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Abstract. Glioma is one of the most refractory types of brain tumor. Accurate tumor boundary identification and
complete resection of the tumor are essential for glioma removal during brain surgery. We present a method
based on visible resonance Raman (VRR) spectroscopy to identify glioma margins and grades. A set of diag-
nostic spectral biomarkers features are presented based on tissue composition changes revealed by VRR. The
Raman spectra include molecular vibrational fingerprints of carotenoids, tryptophan, amide I/II/III, proteins, and
lipids. These basic in situ spectral biomarkers are used to identify the tissue from the interface between brain
cancer and normal tissue and to evaluate glioma grades. The VRR spectra are also analyzed using principal
component analysis for dimension reduction and feature detection and support vector machine for classification.
The cross-validated sensitivity, specificity, and accuracy are found to be 100%, 96.3%, and 99.6% to distinguish
glioma tissues from normal brain tissues, respectively. The area under the receiver operating characteristic
curve for the classification is about 1.0. The accuracies to distinguish normal, low grade (grades I and II), and
high grade (grades III and IV) gliomas are found to be 96.3%, 53.7%, and 84.1% for the three groups, respec-
tively, along with a total accuracy of 75.1%. A set of criteria for differentiating normal human brain tissues from
normal control tissues is proposed and used to identify brain cancer margins, yielding a diagnostic sensitivity of
100% and specificity of 71%. Our study demonstrates the potential of VRR as a label-free optical molecular
histopathology method used for in situ boundary line judgment for brain surgery in the margins. © The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.9.095001]
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1 Introduction
Glioma is the most common tumor of the central nervous system
(CNS), with a high incidence rate, high recurrence rate, high
mortality rate, and low cure rate. Even with a combination of
comprehensive treatments of surgery, radiotherapy, and chemo-
therapy, the mortality and disability rates still increase annually.
In 2017, nearly 700,000 people were living with a primary brain
and CNS tumor in the USA, and ∼80;000 new cases were diag-
nosed, including one quarter as glioma tumors and one third as
malignant tumors (GBM-glioma grade IVor astrocytomas). The
survival of patients with high grades of gliomas, including ana-
plastic astrocytoma [World Health Organization (WHO) grade
III] and pleomorphic glioblastoma (WHO grade IV), is only
∼2 years and 1 year, respectively.1–3 Although the survival of
a brain glioma patient is affected by multiple factors, the accu-
racy of tumor boundary identification and the degree of resec-
tion of the tumor are two essential factors.

Current clinical routine diagnosis of brain tumors is per-
formed using biopsy and histopathology, which is considered
the gold standard. This method requires freezing the biopsy
tissue or reagent preparation prior to microscopic analysis. It
also requires skilled technicians and expert histopathologists
to perform the diagnosis as well as considerable time before the
results are available. In addition to the gold-standard method,
there is a panoply of alternative methods available for cancer
detection. Magnetic resonance imaging (MRI) is one of these
alternative methods. It can provide the location and dimension
of the tumor and its biochemical composition at the molecular
level before a surgery. However, oftentimes it is difficult to use
these diagnostic results to assist a surgeon during a surgery, due
to the loss or alteration of the information. Such information loss
is caused by the changes in the position and shape of the lesion
and is one of the main concerns of the surgeons. Computed
tomography and microscopic neurosurgical technology play
large roles in neurosurgeries. However, for the diagnosis and
treatment of malignant brain tumors, there has yet to be a break-
through. Most patients with malignant gliomas (77%) die within
1 year after diagnosis.4,5 It is critical to develop a diagnostic
method for in situ margin assessment in real time. Such a
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method may be used for early screening and more accurate intra-
operative resection, which are the key factors to increase the sur-
vival rate of patients. Optical spectroscopy offers the molecular
information on cancer; in particular, visible resonance Raman
(VRR) offers a fast and accurate assessment of local vibrations
in regions of tissues. VRR is a breakthrough method needed to
advance detection and future treatment of cancer in the margins.

The current brain tumor treatment starts with surgical resec-
tion, which is the most critical first step in the comprehensive
treatment of glioma. The main goal of the surgery is total resec-
tion of the tumor, which is then followed by further treatment.
However, an early postoperative MRI review confirmed that
only ∼65% of gliomas can achieve a total resection, because
the current microsurgery technology lacks accurate and timely
detection. Recent studies have shown that for 75% of tumor
resections, there was no clear distinction between higher and
lower grade glioma cases, which is the major reason for high
rates of recurrence and mortality.6–11

The commonly used auxiliary techniques during surgery,
such as stereotaxis, can not only provide preoperative biopsies
for pathology analysis, but also help the surgeon better identify
and calibrate the location of the tumor, which is a great advan-
tage compared with the traditional microscopic surgery.
However, due to the limitations of positioning, the biopsy spec-
imens obtained are small and do not represent the overall nature
of the tumor, leading to an underestimation of high-grade brain
tumor malignancy. Another auxiliary technique is intraoperative
ultrasound technology that was first applied in 1980, attracting
the attention of neurosurgeons.12,13 Intraoperative ultrasound has
many advantages, such as clear images for surgeons, a simple,
flexible, noninvasive operation, low cost, and intraoperative
real-time positioning, and the procedure helps neurosurgeons
remove the lesions. However, even using intraoperative ultra-
sound, it is still difficult to determine the real boundary of a
glioma tumor as the boundaries are unclear and the borders
of a high-grade glioma are deep in normal brain tissue. The inva-
sive growth of tumor cells often occurs in the aggressive area of
the tumor. Therefore, one of the hot areas of current glioma sur-
gery research focuses on image-guided surgery combined with
conventional navigation and quantitative analysis of the infiltra-
tion boundary of the glioma using navigation techniques. The da
Vinci robotic system with the addition of a VRR probe analyzer
can offer a major advance needed for surgery in brain cancer.

