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Abstract

Significance: It is commonly assumed that using the objective lens to create a tightly focused
light spot for illumination provides a twofold resolution improvement over the Rayleigh reso-
lution limit and that resolution improvement is independent of object properties. Nevertheless,
such an assumption has not been carefully examined. We examine this assumption by analyzing
the performance of two super-resolution methods, known as image scanning microscopy (ISM)
and illumination-enhanced sparsity (IES).

Aim: We aim to identify the fundamental differences between the two methods, and to provide
examples that help researchers determine which method to utilize for different imaging
conditions.

Approach: We input the same image datasets into the two methods and analyze their restora-
tions. In numerical simulations, we design objects of distinct brightness and sparsity levels for
imaging. We use biological imaging experiments to verify the simulation results.

Results: The resolution of IES often exceeds twice the Rayleigh resolution limit when imaging
sparse objects. A decrease in object sparsity negatively affects the resolution improvement in
both methods.

Conclusions: The IES method is superior for imaging sparse objects with its main features being
bright and small against a dark, large background. For objects that are largely bright with small
dark features, the ISM method is favorable.
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1 Introduction

Using a tightly focused light spot for illumination has been one of the most significant advance-
ments in the history of optical microscopy. Since the mid-20th century, this technique has
brought about the invention1 and the reinvention2 of confocal microscopy, while also introducing
new microscopes that instantly acquire digital images with adjustable pixel sizes and pixel
numbers.3 Based on these new microscope designs, many novel scientific tools have emerged
and enabled ground-breaking discoveries, including fluorescence correlation spectroscopy,4,5

optical coherence tomography,6 and super-resolution microscopy.7,8 In the past few years, much
attention has been drawn to a particular reinvented confocal imaging technique9 called image
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scanning microscopy (ISM),10 due to its extraordinary photon efficiency as well as its confocal
super-resolution effect.11

The original ISM method uses the objective lens to create a tightly focused illumination spot,
steps this spot across the object, and acquires one descanned image at each step.10 For images
acquired without a descan arrangement, each acquired image is cropped with respect to its illu-
mination spot position.12 For these descanned or cropped images, each pixel is considered equiv-
alent to a pinhole detection in a confocal microscope and is reassigned to create a particular
confocal image [Fig. 1(a)]. Consequently, many confocal images are generated from a complete
lateral scan.

In particular, it has been shown that these confocal images are laterally displaced versions of
one another.9,11 With appropriate alignment, these confocal images can be summed to increase the
signal-to-noise ratio (SNR) while maintaining the superior lateral resolution of a small-pinhole
confocal detection. In terms of lateral resolution, the effective point spread function (PSF) of
an ISM image can be derived by spatially multiplying the illumination PSF and the detection
PSF of the optical system, which makes the effective PSF of ISM sharper than the detection
PSF by a factor of ∼

ffiffiffi
2

p
or ∼1.4 [Fig. 1(b)].9 We can also observe such a resolution improvement

in the optical transfer function (OTF), i.e., the Fourier transform of the intensity PSF.13 Although
the PSF multiplication described above makes the ISM OTF cutoff frequency nearly twice as large
as the detection OTF cutoff frequency,9,10 the strength for spatial frequency higher than 1.4d−1R is
very weak [Fig. 1(c)] and therefore can be lost with the presence of various noise sources. In other
words, the ISM image obtained from the pixel reassignment procedure visually exhibits a ∼1.4-
fold resolution enhancement over the Rayleigh resolution limit,9 and to fully retrieve the infor-
mation within the doubled OTF cutoff frequency requires additional deconvolution approaches,
such as Wiener deconvolution10 or non-negative least-squares (NNLS) deconvolution.12,14

Interestingly, although the twofold resolution improvement is often regarded as one of the
most important features of ISM,10,15 it has been demonstrated in much earlier studies that more
than twice the Rayleigh resolution limit can be achieved by applying certain nonlinear

(a)

(b) (c)

