocal PSF can be expressed as follows:

EQ-TARGET;temp:intralink-;e023;326;260hðz − zfÞ ¼
1� z−zf

2nZRO

�
2 þ 1

; (23)

where n is the refractive index of the medium in which the meas-
urement is taking place. The sensitivity fall-off effect can be mod-
eled as in Ref. 17:

EQ-TARGET;temp:intralink-;e024;326;181SðzÞ ¼
	
sinð0.5ΔksamplingzÞ
0.5Δksamplingz



2

e−
Δk2

optical
z2

8 ln 2 ; (24)

where the sampling resolution Δksampling equals the difference
between the maximum and minimum wavenumbers of the spec-
trometer or swept source divided by the number of pixels per
spectrum. The value of Δkoptical is dependent on the system
type. In swept-source OCT, Δkoptical equals the instantaneous
linewidth of the source, and in spectrometer-OCT systems,

Fig. 5 Numerical simulation of attenuation in a single-layer
phantom with homogeneous scattering under noiseless conditions.
Note the light does not fully attenuate at the end of the depth region.
(a) Simulation OCT signals for varying scattering coefficients. (b) Plot
of attenuation versus depth using the DR method; the small graph to
the right highlights the large error over the depth range of 2.5 to 3 mm.
(c) Plot of attenuation versus depth using the ODRE method shows
constant attenuation for all depths, as expected (reprinted with per-
mission from Ref. 26).
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Δkoptical can be determined from the dispersion linewidth of the
spectrometer.

2.3.3 Model selection for calculating AC in tissues

In order to accurately determine tissue properties, it is important
to know which model, SS or MS, is more appropriate for the
tissue of interest. One can determine if a sample should fall
under one or the other of the two assumptions quantitatively
by calculating the “structure factor,” such as the structure factor
for discrete random media using the Percus–Yevick equation.15

Errors will arise if models are inappropriately chosen for analy-
sis: for example, when the MS model is used to analyze results
from a weakly scattering tissue, then it is likely that the resulting
AC is underestimated. Such errors may lead to misinterpretation
of clinical results or unsuccessful differentiation of dissimilar
tissue types. Currently, both SS and MS models have been used
for analysis in a broad range of clinical applications; however,
SS is more often applied due to its simplicity and hence,
a greater number of AC extraction algorithms are devoted to
SS model.

Compared to the MS model, the SS model has the key ad-
vantage of simplicity. As a result, multiple efforts have been
made to improve the accuracy of the SS model, and it has been
widely used in clinical applications. Careful selection of the SS
model algorithms is critical and should be based on biological
characteristics of the tissue of interest. In the conventional CF
method, several A-scans are averaged for AC extraction; there-
fore, this method is most suitable for use on homogenous tissue
regions and on tissue layers with known segmentation.16,22 The
CF with a reference layer approach by Vermeer et al. demon-
strates the importance of understanding the tissue structures
and properties prior to AC extraction, as such it can be applied
to AC extractions from retinal layers or other layered tissues with
a reference layer of relatively constant thickness for normaliza-
tion.27 Given that an exponential curve is fitted through a depth
range in CF-based models, CF methods are challenging to imple-
ment on thin layers because there may not be sufficient data to
extract a robust exponential curve, which may be noisy as a
result. A general guideline may be to consider the use of CF only
when the layers to be extracted comprise more than 15 pixels.

Table 1 Advantages, limitations, assumptions, and clinical applications of various implementations of AC measurement.

Methods Advantages Assumptions Limitations
Demonstrated

clinical applications

MS model
(Almasian et al.,17

Thrane et al.18)

Considers multiple light
scattering events, allowing
more comprehensive analysis

Light scatters more
than once.

Complicated computations. Atherosclerotic plaque20

CF (Faber et al.16) Removes shadowing and other
OCT imaging artifacts, which
enables higher resolution

In-focus, SS Requires averaging over a
large amount of measured data
points (50 to 100 A-scans);
therefore, only relatively global
AC measurements can be
achieved

Atherosclerotic
plaque;2,21,28 prostate
cancer29Paraxial

approximation; probe
beam is not distorted
by tissue

3D CF (Gargesha
et al.22)

Applies noise reduction filtering
and estimates AC from small
volumes of interest (VOIs)
rather than traditional A-line
analysis

The VOI regions are
relatively
homogenous

Needs analysts to choose
homogeneous VOIs for
classification

Atherosclerosis22

CF with a
reference layer
(Vermeer et al.27)

Improves lateral resolution and
generates AC maps

An internal reference
layer already exists in
the tissue sample

Requires robust segmentation
of the layers

Retinal imaging, early
diagnosis of glaucoma5

DR (Vermeer
et al.15)

Allows pixel-wise estimation;
works for multi-layered tissue

Light is attenuated
completely; the
backscattering and
attenuation are
linearly related

Focal plane must be placed
high above the sample, making
certain applications
impractical; confocal function is
assumed to be constant, which
reduces SNR; noise at the
pixel-level reduces accuracy

Cerebral ischemia
monitoring;7

atherosclerotic tissue;4

choroidal thickness
and vasculature
assessment30

DR confocal
(Smith et al.23)

Fully automated pixelwise
quantification of AC; can
estimate AC when the focal
plane is within the sample

Reflectivity is
proportional to the full
AC

Requires information on the
confocal function parameters
of the OCT system, such as
focal plane depth and apparent
Rayleigh range

ODRE
(Liu et al.26)

Addresses one assumption of
DR method: light is completely
attenuated at the bottom

Attenuation is caused
by scattering only;
absorption is ignored.

Requires a rather thick bottom
layer (approximately
120 pixels).