Recently, the molecular pathology method for glioma diag-
nosis and classification has been receiving increased attention.
In 2016, the WHO majorly restructured the classification of
CNS tumors, such as diffuse gliomas, medulloblastomas, and
glioblastomas, and included new entities that are diagnosed with
combined histopathological and molecular characteristics and
genetic features, such as diffuse midline glioma H3 K27M-
mutant and others. This reclassification will greatly assist in the
early diagnosis and accurate treatment.14 With the development
of molecular biology, the molecular pathology and molecular
grading of gliomas are becoming increasingly important.

Because the traditional clinical histopathological diagnosis
has low accuracy and the preferred surgical treatment of glioma
has dissatisfactory results, there is a need for a rapid in situ
approach to locate and determine cancer margins and the tumor
grade at the molecular level. The rise of the costly molecular
genetic pathology method, which is still in its initial stages for
most diseases, and the desire to reduce diagnostic time, increase
diagnostic accuracy, and identify tumor margins on brain lesions

motivate researchers to explore the optical molecular histopa-
thology based on vibrational Raman spectroscopic technique,
one of the optical biopsy methods using optical spectroscopy
and other optical methods. We have developed, and therefore
report in this paper on, VRR spectroscopy-based technique for
glioma diagnosis and margin detection that has the potential to
address the aforementioned limitations. It is fast, accurate, and
local. VRR uses the magic laser wavelength near 532 nm to
enhance the Raman signal intensity by >100×, making the
method very fast.

VRR is one panoply of optical spectroscopy techniques in
Optical Biopsy that mainly include fluorescence, absorption,
Stokes shift, and various Raman spectroscopy techniques based
on spontaneous Raman (SR), resonance Raman (RR), ultravio-
let resonance Raman (UVRR), coherent Raman scattering,
coherent anti-Stokes Raman scattering (CARS), stimulated
Raman scattering (SRS), optical coherence tomography, and
resonance stimulated Raman scattering (RSRS). VRR spectros-
copy is a Raman-based technique with visible excitation light,
particularly with 532 nm, in or near resonance with electronic
transitions of the substance under investigation; in particular, in
biological tissue and cells resonance with flavins, carotenoids,
collagen, and nicotinamide adenine dinucleotide (NADH). VRR
signal is typically 100 to 1000 times stronger than SR signal.

In tissue, the 532 nm serves as the key wavelength to excite
tissue for the resonance process located in pre-electronic region
for incoming and outgoing Raman resonance for many native
molecules in tissue of flavins, NADH, collagen, and tryptophan
via one- or two-photon excitation. Among the conventional
histopathology and newly explored molecular diagnosis meth-
ods mentioned above,14 Raman spectroscopy can analyze the
changes of the chemical composition of different lesions in
human tissues and the slight changes of protein structure and
nucleic acids15–20 using intrinsic molecular fingerprints in situ,
label-free at near real time,17,21–34 and low cost. Raman spectral
changes can reveal the metabolic processes of brain tissue24,25,30

and can potentially be used for margin assessment even during
surgery.24,30–35

The VRR method is based on the native molecular vibra-
tional characteristics in the Raman spectra of human brain tissue
using 532 nm excitation.26,34 VRR has unique features, such as
(a) compared to the traditional Raman spectroscopy, it provides
more RR intrinsic biomarkers based on multiple vibrational
modes of larger biomolecules; (b) Raman signal intensity may
be enhanced by 102 to 103 times; (c) it probes a local region of
100 μm; (d) it operates in situ over seconds, which leads to (e) a
rapid progress of brain and other human cancer diagnosis in
clinical applications, which is typically difficult to achieve by
a conventional nonresonance Raman method without using rel-
atively high power.36,37

The VRR method has a high signal-to-noise (S∕N) ratio and
provides visually intuitive results for inspection. It only takes
seconds for data acquisition. Even the raw RR spectra can be
used for a direct comparison between cancerous and normal tis-
sues. By contrast, it is more difficult to inspect the raw Raman
data acquired using NIR, such as a 785 nm excitation because of
the lower S∕N ratio. In fact, the raw Raman spectra are rarely
provided in the literature due to the large wing.36,37 The VRR
system also uses less power and a shorter integration time to
collect signals;23,26 thus, VRR provides a safer and more suitable
method for in vivo and real-time in situ brain cancer diagnosis
compared with NIR or FT-Raman methods. In addition, the
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VRR signal is well localized in space due to the use of a shorter
wavelength compared to NIR. VRR also explores a spatially
more local region and offers a new microscope.

Although both UVRR38,39 and VRR can result in tremendous
enhancements in Raman peak intensity and S∕N ratio, which
can help detect weak signals not observed in the conventional
Raman system, the UVRR method has low tissue penetration
(on the order of a micrometer), high photomutagenicity, and low
cell and tissue damage threshold,39 which lead to limited clinical
applications. Compared to other Raman methods, VRR uses vis-
ible 532 nm wavelength excitation, matching more electronic
transitions of biomolecules in tissues, cells, and organelles.
Resonance-enhanced molecules can be detected at molecular
concentrations <1.0 nM and the activity of particular molecular
species can be targeted preferentially. Specific biomolecules in
the cells and organelles include fluorophores, such as flavins,
reduced NADH, collagens, elastin, lactate, carotenoid, amino
acids, glucose, hemeproteins, mitochondria, and cytochromes.
The VRR approach continues the research work of the optical
biopsy of Alfano’s group, which has pioneered the field of opti-
cal biopsy for Raman since 198740 and 1991.41 It is also a new
progress in molecular histopathological diagnosis and grade
classification of human brain glioma tissues.34,42 The VRR tech-
nique has been used to study human brain, breast, GYN, GI, and
skin and has been used to detect vulnerable atherosclerotic pla-
ques and to study atherosclerotic abdominal aortic tissues, cer-
ebrospinal fluids, and breast cells since 2011.23,26,34,42,43

The objective of this study is to use VRR as a new Raman
technique to evaluate the biomarkers for glioma margins and the
correlation between the levels of biomarkers and tumor grades.
We used 532 nm Raman spectroscopy on human tissue ex vivo.
It probes the electronic incoming and outgoing resonances of
flavins and other native molecules in preresonance regimes.
After collecting the spectra from glioma tissues at different
grades, we applied PCA-SVM machine learning methods to
classify the samples with the results compared with those from
traditional histopathology.