Fig. 1 (a) Workflows of the ISM and IES methods. (b) PSF and (c) OTF plots for the ISM images
(dashed lines) and the detection part of the optical system (solid lines). dR is the Rayleigh
resolution distance, estimated as 0.6λ∕NA, where λ is the light wavelength and NA is the optical
system numerical aperture.
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deconvolution algorithms directly to the conventional widefield images. For instance, Frieden
et al. experimentally demonstrate that a two-line object with a gap of one third of the Rayleigh
resolution limit can be correctly resolved using a positively constrained deconvolution
algorithm.16 Donoho et al.17 argued that the object sparsity (referred to as near-blackness in their
work) is critical to such resolution enhancement and derived that the resolution enhancement
increases with the object sparsity. Donoho et al. quantified object sparsity as, for a discrete
numerical object, the ratio of the number of its near-zero elements to the number of its total
elements. We note that such a definition considers only how many “bright” elements there are,
ignoring their geometrical arrangement. More importantly, as shown in these earlier studies,
when the object sparsity is critical to resolution enhancement, the deconvolution algorithms
in use do not implement a mathematical constraint to favor sparse solutions.16,17

Based on such sparsity-associated resolution enhancement, the authors recently proposed
utilizing focused-spot illumination to physically enhance object sparsity and demonstrated
substantial resolution enhancement through image deconvolution without implementing any
sparsity constraint.18 This illumination-enhanced sparsity (IES) method enhances object sparsity
by creating a tightly focused illumination spot through the objective lens and images a small spot
at each position during scanning, as is done in ISM [Fig. 1(a)]. Therefore, for each acquired
image, the object is nearly black outside of the illumination spot. The acquired images are
cropped with respect to the illumination spot positions and individually deconvolved with
an NNLS algorithm to create individual restorations. In the end, the individual restorations are
shifted to their corresponding positions in the object space and integrated to create a complete
restoration of the object [Fig. 1(a)]. The NNLS algorithm used for deconvolution assumes only a
physical property that the fluorescent photons emitted from the object are spatially incoherent,
meaning that the signals from different emitters add linearly when detected by a camera, and all
elements in the object are non-negative. As mentioned above, the deconvolution algorithm does
not implement a sparsity constraint and assumes no knowledge about the illumination. It is
experimentally demonstrated that the IES method can achieve more than twofold resolution
improvement over the Rayleigh resolution limit.18

Considering the observations and derivations in previous reports,16,17 it is natural to predict
that the signal level and object sparsity will affect the resolution enhancement in IES because of
its usage of non-negatively constrained deconvolution algorithms. Intriguingly, as mentioned
earlier, many ISM realizations also utilize non-negatively constrained deconvolution algorithms
such as NNLS deconvolution12,14 to achieve beyond the ∼1.4-fold resolution enhancement
gained from pixel reassignment. Therefore, it is also reasonable to expect a decrease in ISM
resolution when the image SNR or object sparsity drops.

However, it is often assumed or stated in research articles12,14,19,20 as well as in commercial
product descriptions15 that ISM can always achieve the maximal twofold resolution enhance-
ment without accounting for any other imaging factors. As such, we find it worthwhile to fully
investigate the accuracy of this conventional wisdom. In addition, how these two super-
resolution methods respond to factors such as the image SNR and object sparsity, which can
vary greatly in different biomedical imaging scenarios, has not yet been carefully examined.

The goals of this paper are therefore to evaluate and compare the resolution enhancement and
restoration quality of the ISM and IES methods as we manipulate the image SNR and object
sparsity. For fair comparisons, we generate the same image datasets from a series of computa-
tional simulations and a biological imaging experiment and feed them to the ISM and IES meth-
ods. In the following sections, we describe how the image datasets are generated and compare
the restorations of the two methods.

2 Formulation of Numerical Simulation

It is technically challenging to use experimentally collected image data for comparing the
two super-resolution methods with controlled object factors. This is because manufacturing
precise fluorescent objects that are sufficiently stable to endure repetitive imaging under
various conditions without significant signal decay can be very complicated and expensive.
Consequently, we find it more economic and accurate to numerically generate synthetic image
data for comparisons.
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2.1 Generating Synthetic Image Data

We start formulating the synthetic data generation by considering noiseless image formation in a
1:1 conventional widefield imaging system, where the noiseless image Inoiseless imgðsÞ can be
derived as

EQ-TARGET;temp:intralink-;e001;116;680Inoiseless imgðsÞ ¼ IPSFðsÞ ⊗ ½IillmðsÞ · IobjðsÞ�: (1)

Here s is a two-dimensional vector ðsx; syÞ representing the lateral coordinates on the image
or object plane, IPSF is the detection PSF of the optical system, ⊗ is the convolution operation,
Iillm is the illumination function, · is the inner product operation, and Iobj is the object.