Cerebral ischemic
stroke visualization26
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The introduction of the DR algorithm was intended to
improve the estimation accuracy by allowing pixelwise AC
extraction.15 Importantly, the DR method can easily be imple-
mented on thin tissue layers. However, in the original method
reported by Vermeer, the confocal point spread function is
assumed to be a constant, so the focal plane is placed above the
sample.15 This situation is reasonable to create with a benchtop
OCT system, and DR can be particularly useful in this case, even
if the system parameters such as the confocal function cannot be
characterized. Conversely, the assumptions of the DR model
preclude certain clinical applications, where the focal plane may
be placed in the sample (e.g., handheld systems with little con-
trol over the position of the system), and it also reduces the sig-
nal-to-noise ratio of the resulting measurements since the focal
plane is typically the location of highest signal due to concen-
tration of photons there. Successive studies in 2015 and 2019
were aimed to address these limitations.14,23 The DRC method
by Smith et al. considered the effect of the confocal PSF, which
allows the focal plane to be placed within the sample and also
included a more comprehensive sensitivity fall-off equation to
further improve the signal-to-noise ratio.23 However, in order to
apply the confocal PSF, one needs to manually determine the
system parameters, which makes clinical application more cum-
bersome. To fix this issue, Dwork et al. introduced an automated
confocal parameter extraction algorithm that allows accurate
pixelwise AC extraction without prior knowledge of OCT sys-
tem parameters.14 Dwork et al.’s work reduces the time needed
for system calibration and therefore represents a step further
toward clinical translation. Hence, the Dwork method for auto-
confocal extraction allows the DR system to be used with in vivo
clinical applications, such as endoscopy, although such demon-
stration has not yet been made. Recently, Liu et al. have devel-
oped ODRE method to address another assumption of Vermeer
—that light is completely attenuated in the sample—and thus
fixed the error with increasing imaging depth that can occur with
the ordinary DR method.26 ODRE allows accuracy extraction of
AC from thinner tissues, accounting for the possibility of light
being incompletely attenuated in tissue. In particular, this makes
the ODRE method most suitable when it is anticipated or
observed that the tissue is thick (or reasonably transparent), such
that one does not expect all of the light to be absorbed by the
bottom of the image range. In practice, the ODRE method still
requires some prior knowledge of the tissue, because an expo-
nential fitting step is performed at the end of imaging depth,
which requires sufficient homogeneity in the bottom tissue
layer. Hence, due to the hybrid nature of the ODRE algorithm,
this method may still suffer from similar limitations of the CF
methods if a suitable region for CF cannot be identified at the
bottom of the image.

Table 1 presents an overview of the various methods for
OCT-based AC extraction discussed above and provides an
overview of clinical applications demonstrated with each
method. The clinical application of AC is the subject of Sec. 3
of this review.

3 Clinical Applications
Because of its ability to provide quantitative tissue information
with excellent resolution, AC measurement has been used in
many clinical applications, including for ophthalmology, cancer-
ous tissue detection, brain injury monitoring, and atherosclerotic
plaque characterization. One of the earliest applications of
AC measurement is in the characterization of atherosclerotic

arteries,3,20 where calcified, lipid-rich, and necrotic regions of
a plaque were differentiated based on different AC values.
Recently, AC has gained increasing popularity among other types
of disease assessments; emerging AC applications include glau-
coma detection,5 reactive lymph nodes detection,6 detection and
grading of cancer,7,8,31,32 and visualization and monitoring of
brain injuries.9,26,33,34 Given the quantitative and highly resolved
tissue information that AC measurement provides, AC has pre-
sented itself as a promising analysis to be embraced by an even
wider field of clinical studies.

3.1 Ophthalmology

3.1.1 Glaucoma assessment

van der Schoot et al.5 and Vermeer et al.27 applied measurement
of the AC to differentiate glaucomatous tissue from normal reti-
nal tissue, specifically in the RNFL. Traditional OCT has long
been used to visualize morphological changes in the retina.35

Because a decrease in the thickness of the RNFL has been asso-
ciated with the presence of glaucoma, the signal intensities have
been used to detect layer boundaries for determining the thick-
ness of RNFL.35 However, other than RNFL thickness measure-
ment, previous studies have limited the application of OCT
to mainly visualize morphological changes. Such qualitative
information could suffer from variability due to different
OCT systems and imaging artifacts; therefore, quantitative
assessment of glaucoma with OCT is needed. Recent studies
have shown that the reflectivity in the RNFL layer decreases
in glaucomatous eye.5,36 This diminished scattering effect can
be quantified with the measurement of AC in the RNFL.

An elevation of intraocular pressure is normally seen in glau-
coma patients, leading to the death of retinal ganglion cells.36 The
retinal ganglions cells are neurons of the central nervous system,
whose cell bodies reside in the inner retina and whose axons
form the optic nerve. Rapid degeneration of these cells results in
damage of the optic nerve, which leads to irreversible vision loss.
The decrease of reflectivity in the RNFL layer could be caused by
the death of the ganglion cells,36 resulting in a reduced density of
nerve fibers in the RNFL and thus a reduced AC.