The field of Raman spectroscopy has greatly advanced in the
recent decade. In particular, important and promising studies on
biomedical research have been reported by many groups28,44–47

on imaging and spectroscopy based on SRS, CARS, and RR.
These works greatly extended the Raman technique in biomedi-
cal research due to the enhanced Raman signal for imaging.

The advantage in VRR compared to other techniques is its
rapidness together with high S∕N ratio. Most recently,
Abramczyk et al.46,47 have also been performing RR using
532 nm excitation in a number of studies and reported great
results. In this study, we use VRR on the diagnosis of brain glio-
mas. To our best knowledge, we are the first to apply VRR on
gliomas and use it for distinguishing normal and cancerous
human brain tissues and margin detection.

2 Results

2.1 VRR Spectra Measured from Healthy Tissue,
Normal Control, and Grades I through IV
Glioma Tissues

Figure 1 shows a set of typical RR spectra measured from
healthy tissues, control tissues, and gliomas of six different
grades from human brain tissues ex vivo. The RR spectrum from
healthy brain tissue in Fig. 1(a) shows eight major peaks at
1005, 1157, 1521, 1438, 1667, 2850, 2885, and 2932 cm−1.

The relatively sharp and enhanced peaks of 1157 and
1521 cm−1 should be carotenoids (low-density lipoprotein) and
lipoprotein (high-density lipoprotein). Rich fatty acid RR peaks
at 1438, 2850, and 2885 cm−1 are stronger than protein bands at
1005, 1667, and 2932 cm−1 in intensity. In a comparative
study,48 Verdiyan et al. collected Raman spectra from the myelin
sheath of sciatic nerve fiber tissue using 532 nm laser excitation
and a 50-s exposure time and observed peak intensities at 1160,
1520, 2850, 2885, and 2935 cm−1, respectively.

The normal control spectrum is collected from the cancer
margin of grade IV glioma, which is also called the negative
margin of the cancer or the cancer–normal tissue interface
[Fig. 1(b)]. Compared with healthy tissue [Fig. 1(a)], the relative
peak intensity of 2885 cm−1 is significantly reduced and the
peak at 2931 cm−1 is higher than that at 2885 cm−1. These
differences can be explained by the hypothesis that the compo-
sition and conformation of lipids (saturated and unsaturated
fatty acids) and proteins (full amino acids contribution) in cells
and tissues changed from those in normal tissue to those found
in cancer margins.35,46,47,49

In this study, it is important to understand the classification of
glioma. Traditionally, gliomas are classified into grades I to IV
according to the morphology, the degree of malignancy, and the
location of tumor cells. Low-grade gliomas refer to the first and
second level of gliomas. With the development of molecular
biology14 and the rise of molecular pathology (genetic code),
the molecular grading of glioma has become increasingly impor-
tant. Figures 1(c) and 1(d) show RR spectra of grade I and
grade II glioma examined by histopathology, which are also
called chronic neoplastic diseases. A grade I glioma tumor is
considered to be at the benign level. The data show that its RR
spectral profile is close to that of the control tissue [Fig. 1(b)],
but some features are different. For example, the strength of the
saturated fatty acid bond (1441 and 1452 cm−1) is weaker, and
the RR molecular fingerprints of amide I (1640 cm−1), amide II
(1550 cm−1), amide III (1306 cm−1), tryptophan and mito-
chondrion (1587 and 754 cm−1), and the RR peak at 1358 cm−1

(higher than 1378 cm−1), which reflects HbO2 saturation status
and oxygen delivery at the cellular level, all show a tendency of
either growing or weakening, respectively. Figures 1(d)–1(h)
demonstrate grades II to IV gliomas. The RR molecular finger-
prints that occurred in grade I glioma tissue all distinctly
increased, decreased, or shifted in higher grades of glioma tis-
sues. In addition, the intense sharp peak at 1127 and 2938 cm−1

suggested contributions from lactate.50 A shift of the center of
characteristic peaks and a change in peak intensities were found
in glioma tumors of grades III and IV. For example, the intense
peak at 1358 (low grades) shifting to 1378 cm−1 (high grades)
was observed. The changes in the RR spectral peaks at 1358
(deoxy-Hb) and 1378 cm−1 (oxy-Hb) show deoxy-hemoglobin
dominating at low-grade levels and oxy-hemoglobin dominating
at high levels. This RR spectral peak shift may be used to mon-
itor hypoxia and necrosis status in high-grade glioma tissues
in vivo.51,52 RR spectral vibrational modes of fingerprints are
shown in Supplemental Table S1.