The image acquisition in ISM and IES consists of stepping the illumination spot across the
object; therefore, the k’th acquired image Ik−imgðsÞ is, considering photon shot noise,

EQ-TARGET;temp:intralink-;e002;116;582Ik-imgðsÞ ¼ PoissfIPSFðsÞ ⊗ ½Ik-illmðsÞ · IobjðsÞ�g: (2)

Here Ik-illm is the k’th illumination function of the optical system; Poissð·Þ generates a
Poisson random number for each input element, with the mean equal to the element value.
We do not include the camera readout noise in Eq. (2) because the readout noise in high-
sensitivity cameras used for advanced fluorescence microscopy is typically much smaller than
the photon shot noise. For numerical computation, we formulate Eq. (2) as

EQ-TARGET;temp:intralink-;e003;116;487Îk-img ¼ Poiss½ĤPSF × ðÎk-illm · ÎobjÞ�; (3)

where column vectors Îk-img, Îk-illm, and Îobj are discrete and vectorized Ik-imgðsÞ, Ik-illmðsÞ, and
IobjðsÞ, respectively. Here × is the matrix product operation and ĤPSF is a matrix with its j’th
column being a vectorized detection PSF centered at position sj. For the simulations presented in
this work, we set both the camera pixel size and the scanning step size to be a fourth of the
Rayleigh resolution distance or dR, which is estimated as 0.6λ∕NA, where λ is the fluorescence
emission wavelength and NA is the detection numerical aperture of the optical system.

After the acquired images are generated, we crop each with respect to its illumination
position, such that the illumination is effectively placed in the center of the cropped image
Ik-img crop. This can be formulated as

EQ-TARGET;temp:intralink-;e004;116;338Ik-img cropðs 0Þ ¼ Ik-imgðs 0 þ vkÞ; for js 0xj ≤
l
2
; js 0yj ≤

l
2
: (4)

Here vk is the central position of the k’th illumination function and l is the size of the cropped
images, set as 8dR in our simulations. We then use the ISM and IES methods individually to
process these cropped images.

2.2 Image Processing

2.2.1 ISM method

In ISM, the pixels in the cropped images are considered equivalent to individual confocal detec-
tors. Therefore, we reassign the pixel at s 0α in Ik-img crop to vk in a new confocal image Iα-CFimg,
such that

EQ-TARGET;temp:intralink-;e005;116;162Iα-CFimgðvkÞ ¼ Ik-img cropðs 0αÞ: (5)

In particular, we only reassign pixels within an Airy unit in the cropped images, meaning that
we require js 0αj ≤ dR for the pixels to be reassigned. The effective PSFs for pixels outside of this
range become irregular and are no longer ideal for confocal imaging. For the α’th reassigned
confocal image Iα-CFimg, it can be shown that it has a spatial shift of ∼ − s 0α∕2 relative to the
confocal image formed by the central pixel in the cropped images.9,11 This allows us to align
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these confocal images with appropriate counter shifts and integrate them to create a high-SNR
ISM image IISMimg as

EQ-TARGET;temp:intralink-;e006;116;711IISMimgðvkÞ ¼
X
α

Iα-CFimg

�
vk −

s 0α
2

�
: (6)

The numerical computation for Eq. (6) requires interpolation because ðvk − s 0α
2
Þ sometimes

locates in the middle of actual data points. We use MATLAB’s interp2 and its “cubic”method for
such interpolation.

As mentioned, many ISM realizations further utilize deconvolution methods to fully exploit
the expanded OTF; these methods include Wiener deconvolution,10,21 Richardson–Lucy decon-
volution,22 and NNLS deconvolution.12,14,23,24 For our ISM restorations, we perform all three
deconvolution methods on IISMimg and find that each of the methods has its own strengths.
Figure S1 in the Supplementary Material shows a comparison among the three methods. In gen-
eral, we find that the results from NNLS deconvolution are consistently in good quality across all
of the different test objects and that its software does not require judicious parameter settings by
experienced microscopists (Sec. 1 and Fig. S2 in the Supplementary Material). Consequently,
in the main figures in this paper, we only present results from the NNLS deconvolution.
The software we use to perform NNLS deconvolution on IISMimg is an ImageJ plugin for
iterative deconvolution,23 which is used in the ISM realizations developed by York et al.12 and
Azuma and Kei.14 In all presented simulations, we use the “WPL” method, which is an NNLS
solver preconditioned by a Wiener filter,24 along with the same other settings and the default
stopping conditions as in the previous works.