Vermeer et al. used CF, with the RPE serving as a reference
layer,27 to extract the AC values for healthy, mildly glaucoma-
tous, moderately glaucomatous, and severely glaucomatous
eyes (AC values of 4.78� 0.46 mm−1, 4.09� 0.34 mm−1,
3.14� 0.22 mm−1, and 2.93� 0.33 mm−1, respectively). The
AC results show that the AC in the RNFL decreases as the level
of glaucoma progresses. van der Schoot et al. hypothesize that
the decrease in AC is related to pathological changes in the eye
and is due to the reduction of nerve fiber density in glaucom-
atous RNFL that occurs when ganglion cells degenerate.5,37

In previous studies, the decreased density has been associated
with RNFL tissue property changes such as the reduction of
birefringence and reflectance in the RNFL even prior to the
thinning.38–40 The hypothesis is that the decrease in ganglion cell
axon density also leads to less scattering in the RNFL, which in
turn causes diminished AC values. As the glaucoma stage
advances, the axon density will continue to decrease, resulting
in reduction of the AC. Therefore, AC can serve as an indicator
of glaucoma presence and severity even prior to when structural
changes can be visualized. Vermeer et al.27 also generated en
face AC maps, which allows visualization of attenuation pat-
terns in the retina of both healthy and glaucomatous eyes along
with corresponding thickness maps, as shown in Fig. 6. Vermeer
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concluded that AC measurement provides comparable results to
the thickness measurements and shows promising potential in
early glaucoma assessment and diagnosis.

3.1.2 Choroidal thickness and vasculature assessment

Choroid plays an important role in maintaining normal functions
of the eye, and, as a result, increasing attention has been focused
to the study of choroidal thickness and vasculature in ocular dis-
eases. To precisely measure the thickness of the choroid layer,
successful segmentation of the choroid from sclera is important.
However, due to the physiological location of choroid, light is
mostly attenuated by the RPE before reaching choroidal struc-
tures, causing low contrast in these regions on OCT images. To
address this issue, Zhou et al.30 proposed an AC-based correc-
tion method to improve the contrast, which allowed successful
segmentation of the choroid layer and imaging of choroidal vas-
culatures. In their approach, the DR method was used to obtain a
pixelwise depth-reflectivity profile. With attenuation correction,
the contrast at the choroid–sclera interface (CSI) is greatly
improved, which allows successive segmentations steps, i.e.,
flattening at Bruch’s membrane and graphic search for CSI,
to carry out more reliably. The paper shows that with attenuation
corrected segmentation, the algorithm is able to provide a more
accurate choroidal thickness map with ultrawide field-of-view.
Moreover, when AC correction is applied, the effect of shadows
caused by large vessels in conventional B-scans can be reduced
and thus eliminate imaging artifacts that may present in the
appearance of an actual vessel. The paper reports excellent intra-
visit repeatability for both choroidal thickness maps and
vasculature by calculating the coefficient of correlation (CV) for
mean thickness (CV ¼ 1.7� 0.7%) and vessel density (CV ¼
0.41� 0.18%).30 However, a limitation of this method is that it
can only correctly represent choroidal vessel patterns in healthy
eyes with normal RPE, because the minimum intensity projec-
tion approach used to visualize choroidal vessel is based on the
light scattering in RPE layer. In disease states, such as glaucoma,
there is a notable reduce in some regions of the RPE layer, which
may affect the accuracy in choroidal vasculature detection with
the proposed method.

3.2 Cancer Detection/Grading

3.2.1 Axillary lymph nodes detection for breast cancer
patients

The network of lymph nodes and vessels in the lymphatic sys-
tem is a major vehicle by which cancer cells metastasize.41 For
example, axillary lymph nodes are examined in early-stage
breast cancer patients to determine whether metastasis has
already been taken place. The current gold standard examination
of metastasis in lymph nodes is through histological assessment
of excised lymph nodes.42 In breast cancer patients, axillary
clearance is normally performed to examine the presence of
metastatic deposits in the nodes. However, this invasive pro-
cedure can lead to chronic issues such as lymphedema, which
results from lymph fluid retention in the upper limbs.43

Moreover, in many cases, uninvolved healthy lymph nodes are
dissected, meaning that a significant number of unnecessary
biopsies are performed. Therefore, to avoid excising healthy
nodes, researchers have investigated alternative imaging modal-
ities such as OCT.44,45 Metastatic deposits in a lymph node can
cause an increase in scattering as compared to surrounding nor-
mal tissue; the increased scattering results in a higher intensity in
the observed OCT signals of the affected region.45

In order to further quantify this information, Scolaro et al.6

used the SS model and applied the method of AC estimation
to axillary lymph node assessment. Excised lymph nodes from
patients were first imaged with OCT; after imaging, the tissue
sections were prepared for histology. Their results showed that
the resulting AC mapping provided greater contrast than the con-
ventional OCT image, and the contrast was significant enough
to improve identification of tissue features, such as vessels (V),
medullary sinuses (MS), and lymphovascular spaces (LVS), as
shown in Fig. 7. The identified regions also corresponded well
with histological images. By extracting the AC in reactive nodes,
necrotic regions (N) within the node could be determined, as they
show higher attenuation (μ ≈ 13 mm−1) compared to healthy
nodes (μ ¼ 4.5 mm−1). In dystrophic calcifications (C) within
the necrotic tissue, the AC value is even higher: μ>16 mm−1.
The increase in AC value is due to the enlarged cells in metastatic
deposits, which have a greater organelle intensity contributing to
the scattering effect.

Fig. 6 (a) RNFL thicknessmapping versus (b) RNFL AC plot of a glaucomatous eye. Red arrow indicates
the location of affected tissue, which coinciding with reduced thickness in inferotemporal region (reprinted
with permission from Ref. 24).
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However, the researchers also noted that AC measurement
does not identify all tissue features equally well: in one of the
samples, the thickened reactive fibrous capsule has an AC
estimation of μ ¼ 11.8� 0.2 mm−1, which was very similar to
the AC value of the paracortex: μ ¼ 10.4� 0.4 mm−1. Overall,
the researchers concluded that the method of AC estimation
improved characterization and differentiation between healthy
and metastatic axillary lymph node tissue.