2.2 Identification of Glioma Grades by Carotenoids

The resonance-enhanced intrinsic molecular fingerprints with
intense RR modes at 1157 cm−1 (ðνsðC─CÞÞ, 1521 cm−1

(ðνsðC═CÞÞ, and 1008 cm−1 (ðρðC─H3Þ; νðC─CÞÞ and major
overtone peaks at 2320 and 2667 cm−1 should mainly arise
from carotenoids. Carotenoids play an important role in the
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Fig. 1 Typical baseline-subtracted VRR spectra from (a) healthy human brain tissue, (b) normal control
tissue, and human brain glioma tumors of (c) grade I, (d) grade II, (e) grade II-III, (f) grade III, (g) grade
III-IV, and (h) grade IV, respectively. Insets are the raw spectra.
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antioxidant defense system in the healthy brain [Fig. 1(a)]53–61

and have been considered as a cancer biomarker.62,63 Johnson
et al. have also reported the important role of carotenoids and,
particularly, the presence of lutein and zeaxanthin in normal
brain tissue.64–66 They studied the roles of lutein and zeaxanthin
for health and brain functions. Classifying vibrational Raman
modes is shown in Supplemental Table S1. Previous studies
have shown that the concentration of carotenoids in blood
plasma is inversely related to the risk of developing cancer
according to epidemiological and experimental investigations.
Carotenoids are specifically distributed in different lymphocyte
subtypes. They are in the immune system to perform their own
specific functions, although the relative concentration of caro-
tenoids in blood plasma (of the order of 10−6 M) is relatively
low compared to other components in lymphocytes (white blood
cells).53,54 The enhancement in these two Raman bands occurs in
our VRR measurements because carotenoids have an absorption
band at ∼480 nm, which leads to a preresonance enhancement
with 532 nm excitation. A clear decrease in the intensities of the
1157 and 1521 cm−1 peaks was observed with the increase of
the glioma tissue grades. This indicates a progression of the
mutation process in the gliomas. When compared to grade I,
these two RR peaks reduced significantly in grades II to IV.25,34

This reduction may be associated with a direct decrease of the
original peaks at these wavenumbers or a shift in the chemical
vibrational bands. Such changes reveal a decreased concentra-
tion of carotenoids, which may be caused by the structural
changes in the microenvironment of the tumors. Carotenoids are
natural fat-soluble pigments and reduce with the reduction of fat.
For example, the peak 1521 cm−1 drastically decreases with the
decreasing concentration of saturated fatty acid lipids reflected
by the peaks at 1442 and 2854 cm−1. These observations indi-
cate that a fast activation and deactivation of Raman vibrational
modes at 1521 and 1157 cm−1 exists in glioma tissues.
Although carotenoid Raman signals seem to be not very differ-
ent among different grades of glioma tumors, therefore, they not
very helpful for distinguishing among glioma grades, a dramatic
decrease in carotenoid signal in gliomas versus normal and con-
trol brain tissue is quite remarkable. RR modes of 1157 and
1521 cm−1 could be a significant marker to diagnose glioma and
other CNS cancers.48,53,54

2.3 Identification of Glioma Grades by Tryptophan

The peak at 1588 cm−1 observed in the RR spectra is considered
to be the main vibrational mode (W8b) of the fingerprint of

tryptophan.67–70 It was enhanced due to resonance, especially
in the malignant gliomas of high grades (III and IV). In addition
to tryptophan, we consider that the Raman mode of 1588 cm−1

may be contributed by mitochondria, hemeproteins, and DNA
bases (Supplemental Table S1).71–73 Based on our previous
experimental data using VRR method and autofluorescence
method (to be published) on human glioma tumors23,26,42,43,74

and the experimental and theoretical studies reported in the lit-
erature,47,67–70,75 we propose tryptophan as the main contributor
to the Raman mode of 1588 cm−1. One possible form of the
tryptophan contribution to 1588 cm−1 mode may be tryptophan
radicals because of the microenvironment in the malignant
tumor tissues.76–79 The intensity ratio of 1588 to 1440 cm−1

(protein to lipids) was used to analyze the concentration changes
of tryptophan in glioma tissue of different grades, and the differ-
ence is shown in Fig. 2(a). For calculations and comparisons of
peak intensities, the spectral peak intensities were normalized to
the intensity of the 1004 cm−1 peak, which is an intense peak
insensitive to conformational changes of proteins and is there-
fore usually used for normalization of the Raman spectra of pro-
teins. This peak at 1004 cm−1 is assigned to the breathing mode
of phenylalanine that has a relatively stable intensity and posi-
tion in different environments. The data show an increasing
trend in both the concentration of tryptophan and the ratio of
1588 to 1440 cm−1 in glioma tissue with increasing tumor
grade. However, the ratio decreased in grade IV glioma tumor,
which may be due to the metabolism of high-grade tumors, with
the changes of cell apoptosis and tissue necrosis where the con-
centration of tryptophan is also reduced. Studies in the literature
have shown that the heterocyclic amino acid tryptophan in
human brain gliomas is an essential factor and plays a critical
role in the metabolic process.80–83 The 1588-cm−1 peak reveals
that tryptophan in glioma tissues accumulates during tumor
progression.

Tryptophan is one of the 10 essential amino acids that the
body uses to synthesize proteins. It is highly hydrophobic and
has an indole ring attached to a methylene group. In addition to
its participation in the synthesis of proteins, tryptophan is also
used to generate biologically active products, such as the bio-
synthesis of the aminergic neurotransmitter serotonin (5-
hydroxytryptamine, 5-HT). Tryptophan metabolism involves
the kynurenine pathway.67–70,84–86 The catabolism of >95% of
tryptophan in the brain metabolic process takes place through
the kynurenine pathway. Previous studies have found that the
degradation of tryptophan and the tryptophan metabolite, kynur-
enine (Kyn), can inhibit the antitumor immune response. As
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Fig. 2 Typical experimental VRR spectral data plots: the ratios of (a) I1588 cm−1∕I1440 cm−1 and
(b) I2934 cm−1∕I2885 cm−1 from normal human brain tissues and glioma tissues with increasing malignancy.
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reported in the literature, tryptophan-2,3-plusoxidase is an
enzyme that can convert tryptophan into Kyn in glioma and
other cancers and acts directly on glioma cells and promotes
tumorigenesis.85,87