For all three deconvolution methods, the PSF is a required input, and we note that the effec-
tive PSF for IISMimg is no longer the detection PSF of the optical system. As mentioned earlier,
we can obtain the effective PSFs for IISMimg by multiplying the illumination and detection
PSFs.9,11 Alternatively, we can obtain the effective ISM PSF by performing the calculation from
Eq. (3) through Eq. (6) assuming the object Iobj is a single dot (i.e., all but one of the elements in
Îobj are zero), with the Poisson operation in Eq. (3) removed. We implemented both methods and
verified that they give identical PSFs.

2.3 IES Method

In IES, we feed each of the cropped images to NNLS deconvolution individually [Fig. 1(a)].
The NNLS deconvolution finds a minimum for the following problem:

EQ-TARGET;temp:intralink-;e007;116;305min
Îk-IES

kĤPSF × Îk−IES − Îk−img cropk2; subject to Îk-IES ≥ 0 (7)

and returns Îk-IES as the vectorized restoration for the k’th cropped image. The inequality is taken
component-wise, and k · k is the Euclidean norm (sum-of-squares). We note that the PSF matrix
ĤPSF here is derived directly from the detection PSF of the optical system. In all of the sim-
ulations presented in this paper, we use MATLAB’s quadprog with its “interior-point-convex”
method and default stopping conditions for the NNLS deconvolution.

After all of the individual restorations are generated, we uncrop each restoration by position-
ing the individual restoration to its original crop location in Ik-img and then integrate all of the
uncropped individual restorations to obtain the complete IES restoration, or IIES, such that

EQ-TARGET;temp:intralink-;e008;116;164IIESðsÞ ¼
X

k;
jvkx−sx j≤l2&
jvky−sy j≤l2

Ik-IESðs − vkÞ: (8)

Here Ik-IES is the individual NNLS restoration for the k’th cropped image.
In terms of the computation time for image deconvolution, the ISMmethod typically requires

less than a second on a personal computer for images acquired from 100 × 100 scanning steps.
This can be further accelerated for real-time display on a dedicated computer. For the same
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amount of image data, the computation time of the IES method can range from several seconds to
a few hours, depending on the NNLS algorithm and the hardware architecture in use.

3 Results

Using the synthetic image data generated by the above simulations, we compare the restorations
of the two methods as we vary the image SNR (Fig. 2) and object sparsity (Fig. 3). We further
examine the robustness of the two methods by imaging objects of arbitrary shapes (Fig. 4) and
a biological sample (Fig. 5).

3.1 Resolution Enhancement versus Image SNR

To the best of our knowledge, there has been no previous report on whether or not the twofold
resolution enhancement of ISM depends on the SNR of the acquired images. For the IES
method, by contrast, Donoho et al. argued that, as long as the image SNR is sufficient, objects
of high sparsity can always be resolved by NNLS deconvolution, although the required SNR
may be prohibitively high in practice.17 Such an argument predicts that certain objects unre-
solved at low SNRs may become resolved at high SNRs.

Figures 2(a) and 2(b) show two series of ISM and IES restorations with the image SNR equal
to 10, 20, and 30 dB. The two lines in the object are separated by 0.5dR in Fig. 2(a) and 0.33dR in
Fig. 2(b). Because the SNR for a given Poisson random variable is the square root of its mean,
we define the image SNR of a synthetic image dataset as

EQ-TARGET;temp:intralink-;e009;116;468SNR ¼ 10 log10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½ðM1;M2; : : : ;MnÞ�

p
dB; where Mk ¼ maxðÎk−noiseless imgÞ: (9)

Here max½·� is a function that returns the maximum element value in a vector, n is the total

number of scanning steps, and Îk-noiseless img is the vectorized noiseless image for the k’th scan-
ning step. For each of the separation distances, we also show a plot of restoration visibility versus
the image SNR. We define the restoration visibility in a similar manner as the fringe visibility in
interferometry to measure how well the objects are restored [Fig. 2(c)].

In Figs. 2(a) and 2(b), we indeed observe that the ISM resolution reaches a twofold resolution
enhancement over the Rayleigh resolution limit and not beyond. The IES method, by contrast,
is able to resolve the two-line object of a 0.33dR separation, which requires at least threefold
resolution enhancement over the Rayleigh resolution limit to resolve. Our further simulations
show that the IES method can resolve a 0.17dR separation with a ∼0.5 visibility at a 30-dB SNR
(data not shown).