3.2.2 Bladder cancer detection

Cauberg et al. applied AC measurement to the assessment of
bladder urothelial carcinoma (UC), with the aim of achieving
real-time grading of UC. Grading of UC is determined based
on morphological changes of the urothelium, and this parameter
is important in clinical management of patients, who experience
small recurrent bladder tumors.7 Currently, the clinical approach
for grading is histopathology, which does not provide real-time
information regarding disease progression and is limited to only
certain clinical scenarios (i.e., harvesting tissue is required).46

To avoid unnecessary biopsies and improve accuracy of the
grading process, real-time qualitative assessment of the bladder
tissue is desired.

Given previous demonstrations that tissue scattering proper-
ties vary with stage (hyperplasia, dysplasia, and neoplasia) in
rat models of bladder cancer47 and results from other studies

showing that the AC can differentiate morphological changes
in cases of atherosclerotic plaques and necrotic human fibro-
blasts,2,3,48 Cauberg et al. hypothesized that measurement of
AC could serve as a real-time indicator for UC grading. The
biological basis of this hypothesis is that as UC grade increases,
mitotic activity in the urothelium increases, the cytonuclear ratio
changes, and polarity of the urothelium decreases.7 The AC of
bladder tissue was extracted from OCT data using the CF
method and tested on ex vivo tissue samples from patients with
single or multiple bladder tumors, positive cytology, and nega-
tive cystoscopy (suspicious lesions). The standard reference
diagnoses were made by three independent pathologists, who
classified each of the histological slides into four categories:
normal, UC grade 1, UC grade 2, and UC grade 3. Then, a con-
sensus diagnosis was made by all three pathologists for each
histology to address the high subjectivity and interobserver vari-
ability typically present in histopathological grading. Based on
the grading information, the median AC of each category was
reported to be 5.75, 5.52, 4.85, and 5.62 mm−1 for normal tis-
sue, and UC grades 1, 2, and 3 respectively.7 The measured AC
values did not validate the hypothesis, as it was not possible to
differentiate tissues of different categories. The researchers rea-
soned that the lack of correlation between AC and UC grade
could be due to the subjectivity in the reference standard (his-
tological grading), the small sample size, or most importantly,
the ex vivo nature of this study.7 Because of the heterogeneity of

Fig. 7 (a) H&E stained histology, (b) en face OCT image, and (c) AC map of a healthy lymph node at a
depth z ¼ 240 μm. (d) Example of correction profile (red) used to correct the raw A-scans (gray) and
generate the corrected reflectance profile (black). (e)–(g) Averaged A-scans of colored boxes are shown,
where x axis is depth and by linear fitting identifiable features in lymph node can be identified: (e) para-
cortex (dark blue), (f) medullary sinuses (light blue), and (g) fibrous capsule (red) (reprinted with permis-
sion from Ref. 4).
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bladder tumors, multiple grades could exist in one tumor,32,49

which complicates the grading process. Another possible reason
that might account for the lack of correlation was the discrep-
ancy between the OCT image site and the actual histology slide.7

Also, there was a discrepancy in the way that grading was deter-
mined: by the presence of one or two morphological changes for
the histological slide, compared to use of CF for the AC esti-
mation approach, which averaged tissue information across the
entire slide. Therefore, one possible improvement of their exper-
imental setup is to try the DR AC estimation, which would allow
pixelwise, local determination of tissue properties.

3.2.3 In vivo staging and grading of urothelial carcinoma

Traditionally, biopsies have been used for staging and grading of
upper urinary tract urothelial carcinoma (UTUC). However,
there has been an increasing number of nondiagnostic biopsies
and inaccurate diagnosis, resulting in up-staging and grading of
UTUC. This inaccuracy is due to the anatomical limitation of the
upper urinary tract, which results in smaller and crushed biopsy
samples. Accurate staging and grading are important to patient
enrollment of curative surgery, as only patients with advanced
grade lesions will be selected for ureterectomy, whereas others
may be applicable for conservative treatments.50 To seek addi-
tional diagnostic information, in 2016, Bus et al. applied AC
measurements from OCT to in vivo staging and grading of upper
tract UC. The AC results for lesion staging showed high agree-
ment (87%) with histopathology and also high sensitivity
(100%) and specificity (92%). They also showed that there are
significant differences in the AC of low-grade lesions and that of
high-grade lesions (measured median equals 2.1 and 3.0 mm−1,
respectively), suggesting that AC measurements can be used for
lesion grading. When using a cutoff AC of 2.4 mm−1, the result-
ing sensitivity and specificity are 87% and 90%, respectively.
This cutoff value was further investigated by Freund et al. in
2019, where OCT imaging data from 35 patients with papillary
UTUC were used in the study (data taken from the 42 patients
imaged by Bus et al.) and yielded a cutoff value of 4.0 mm−1

with a sensitivity of 83% and a specificity of 94% for high-grade
papillary UTUC.51 Freund et al. improved Bus’s algorithm by
calibrating the confocal function parameters and sensitivity roll-
off individually, whereas in the previous experiment, Bus et al.
assumed that the focus was at the tissue boundary and the effects
of the confocal point spread function and roll-off were approxi-
mated as a single offset.

The AC estimation method Bus and Freund used follows
Faber et al.’s CF approach16 and, therefore, has the limitation
of not being able to include thin layers for grading due to the
lack of sample points and urothelium thickness needed for AC
extraction. One possible improvement can be made by employ-
ing Vermeer’s DR method, which can perform AC extraction on
superficial or thin tissue layers. Reported false positives in
this study are caused by large tumors and inflammation. This
is due to the limited light penetration depth of OCT systems,
as the layered structures in tumors exceeding 2 mm in thickness
cannot be effectively visualized with OCT, leading to inaccurate
staging. Nevertheless, Bus et al. and Freund et al. have shown
that AC measurements can provide comparable if not better
diagnostic accuracy of UTUC compared to biopsy, and AC
analysis has the potential for real-time grading and staging
during ureterorendoscopy.