One possible explanation for the enhancement of the spectral
peak of tryptophan (heterocyclic amino acids) in human brain
glioma tissues is two-photon absorption.88 We will further study
the enhancement of 1588 cm−1 mode in the future. If the
enhancement in the Raman signal from tryptophan is due to
the use of 532 nm, the same process should also occur for
phenylalanine and tyrosine, which are both aromatic amino
acids. However, compared to those two, tryptophan is much
more active. Its maximum molar absorptive (La to Lb) band
is centered at 278 nm with a bandwidth of 60 nm. Both fluo-
rescence quantum yield and differential Raman cross section
of phenylalanine and tyrosine are much smaller than trypto-
phan. Often, almost no signal can be detected from these
molecules because of the efficient quenching by neighboring
tryptophan.89–91 Alternatively, an La resonant Raman band of
tryptophan (W2) at ∼1580 cm−1 gave the highest intensity
when the indole ring was not hydrogen-bonded in hydrophobic
environments; therefore, resonant Raman structural markers of
tryptophan may arise from the side chains in proteins.89,90

2.4 Identification of Glioma Grades by the Intensity
Ratio of Proteins to Lipid Metabolites

The Raman modes 2934 and 2885 cm−1 are both symmetric
stretches that correspond to methyl (─CH3) and methylene
(─CH2─), respectively. The 2934 cm−1 mode arises from pro-
teins, whereas the 2885 cm−1 mode is from lipids and fatty acids
of lipids, which contribute significant RR signal in the healthy
brain tissues [Fig. 1(a)]. In this study, an increase in the intensity
ratio was observed between these two Raman modes I2934 cm−1∕
I2885 cm−1 in glioma tissues of different grades. This ratio repre-
sents the ratio between proteins and lipids. It is greater in glio-
mas than in normal brain tissues and gradually increases in
gliomas with increasing grades, as shown in Fig. 2(b).
According to the Raman modes, it is shown in Fig. 2(b) that
the relative concentration of lipid is ∼15% more than that of the
protein in healthy brain tissues. However, in grade IV gliomas,
the relative concentration of lipids is 18% less than that of the
protein. This result may be attributed to the changes in the bio-
chemical compositions of macromolecules including lipids and
proteins during tumor development and progression. The
decrease in the lipid concentration in the malignant gliomas has
been reported in previous studies on glioblastoma multiforme
(GBM) in the human brain using Raman spectroscopy in vitro
and ex vivo.20–22,27,81,82

2.5 Identification of Glioma Grades by Protein
Secondary Structure Conformation Changes

Another major finding of this study is that brain glioma tumors
of various grades presented distinct rearrangements of protein
secondary structures reflected by observed characteristic RR
spectra changes (Fig. 1 and Supplemental Table S1). From a
qualitative point of view, these changes could be described as
a redistribution of RR spectral peak intensities from low grades
of glioma to high grades of glioma; the RR spectral central
positions of the peaks shifted. These shifts were confirmed
by the differences in the spectral peak positions and the protein
secondary spectral structure changes that were observed in

proteins vibration modes in different grades of gliomas.
Among various peptide vibration modes of amide I, amide II
and amide III, for the shifts of peak central positions and
changes of peak intensities, the amide I band was the most
pronounced.92,93 The RR spectrum of amide I has a peak at
1667 cm−1 for the α-helix form in normal brain tissues. This
Raman frequency of the peak decreased and transitioned to
1640 cm−1 corresponding to a β-sheet conformation with an
increased intensity in grade IV glioma tissues. This shift in
amide I may indicate conformational changes of the peptide
backbone of proteins. Similar to amide I, amide III protein sec-
ondary structural conformation changes were also observed in
normal brain tissues and glioma tissues of different grades. An
amide III band of 1270 cm−1 associated with the α-helix form in
normal brain tissues appeared on the sideband and was not
strong, but in grade IV gliomas, the amide III band showed a
transition with the new peak centered at 1225 cm−1, correspond-
ing to a β-sheet form with a sharp and enhanced β-sheet con-
formation. Other studies have reported that a tryptophan W104
mutation is one of the reasons that the lipophilic protein struc-
ture changes from an α-helix to β-sheet structure.94–96 The
changes in protein conformation require further research to
understand the mechanism and contribution to glioma grading.

2.6 Identification of Brain Cancer Margins Using
Peak Ratio and SVM

Brain tumors are classified as grades I to IV according to the
WHO grading system. In this study, a noncancerous tissue from
the perifocal area of a tumor was taken as the normal control,
whereas the normal tissues were from surgeries for traumatic
brain injury or posttraumatic death for noncancer patients.

We present an application of the above statistical approach as
a new optical molecular histopathology method to evaluate the
negative margins of human brain glioma tissue. The specimens
included seven normal and six grade IV glioma human brain
tissues along with fifteen negative margins of glioma cancerous
tissues.

The RR spectra of all the above-mentioned types of human
brain tissue samples were smoothed at first to reduce noise.
Then the baselines of the spectra were removed using a poly-
nomial fitting with an asymmetric Huber loss function.97

Typical preprocessed RR spectra are shown in Figs. 1(a), 1(b),
and 1(h). The peak intensity ratios of I2932 cm−1∕I2885 cm−1 and
I1588 cm−1∕I1442 cm−1 were calculated and scatter-plotted in
Fig. 3. The three types of tissue samples are clustered with some
overlap. Both ratios for the negative margins of glioma cancer
tissues are greater than normal tissues and lower than glioma
tissues.

The peak ratios of normal tissues versus the negative margins
of glioma and the negative margins of glioma versus glioma
were compared using Student’s t-test. For the ratio 1588∕
1442 cm−1, the p-values were 0.0196 and 3.9694 × 10−8 for
normal versus negative margins of glioma and the negative mar-
gins of glioma versus glioma, respectively. Therefore, the RR
spectra for these tissue types are statistically significantly differ-
ent at a 0.05 significance level. Similarly for the ratio 2932∕
2885 cm−1, the RR spectra were also statistically significantly
different for normal tissue versus the negative margin of glioma
and the negative margin of glioma versus glioma, with p-values
of 2.6785 × 10−4 and 1.1215 × 10−5, respectively.