3.2.4 Cancerous colon tissue detection

Zhao et al.8 applied the AC measurement to early detection of
adenomatous colon tissues. The current gold standard detection
method of colon cancer is via colonoscopy;52 however, this
method only allows visualization of superficial changes in tissue
morphology, so precancerous changes in deeper layers cannot
be detected. In colon adenocarcinoma, morphological changes
occur in malignant tissues, including increasing microvascula-
rization, distortion of the collagen matrix, and increasing blood
and protein concentration.53 These changes result in variations
of the permeability of analytes, such as glucose, across colon
tissue, and this variation can be measured by monitoring the ana-
lyte diffusion rate in normal and cancerous tissue.54 Zhao’s
group studied the diffusion rate of glucose in colon tissue by
measuring both the OCT signal slope (OCTSS) and extracting
AC from the OCT data.8

The author analyzed the changes in OCTSS and AC values of
both normal and adenomatous ex vivo colon tissues with topical
application of 30% glucose solution and made several
observations.8 Without glucose application, the backscattering
OCT intensity is greater in cancerous tissues compared to nor-
mal tissues. This difference is due to the enlarged nuclei in
tumor cells and the overall higher density of tumor cells in
adenomatous tissue.55 With glucose applied to tissues, the
adenomatous tissue showed a steeper decrease of OCTSS than
normal tissue, meaning that there was greater reduction in scat-
tering inside cancerous colon tissue due to more glucose uptake.
Therefore, glucose is more permeable in cancerous tissue than
normal tissue (with a permeability coefficient ¼ 5.65� 0.24 ×
10−6 cm s−1 and 3.37� 0.17 × 10−6 cm s−1 for adenomatous
and normal tissue, respectively). In agreement with the obser-
vation of permeability change, the measured AC values also
decreased with time after administration of glucose solution,
as glucose slowly diffused into tissue; in adenomatous tissues,
the ACs experienced a much more rapid decrease. Furthermore,
the AC values of cancerous tissue are significantly higher than
normal colon tissue, with a maximum AC of 8.48� 0.95 mm−1

versus 3.48� 0.37 mm−1 and a minimum of 3.16� 0.69 mm−1

versus 2.68� 0.82 mm−1, in cancerous tissue and normal tis-
sue, respectively. The author concluded that this notable
increase in the AC was due to the increase in microvasculariza-
tion in adenomatous colon, which resulted in a higher concen-
tration of hemoglobin and fibrin in the affected region as
compared to its surrounding, leading to a higher scattering in
cancerous tissue.20 In conclusion, the measurement of AC in
colon tissue is able to identify colon adenocarcinoma ex vivo,
which may be useful in early detection of colon cancer in vivo.

3.2.5 Differentiation between renal cell carcinoma vs
oncocytoma

Small renal masses (SRM), which are renal masses with a diam-
eter less than 4 cm, have shown a steady increase in clinical
incidence and are responsible for 68% of renal cell carcinomas
(RCC).56 While abdominal imaging modalities such as CT and
MRI are effective in detecting SRMs, it is difficult to differen-
tiate between benign oncocytoma and malignant RCC tumors,
which may lead to overtreatment of benign SRMs when it is not
necessary. Other clinical solutions that have been used to assess
SRMs include biopsies; however, for SRMs, the rate of nondiag-
nostic biopsies is as high as 30%, which results in time-consum-
ing repeats.57
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Wagstaff et al.56 addressed this issue by applying percutane-
ous needle-based OCTand the resulting AC to the differentiation
between oncocytoma and RCC and among three subtypes of
RCC: clear cell renal cell carcinoma (ccRCC), papillary renal
cell carcinoma (pRCC), and chromophobe renal cell carcinoma
(chRCC). Their results showed that the median AC value of
oncocytoma (3.38 mm−1) was significantly lower than the
median AC of RCC (4.37 mm−1). From the results of their
ROC curve, the cutoff value for malignant tumors was deter-
mined to be 3.85 mm−1, which yielded a sensitivity of 86% and
specificity of 75%. Also, the results have shown that there are
significant differences between the AC values of oncocytoma
versus ccRCC, and of oncocytoma versus pRCC (3.38 versus
4.36 mm−1, and 3.38 versus 4.79 mm−1, respectively), whereas
there is no significant difference between AC of oncocytoma
vs chRCC (3.38 versus 3.58 mm−1). Limitations to Wagstaff’s
study include that the use of OCT probe delivery is restricted by
the tumor location. Hence, anterior SRMs and tumors located
near the diaphragm might be excluded from this presented
method, due to the risk of internal damage of proximate organs.56

3.2.6 Ovarian tissue compares collagen content
in malignant and normal tissue

Yang et al. extracted optical AC from healthy and malignant
ovarian tissues and found a correlation between the collagen
content of tissue and its attenuation due to scattering.31 Yang
et al. applied the SS model for analysis of the OCT signals and
assumed that the attenuation of light in ovarian tissue was
mainly caused by scattering. The biological basis of their
approach is that malignancy in ovarian tissues can reduce col-
lagen content, which is the main scatterer in ovarian tissue and
change the directivity of ovarian stroma, which is composed of
collagen fibers.58 The reported scattering coefficients in healthy
and malignant ovarian samples were 2.41 mm−1 (�0.50) and
1.55 mm−1 (�0.46), respectively. After imaging, the tissue sam-
ples were sectioned and stained with Sirius Red (SR). The col-
lagen content was measured as the collagen area fraction (CAF),
which equals the ratio of the SR-stained collagen area over the
total histological tissue area. The CAF obtained at the OCT im-
aging plane from normal samples was 48.4% (�12.3%) and that
from the malignant samples was 11.4% (�4.7%).31 The results
of CAF and scattering coefficients in normal and malignant
ovarian tissue samples show that the AC can be used for char-
acterization of neoplastic changes in the ovary and has the
potential of detecting ovarian cancers.

3.2.7 Prostate cancer detection

Aminimally invasive, needle-based OCT system was developed
by Muller et al. and qualitative AC analysis was performed to
differentiate among benign stromal tissue, inflammation, and
different grades of prostate cancer (Gleason scores 3 and 4).29

In this study, one-to-one registration of OCT en face AC map-
ping and histology slide was achieved to ensure accurate
classification.59 CF method was used to extract AC measure-
ments for specific regions of interest. Study results showed that
while malignancy, inflammation and benign tissues could be
identified, the tissues exhibited similar patterns, which contrib-
ute to challenge in differentiation. AC analysis was helpful in
quantitatively categorizing tissue types and results in significant
median AC values among benign and inflamed stroma, and
Gleason 3 and Gleason 4 malignancy (4.6, 4.1, 5.9, and

5.0 mm−1, respectively).29 However, the authors did report
differences in AC measurements within individual patients.
For example, the AC measurements of Gleason 4 region in one
patient could differ up to 2 mm−1. The authors reasoned that this
variation could be due to the heterogeneity of the malignant
region and thus increased classification challenges for the
pathologist. Also, more heterogeneous tissues such as cysts
were not studied due to the same reason despite its clinical
significance. The author suggested that pattern recognition algo-
rithm or convolutional neural networks could be useful in differ-
entiation prostate cancers with OCT.

3.2.8 Brain cancer detection

Complete detection and removal of brain cancer is crucial to
patients’ survival; however, it is often challenging because infil-
trative regions of cancer are difficult to distinguish from healthy
tissues.60 Therefore, there is a need for accurate, intraoperative
visualization of cancerous regions in the brain. AC studies have
been conducted on ex vivo mouse brains61 and ex vivo human
brains for brain cancer detection,62,63 as well as in vivo mouse
models to demonstrate the feasibility of intraoperative visuali-
zation of cancerous tissue with AC mapping.62 In 2015, Kut
et al.62 extracted AC from various regions (cancer core, infiltra-
tive zone, and surrounding noncancerous tissue) of low-grade
and high-grade cancer tissues of ex vivo human brains. The
reported AC values from high-grade cancer tissues are 3.9,
3.5, and 6.2 mm−1, for cancer core, infiltrated zone, and non-
cancer tissue, respectively. In low-grade cancer tissue, the cor-
responding values are 4.0, 2.7, and 6.2 mm−1. The results show
that the noncancer regions have AC measurements that are sig-
nificantly higher than both infiltrated zones and cancer cores;
however, there is no significant difference for high- versus
low-grade cancers in both the infiltrated zone and cancer core.
In a more recent study by the same group,63 the AC extraction
algorithm was improved to ensure accurate AC estimation in the
face of incorrect tissue surface detection, which further increases
the potential of AC for in vivo clinical translation.

3.3 Brain Injury Visualization

OCT has been applied to imaging physiological changes in the
brain in response to traumatic brain injuries (TBI) such as
stroke. Microvascular changes,11 cerebral ischemia,9,26,33,64 and
cerebral edema34 have been visualized and analyzed with the
optical AC.

3.3.1 Cerebral ischemic stroke

Cerebral ischemia following stroke is a serious medical condi-
tion in which the affected site experiences drastically reduced
blood perfusion, creating a hypoxic environment. Due to hypo-
xia, ischemic stroke causes depletion of oxygen and nutrients in
the neurons, leading to severe brain tissue damage.65 Affected
tissues will experience loss of function and altered cellular struc-
tures, and this change in tissue properties can result in altered
light attenuation in affected regions.33

Srinivasan et al.64 applied analysis of the optical AC to ische-
mic stroke and reported that the intrinsic scattering properties of
cerebral tissue can indicate acute cellular and vascular injury and
recovery events during strokes. They found that the scatter char-
acteristics were different in ischemic tissues and intact tissues by
plotting the logarithmic OCT signal versus imaging depth in the
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brain. They also observed reduced light penetration in infarcted
regions and concluded that there is an increase in the scattering
property of affected cells. Their explanation of the increased
scattering was because of the swelling of cells and intracellular
organelles upon cerebral ischemia.64

Baran et al.9,11 introduced OCT-based tissue injury mapping
(TIM), where they combined Vermeer’s DR extraction of optical
AC with optical microangiography (OMAG),15 and demon-
strated its ability to depict changes in tissue properties by char-
acterizing light attenuation in tissue. TIM uses the sorted
average intensity projection (sAIP) algorithm, which sorts the
extracted optical attenuation values of each A-line in an ascend-
ing order. Then, the sorted ACs are averaged using the following
equation:

EQ-TARGET;temp:intralink-;e025;63;598OACaverage½y� ¼
PðN∕2ÞþðM∕2Þ

i¼ðN∕2Þ−ðM∕2Þ OACsorted½i�
M

; (25)

where N is the total number of pixels in a selected portion of an
A-line and M is an adjustable parameter representing the num-
ber of pixels to be averaged. After sAIP and averaging, fluctua-
tions in the AC values can be removed, and thus, smooth en face
AC mappings can be produced. In their study, a mouse model of
middle cerebral artery (MCA) occlusion was used and images
were taken prior to 1 day and 3 days after the occlusion. The
result shows that the average AC value in ischemic regions
(MCA) increased by 70% as compared to the baseline, and the
value continued to increase by another 20% of 3 days after occlu-
sion. The difference between ischemic and unaffected regions
[perfused by the anterior cerebral artery (ACA)] in AC mapping
agrees with the findings from OMAG mapping, where both ves-
sel dilation and increased vessel density were found postocclu-
sion. However, en face optical attenuation coefficient (OAC)
mapping provides a clearer distinction of the ischemic (MCA)
regions from the ACA regions. Both Srinivasan’s and Baran’s
work provide qualitative information regarding changes in the
cerebral tissue following cerebral ischemia and demonstrate the
effectiveness of AC in depicting tissue changes.