A linear support vector machine (SVM) was used to classify
the spectra for the three types of samples, as shown in Fig. 3.
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The total accuracy was 92.9% with two normal tissue samples
falling in the region for the negative margins of glioma tissue.
If only normal tissues and the negative margins of glioma tis-
sues were compared (normal, negative and negative margins,
positive), the sensitivity, specificity, and accuracy were 100%,
71.4%, and 90.9%, respectively. The receiver operating charac-
teristic (ROC) curve is plotted as a true positive rate versus false
positive rate (or 1 − specificity) as shown in Fig. 3(b), and the
area under curve (AUC) was 0.905. Leave-one-out cross valida-
tion (LOOCV) was also used to further evaluate the classifica-
tion and also achieved a sensitivity, specificity, and accuracy of
100%, 71.4%, and 90.9%, respectively.

This result demonstrated that the proposed ratio criterion is
so sensitive that it can even detect the difference between the
negative margin brain tissues and pure normal brain tissues.
Ideally, the method can not only classify the tissue samples into
the categories using the well-established cancer grading system
but also identify the tissue type that is between normal and
cancer of a particular grade.

2.7 Classification of Brain Glioma Grades by
Statistical Analysis of SVM and PCA Methods

To further analyze the predicative effectiveness and robustness
using the pathway signatures emerging from the Raman spectra,
the statistical analyses of the VRR data collected from the brain
tissues were conducted with principal component analysis
(PCA) and SVM and compared with the histopathology and
immunohistochemistry analysis (the “gold standard”). This
analysis only used earlier data up to the year of 2017, which
included 241 spectra from 95 samples in total, specifically con-
taining 27, 7, 75, 44, and 88 spectra collected from 20, 2, 24, 14,
and 35 samples for normal tissue (including negative controls),
grades I to IV glioma tissues, respectively. All the sample types
were confirmed by H&E-based histopathology reports.
Different tissue samples (e.g., cancerous and negative control
tissues) may be from one patient, and such samples are consid-
ered as different cases separately. The analyses here allowed us
to evaluate the performance of the classification of normal brain
tissue and glioma tissues, as shown in Fig. 4. The detailed
explanation of the methods can be found in Sec. 4. When the
first two principal components (PCs), PC1 and PC2, were used
for classification, the scatter plot of the PC scores of normal and
all grades of glioma tissue samples are shown in Fig. 4(a) along
with the ROC curve shown in Fig. 4(b). When resubstitution

validation was performed, the sensitivity, specificity, and accu-
racy for the SVM classifier shown in Fig. 4(a) were 96.3%,
81.5%, and 94.6%, respectively. The AUC of ROC was 0.968.
If LOOCV was used, the sensitivity, specificity, and accuracy
were 96.3%, 74.1%, and 93.8%, respectively. When PC2 and
PC6 were used, the scatter plot of the PC scores of normal and
all glioma tissue samples are shown in Fig. 4(c) along with the
ROC curve in Fig. 4(d). The sensitivity, specificity, and accuracy
for the SVM classifier with resubstitution validation as shown in
Fig. 4(c) were 99.5%, 92.6%, and 98.8%, respectively. The
AUC of ROC was 0.994. LOOCV sensitivity, specificity, and
accuracy were equal to those with resubstitution validation. If
PC1, PC2, and PC6 were used, the sensitivity, specificity, and
accuracy for both resubstitution validation and LOOCV were
100%, 96.3% and 99.6%, respectively, with an AUC of ROC
of ∼1.0.

In Fig. 5, the separation lines were calculated based on PC1
and PC2 using the SVM algorithm to classify the spectra col-
lected from normal and glioma tissues into three categories,
including normal tissue, glioma grades I and II, and glioma
grades III and IV. The results yielded a total diagnostic accuracy
of 71.4% when compared to the pathology reports as the “gold
standard.” Here grades “II and III” glioma tissues were included
in grade III, and grades “III and IV” glioma tissues were
included in grade IV. The PC scores for PC1 and PC2 were used
for classification. The entire two-dimensional space is divided
into three regions for the three groups of brain tissue, respec-
tively. The accuracy for each group is calculated based on the
percentage of the tissue samples correctly falling into the cor-
responding region. The accuracies for the three classes were cal-
culated as 81.5%, 52.4%, and 81.1%, respectively. The results
are relatively effective for glioma diagnosis based on Raman
spectra and the classification of brain glioma tissues of low
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Fig. 4 (a) A scatter plot of scores of PC2 versus PC1 of normal and all
glioma tissue samples along with a linear SVM classifier. (b) The ROC
curve corresponding to the SVM classifier in (a). (c) A scatter plot of
scores of PC6 versus PC2 of normal and all glioma tissue samples
along with a linear SVM classifier. (d) The ROC curve corresponding
to the SVM classifier in (c).
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Fig. 3 (a) Scatter plot of peak intensity ratio 2932∕2885 cm−1 versus
1588∕1442 cm−1, for normal tissue (circle), negative margin (tri-
angle), and grade IV glioma (plus). SVM classifiers (boundary lines)
were trained to separate each tissue type from the other two types.
In total, three SVM classifiers were trained: (b) an ROC curve was
generated to classify normal tissues and negative margins of glioma
(not including grade IV glioma). The AUC of the ROC curve was
0.905.
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versus high grades. The results also show that approximately
half of the low-grade tissue samples fall in the high-grade
region, which may be due to mixed features in the low-grade
tissue samples. If all three PC scores of PC1, PC2, and PC6 were
used, the accuracies were 96.3%, 53.7%, and 84.1% for the
three groups, respectively, with a total accuracy of 75.1%.