Recently, Liu et al. developed ODRE and provides quantita-
tive AC values in both ischemic and intact cerebral tissues of
mouse models of focal ischemia.26 They found the same increas-
ing trend in ischemic cerebral regions as the previous papers and
showed that the AC increased by 1 mm−1 within 120 min

following MCA occlusion, as shown in Fig. 8. Choi et al. also
applied AC analysis in their multiparametric OCT imaging of a
mouse model of permanent focal ischemia, where they found an
increase in AC of the cortical regions around focal ischemia
(>3 mm−1) as compared to that of undamaged grey matter
(1.01 mm−1). Choi et al. also noticed that the ischemic effect
expanded over time and the rim of the cortical area developed
an even greater AC (>4.5 mm−1) 8 min postocclusion.33

3.3.2 Cerebral edema

Cerebral edema is a condition in which excess water accumu-
lates in the brain after TBI, increasing intracranial pressure (ICP)
and leading to many secondary injuries due to the mechanical
compression to adjacent brain structures.66 Current assessments
of cerebral edema include ICP monitoring and brain water con-
tent (BWC) analysis. However, ICP only provides a global
measurement of the pressure and cannot be used to assess brain
edema in local regions; BWC analysis may require biopsies
and thus, the procedure can be invasive.34 Therefore, a real-time
in vivo imaging method that could accomplish both temporal
and spatial assessment of cerebral edema would be highly ben-
eficial. Rodriguez et al.34 imaged the cerebral cortex with OCT
and found that the optical scattering property of the cerebral
tissue was changed as edema progressed, causing the average
AC in the cerebral cortex to decrease.

In their experiment, an acute water intoxication model of
cytotoxic cerebral edema was used, resulting in increasing water
content in the brain due to the osmotic gradient. After intraper-
itoneal (IP) injection of water into an experimental mouse group,
the mouse brain was imaged with a spectral-domain OCT sys-
tem (centered at 1300 nm). After data collection, the mice were
euthanized and their brains dissected for BWC, the gold stan-
dard for brain edema. Results showed that there was a linear
decrease in the AC value after water injection and reached a
maximum decrease of 8%. The BWC results confirmed that the
experiment group had greater water content in the brain than the
control (no IP injection).

3.4 Atherosclerosis Plaque Characterization

Thin-cap fibroatheroma (TCFA) rupture is a major cause of
acute myocardial infarctions.3 Therefore, successful identifica-
tion and visualization of TCFA can help with our understanding

Fig. 8 (a) and (b) Changes in two regions of brain tissue OAC as a function of time. Region 1 (red box
area): ischemic damaged regions; region 2 (blue box area): undamaged regions (reprinted with permis-
sion from Ref. 26).
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and treatment strategies of this type of rupture-prone plaques.
Important parameters that aid the determination of plaque
vulnerability include the thickness of fibrous cap, degree of
inflammation, intraplaque hemorrhage, and plaque tissue
composition.22 Conventional OCT imaging has been used to
determine the vulnerability of plaques due to its high resolution,
as it provides detailed structural information regarding vessel
wall and plaque tissues;22 however, the border between different
types of tissues (i.e., fibrous and lipid-rich) can sometimes be
ambiguous. Levitz et al.20 first applied AC analysis to the differ-
entiation of ex vivo normal and atherosclerotic arterial tissues
and demonstrated that AC can distinguish dissimilar tissue type
based on the optical properties of tissues. The AC extraction
method employed is based on the MS model developed by
Thrane et al.18 Levitz’s study showed a difference in the scatter-
ing properties of healthy and atherosclerotic tissues; 95% of nor-
mal arterial wall tissues had AC values between 15 and
39 mm−1 and approximately 60% of lipid-rich and fibrocalcific
plaques have AC values lower than 15 mm−1.

In 2005, van der Meer et al.2,28 applied AC measurement
for characterization of arterial wall and atherosclerotic plaque
components, using CF (based on the SS model) on averaged
OCT A-scans.2,28 They concluded that the AC is highest in
the calcification region and thrombus (11.1� 4.9 mm−1 and
11.2� 2.3 mm−1, respectively), intermediate in the intimal and
media layers (5.5� 1.2 mm−1 and 9.9� 1.8 mm−1), and lowest
in lipid-rich regions (3.2� 1.1 mm−1).

In 2008, Xu et al. also applied CF to characterization of ath-
erosclerotic plaques in human coronary arteries.3 Different from
the previous studies that have used the scattering coefficient as
the quantitative tissue parameter,18,49,50 Xu et al. measured both
the total AC μt and the backscattering coefficient μb in order to
avoid overlaps of parameter measurements between tissue types

and ensure significant separation. Moreover, alternative to that
taking measurements from longitudinal cut of the artery (imag-
ing from the lumen side), this group sectioned the artery in the
transverse plane. The three major features Xu et al. aimed to
identify were fibrous tissues, calcified tissues, and lipid-rich
tissues. Their reported μt and μb values are 5.7� 1.4 mm−1

and 4.9� 1.5 mm−1 for calcified plaques, 6.4� 1.2 mm−1 and
18.6� 6.4 mm−1 for fibrous plaques, and 13.7� 4.5 mm−1 and
28.1� 8.9 mm−1 for lipid-rich plaques. By creating a colormap
of AC and backscattering coefficient, Xu et al. were able to more
directly visualize plaque components, as shown in Fig. 9.