3 Discussion
One difficulty in this study at present lies in glioma grading as
shown in Fig. 5. We cannot clearly classify every grade, includ-
ing grade II-III and grade III-IV, of gliomas because most glioma
tissues grow invasively with cells of overlapping grades. In par-
ticular, grade IV glioma tissues have necrosis and endothelial
proliferation, which is clearly seen in the mapping images
(which we will discuss in other reports).

It is reasonable that the cancer margin and glioma grades
were not exactly identified in this study due to the following
reasons. The H&E-tested samples were not from the exact loca-
tions of the tissues that were tested using Raman spectroscopy in
our lab. The correlation between the H&E results and the optical
results were affected due to a lack of co-registering of the size
and locations of the tissues during transitions from the clinical
laboratory to the optical laboratory.

The next steps of our future study are the following.

1. We have planned to improve the approach and find the
real-time correlations between the results obtained
from the examination in the hospital laboratory and
the measured Raman spectral characteristics in the
optical laboratory. To more accurately evaluate the RR
method, synchronization between the ex vivo spectro-
scopic test and the hospital laboratory test is critical.

2. In fact, the VRR spectroscopic technique could lead to
in vivo real-time diagnosis, whereas the traditional his-
topathological examination process is more time-
consuming.

3. We will further study the Raman mode of 1588 cm−1

and the role of tryptophan and 2940 and 2850 cm−1

pair in our future cancer research.

4. A portable VRR device with a scanner for imaging
and with <1 − s integration time is being developed.

5. Finally, we will develop an RSRS microscope98 base
on nonlinear optics combining both VRR and SRS for
general use in optical biopsy.

In this study, “leave one spectrum out” was used. Since every
glioma sample relatively evenly contributed ∼3 spectra, and the
spectra collected within a normal tissue specimen were less but
observed to be more consistent within a sample, statistically the
bias due to this spectrum-based method is believed to be limited.
The case-based or patient-based analyses will be performed to
verify the statistical results in the future study.

In conclusion, our analyses based on the measured VRR
spectral data revealed that the major molecular biomarkers,
including carotenoids, tryptophan, amides, proteins, and lipids,
are activated components that are involved in biological meta-
bolic processes in human brain tissues and can be used to create
an optical molecular pathology method. A set of criteria for
differentiating normal human brain tissues from normal control
tissues was created and used to identify brain cancer margins,
yielding a diagnostic sensitivity of 100% and specificity of 71%
for distinguishing the negative cancer margins from normal tis-
sues when compared with the regular pathologically examined
results by chemical reagents (the “gold standard”). More details
about the study can be found in Ref. 99. The results may be used
to develop a new fiber optic navigator for in vivo diagnosis
of brain cancers and cancer margins that combines all VRR
molecular spectral biomarkers.

4 Methods

4.1 Materials and Experiments

There are more than 125 histologically different types of brain
and CNS tumors that are usually categorized as a primary brain
tumor of a high grade (rapidly growing) or low grade (slow
growing) and metastatic or secondary brain tumor (the cancer
began in another part of the body and spread to the brain).

In this report, we studied primary glioma brain tumors. VRR
spectra were measured from normal human brain tissues and
glioma tissues including glioblastoma and astrocytoma ex vivo.
The label-free RR spectral data reported in this paper were mea-
sured from the year of 2011 to 2018. The measurements were
performed using a confocal micro-Raman spectrometer with an
excitation wavelength of 532 nm over a spectral scan region of
500 to 3500 cm−1. Five hundred and ten RR spectra were
collected from one hundred and twenty-one subjects, including
healthy brain tissue, normal control tissues (the negative margin
of brain cancer tissues), and glioma tumors at low grades (I and
II) and high grades (grade III including grade II-III, and grade IV
including grade III-IV). For glioma tumor specimens, ∼3 to 5
spectra were collected from each sample; for normal tissue spec-
imens, less spectra were collected since the spectra from normal
samples seem to be more consistent. The types and levels of
all of the samples were examined according to the WHO stan-
dard (the gold standard) by regular histopathological analysis
methods.

4.2 Sample Preparation

The tissue specimens were provided by the Air Force Medical
Center in Beijing, China. Glioma grading was performed
according to the standard WHO classification system.

There were no human participants in this study. All the sam-
ples used in this study were deidentified. Therefore, this study

Fig. 5 A scatter plot of the scores of PC2 versus PC1 of normal
versus grades I and II glioma samples versus grades III and IV glioma
samples along with the linear SVM classifiers. The entire two-
dimensional space is divided into three regions as labeled.
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did not involve any personal or other identifying information,
and this report does not include any identifying information.
The experiments were approved by the committee of the Air
Force Medical Center in Beijing, China. All irregularly shaped
specimens were uncut and stored at −80°C in snap freezing.
Specimens were not chemically treated prior to the spectro-
scopic studies. Most specimens were measured within 36-h
postsurgery. Before experiments, specimens were thawed to
ambient temperature. Then they were put on a quartz plate for
Raman spectroscopic measurements.

4.3 RR Spectral Measurement

During a measurement, RR spectra were collected from multiple
points in a region of interest from the center to both edges on one
side of the sample with a step size of 1 to 2 mm. The spectra
were measured and investigated for the spectral changes around
the margin.26