Further investigations were made by van Soest et al. in 2010
and Gargesha et al. in 2015, and both groups were able to deter-
mine AC values in vivo with a catheter-based approach.21,22

Van Soest et al. found that lipid plaques had high AC
(μt>10 mm−1), whereas fibrotic and calcific plaques had lower
AC (2 mm−1 < μt<5 mm−1), which agreed with the μt measure-
ments obtained by Xu. Gargesha et al. used a three-dimensional
approach and estimated AC from small volumes of interest in
order to avoid noise associated with a single A-line. The AC
values from Gargesha’s results are reported as 3.84�
0.95 mm−1 for calcified plaques, 2.15� 1.08 mm−1 for fibrotic
plaques, and 9.99� 2.37 mm−1 for lipid-rich plaques, which
have a similar general trend as the results of Xu and van Soest.

In 2017, instead of the CF technique, Liu et al. applied DR
estimation in characterization of atherosclerotic tissues.4 In their
study, the DR method was further extended to extract the back-
scatter-related term from OCT images, which served as a com-
plementary parameter to AC analysis. Liu’s study achieved
successful differentiation of six atherosclerotic tissue types,
including mixed calcified plaque (1.68� 0.14 mm−1), calcifica-
tion (0.87� 0.24 mm−1), fibrous (1.75� 0.48 mm−1), lipid-
rich (2.60� 0.13 mm−1), macrophage (3.41� 0.38 mm−1),

Fig. 9 (a, d) Backscattering and (b, e) attenuation coefficient images of artery segments with (g) color
map combining (c, f) attenuation and backscattering coefficients. Upper row: lipid-rich plaque; lower row:
fibrocalcific plaque (reprinted with permission from Ref. 3).
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and necrotic core (1.89� 0.54 mm−1) regions. From Liu’s
result, the comparative relationships between different tissues
agree with the previous findings of Xu et al. and van Soest et al.,
i.e., calcified region has a lower AC than fibrous tissue.3,21

4 Future Directions
With the ability to quantitatively differentiate dissimilar tissues,
AC has gained popularity in a number of clinical applications.
The extraction technique can be further improved, however.
While multiple efforts have already been made to improve the
extraction accuracy of AC measurements, future investigations
are needed to further improve performance of the algorithms and
expand the range of clinical applications. Currently, there has
been no study on three-dimensional automated AC extraction;
such a study would be particularly useful for endoscopic clinical
applications. Given the increasing popularity of the DR method,
other possible improvements in AC estimation may be consid-
ered addressing the other assumption made in DR method15 that
the amount of backscattered light to the total scattered light is a
fixed ratio. Almasian et al.67 have demonstrated that the scatter-
ing coefficient is related to particle size and orientation. Current
AC extraction methods have yet to account for such effects
when the particle sizes and size distributions are unknown.
Therefore, there is still the need to incorporate more detailed
models for AC extraction so that AC tissue analysis can become
more accurate in clinical contexts.

In order to further broaden the clinical applications of AC,
spectroscopic AC may be introduced to improve the specificity.
SOCT is a functional extension of OCT that combines light scat-
tering spectroscopy with OCT.68,69 This combination provides
both spectroscopic and depth information, and by applying
AC to wavelength-dependent scattering, one may conceive of
a spectroscopic AC that may be capable of distinguishing
even finer cellular structures. Spectroscopic AC may also help
to avoid a potential danger of confusing a high-scattering
low-absorption region with low-scattering high-absorption
region across different tissues types, given the highly varying
ratio of scattering and absorption coefficients in biological
tissues.70,71 For example, in a single-tissue section, areas con-
taining blood vessels would have an AC value with much greater
absorption coefficient contribution since blood is highly absorb-
ing. However, in the context of the same tissue type with differ-
ent pathological conditions, changes in AC can still adequately
provide diagnostically meaningful information for detecting dis-
ease manifestation, as shown in most of the clinical application
studies included in the review.

The lack of molecular specificity of OCT can also be
addressed with multimodal systems, such as a combined
Raman spectroscopy (RS) and OCT system, where the bio-
chemical information provided by RS can help with distinguish-
ing finer tissue structures.72

5 Conclusion
Optical AC, an underlying tissue property, is an important
parameter that has been recently proposed to address the long-
standing criticism of OCT, i.e., providing only morphological
information. The analysis of AC enables quantitative assessment
of tissue properties, facilitates tissue differentiations, and is rel-
evant to many clinical applications. Extraction of this parameter
is achieved through postprocessing of OCT interferograms. Ever
since the first demonstration of AC extraction, many innovative
methods have been introduced, and as a result, the measurement

errors have been effectively reduced. However, more efforts
need to be made for further improvement of extraction algo-
rithms to address the assumptions made in current methods.
The quantitative tissue properties from AC assessment have
been shown useful in a wide range of clinical applications,
currently in areas such as characterization of atherosclerotic
plaques, monitoring of blood perfusion in ischemic stroke, and
differentiation of cancerous tissues. As AC presents itself as a
promising technique, we expect that it will continue to enhance
the clinical impact of OCT and facilitate many more therapeutic
and pathological investigations.
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