The main instrument used to acquire the RR spectral data
was HORIBA Jobin Yvon (JY HR-800, France) confocal
micro-Raman spectrometer. The instrument was equipped with
a single-channel modular Raman system and a confocal micro-
scope using a 50× objective lens. This Raman system is similar
to those described in our previous publications.23 It uses a 532-
nm single-mode solid-state Coherent Verdi-2 Nd:YAG laser
(Coherent Company, Santa Clara, California) for excitation.
The maximum output power of the laser was 50 mW. In the
experiments, the laser beam was focused onto the surface of the
sample with a spot size of ∼2 μm in diameter and its power was
kept at 1.0 mW. The typical acquisition time was 30 s for each
spot. Other signal acquisition times such as 1, 5, and 15 s were
also tested in order to compare the signal-to-noise ratio and sen-
sitivity among different Raman systems in our laboratory and to
evaluate the robustness of the VRR technique (results not
included in this report). All spectra were collected at the room
temperature with a spectral resolution of 2 cm−1 in the range of
interest, i.e., from 400 to 4000 cm−1. For inspection and con-
firmation of the VRR database, we also studied 26 tumors,
including 6 pieces of grade II glioma samples, 7 pieces of grade
II-III glioma samples and 13 pieces of grade III-IV glioma spec-
imens, using a WITec 300R confocal micro-Raman system100

and an in-house developed micro-Raman system equipped
with a liquid-nitrogen cooled CCD (Pylon:100B, Princeton
Instruments) with a spectral resolution of ∼1.0 cm−1.101 The
three RR systems have spectral resolutions in the range of
0.4 to 2 cm−1. The RR spectral peak positions of biomarkers
maintained high consistency within the system resolution, sug-
gesting that calibrations of the three Raman systems prior to the
experiments were accurate, and the possibility of peak shifts
caused by measurement errors or environmental factors can be
neglected.

4.4 PCA-SVM

Before the use of the statistical model, the spectral data were
preprocessed with baseline removal. The baseline of each raw
Raman spectrum was fitted with a polynomial using an asym-
metric Huber function as the cost function.102 The difference
between the raw spectrum and the baseline was calculated.
Each baseline-subtracted Raman spectrum was then normalized
using its Euclidean norm and was used for subsequent analysis.

The normalized baseline-subtracted Raman spectra were
analyzed using PCA.103 PCA finds the uncorrelated components

that explain the most variance in the signal. PCA has been
widely used in various applications, such as spectroscopy,104

face recognition,105 and optical imaging.106 Mathematically,
PCA solves an eigenvalue equation and finds a set of orthonor-
mal eigenvectors corresponding to eigenvalues that are the var-
iances. The Raman spectral data are contained in a matrix XM×N ,
whereM is the number of wavenumbers and N is the number of
spectra or samples (assumingM > N). PCA considers the spec-
trum xi to be a linear combination of eigenspectra fwjg with
coefficients fhjig, i.e.,

EQ-TARGET;temp:intralink-;sec4.4;326;642XM×N ≈WM×NHN×N;

where X ¼ ðx1; x2; : : : ; xi; : : : ; xNÞ, columns of WM×N ¼
ðw1; w2; : : : ; wj; : : : wNÞ are also called principal component
(PC) loadings, and columns of H are PC scores corresponding
to different spectra. To calculate the PCs, the data matrix is
“mean centered” first, i.e., the mean of each row is calculated
and subtracted off that row. The “mean-centered” data matrix is
X 0. Then an eigenvalue equation of the covariance matrix of X 0

is solved to find the eigenvectors with corresponding eigenval-
ues. The eigenvectors are the PC loadings, and the eigenvalues
are the variances explained by the corresponding PCs. In prac-
tice, this can be solved using singular value decomposition107 of
the data matrix X 0, i.e., X 0 ¼ UΣVT , where U and V are the left
and right singular vectors, respectively, and σi ¼ diagfΣg are
the singular values. Columns of UM×N are taken to be the
PC loadings, i.e.,W ¼ U, eigenvalues λi ¼ σ2i ,H ¼ pinvðWÞX,
where pinvðWÞ ¼ ðWTWÞ−1WT . The PC scores contained in H
are essentially the projections of the spectral data in matrix X
onto the PCs. Columns of H correspond to different spectra.
Each spectrum has a set of scores, which are essentially coef-
ficients for the linear combination of PCs. These scores can be
considered the characteristic information of the spectra (sam-
ples) and used for diagnosis. Alternatively, PC scores obtained
from the mean-centered data matrix can also be used, and they
are simply different from those obtained from the raw data
matrix with a shift in the origin.

The PC scores of different spectra (samples) were considered
characteristic features of the spectra (samples) and used for clas-
sification after standardization. The scores were standardized for
each spectrum using the following formula: (score − score
mean)/score standard deviation. An SVM108–110 with a linear
kernel was then used for classification using the standardized
features. In general, SVM attempts to find a hyper plane (a
boundary line in two dimension) to separate two classes with
the largest distance from the nearest class members (data
points), which are called support vectors. Once the SVM clas-
sifier is trained, it is tested for classification using all of the data
points, which is called resubstitution validation. Various combi-
nations of features were tested for classification. Because the
contributions due to higher-order PCs significantly decrease
according to eigenvalues, only a limited number of PCs need
to be evaluated and compared. A more careful optimal feature
selection method can be used and is presented elsewhere.110 The
classification performance of the SVM classifier was evaluated
using statistical measures, including sensitivity, specificity, and
accuracy,111 along with the ROC curve.112 To plot the ROC
curve for the SVM classifier, the positive class (cancer) posterior
probability (a data point classified into positive class) for each
data point was calculated using the sigmoid function to map the
SVM scores, which are the distances from the data points to the
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SVM separation line.113 Then the posterior probabilities were
used to calculate the true positive rate (i.e., sensitivity) and false
positive rate (i.e., 1 − specificity) by varying the threshold and
generating the ROC curve. The area under the ROC curve112,114

was calculated to show the performance of the classifier. To
reduce bias in classification, LOOCV115 was used to re-evaluate
the classification performance. To perform LOOCV, each time
one individual data point, i.e., a set of features corresponding
to a spectrum, was removed from the dataset. The rest of the
dataset was used to train an SVM classifier. The removed data
point was then classified using the classifier for testing. This
process was repeated for all data points. In the end, sensitivity,
specificity, and accuracy were calculated based on the results
of all tests as an overall evaluation of the classification perfor-
mance. All of the computations for PCA-SVM were performed
in MATLAB.
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