In the visibility-SNR plots in Figs. 2(a) and 2(b), the ISM restoration visibility shows little
change as the SNR increases. For example, for the two-line object of a 0.5dR separation, the ISM
restoration visibility improves just 3% as we increase the SNR from 10 to 30 dB. In contrast, the
IES restoration visibility improves significantly as the SNR increases. Similar trends are also
observed when we further shorten the separation distance to 0.25dR and 0.17dR (data not
shown). Such an observation agrees with the prediction in the report of Donoho et al. that when
the object is sparse enough, it can be resolved by the NNLS deconvolution as long as the image
SNR is sufficiently high.17

For most fluorescent samples, the fluorophore labeling density fluctuates at a certain degree;
therefore, the fluorescence intensity on the object structures is not a constant. To examine
whether the restoration visibility of two methods is affected with the presence of such intensity
variation, we further simulate the restorations where the object line intensity varies at different
degrees (Sec. 2 and Fig. S3 in the Supplementary Material).

3.2 Resolution Enhancement versus Object Sparsity

We next turn to the effect of object sparsity. To examine how the object sparsity affects the
restorations of the two methods, we manipulate the object sparsity by designating different num-
bers of lines in the objects with a fixed separation distance between them.
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Figure 3(a) shows ISM and IES restorations from objects that have two to six lines, with a
0.5dR separation distance and a 20-dB image SNR. To visualize the spatial variation of object

sparsity, we plot a local sparsity map for each object. Here we define the local sparsity Îsparsity at
position si in the object as the fraction of nearly black elements within a range of a radius dR
surrounding the position [Fig. 3(c)]. This can be written as

EQ-TARGET;temp:intralink-;e010;116;160Îsparsityi ¼
P

j;jsi−sjj≤dRBjP
j;jsi−sjj≤dR

1
; Bj ¼

�
1; if Îobjj < 0.01 maxðÎobjÞ
0; otherwise

. (10)

Figure 3(a) shows that the the ISM restoration quality gradually drops as the number of lines
increases, inconsistent with the common assumption that the twofold resolution enhancement of
ISM is independent of object sparsity. For the six-line object, although ISM vaguely resolves the

(a)

(b)

(c)

Fig. 2 ISM and IES restorations at various SNRs. (a) Representative restorations for two lines at a
0.5dR separation and a visibility-SNR plot. Each data point in the plot is the mean of nine inde-
pendent trials. (b) The representative restorations and visibility-SNR plot for a 0.33dR separation.
(c) Definition of restoration visibility: the mean value of the pixels overlapping with the bright lines in
the object divided by the mean value of the pixels overlapping with the gap(s) in between bright
lines in the object. We set 0.1 visibility as the resolution criterion, which is the approximate visibility
when two lines are separated by dR in conventional widefield imaging.
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gaps between the lines, it is difficult to determine whether the restoration shows a solid bright
rectangle or separated lines without knowing the object composition in advance. To ensure that
the visual trend we observe here is systematic, we repeat the simulation 9 times for each object
and plot the mean visibility of these nine independent trials versus the number of object lines in
Fig. 3(b). The visibility plot suggests that the NNLS deconvolution in the ISM method is indeed
sensitive to the decrease in object sparsity. This trend is also observed when we use Richardson–
Lucy deconvolution for ISM [Fig. S1(b) in the Supplementary Material].

For the IES restorations, as we predict, we see a similar trend of declining restoration
visibility as in the ISM restorations. In further simulations at a 20-dB image SNR, we find that
the IES method can resolve only up to three lines of a 0.33dR separation and only up to two lines
of a 0.25dR separation (data not shown). In addition, we find that similar trends of declining
visibility can be observed in other geometrical structures (Fig. S4 in the Supplementary
Material). We also examine the effect of sparsity decrease caused by the presence of a fluorescent
background, which occurs frequently in biological fluorescence microscopy, and show that it
deteriorates the restoration visibility in both ISM and IES methods (Fig. S5 in the Supplementary
Material).

(b)

(a)

(c)

Fig. 3 (a) Representative ISM and IES restorations and (b) restoration visibility for objects of vari-
ous numbers of lines at 0.5dR separations. All simulations assume a 20-dB image SNR. Each
visibility data point is the mean of nine independent trials. (c) Illustration of the local sparsity
definition.
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3.3 Robustness of Resolution Enhancement for Arbitrary Objects

We further examine the super-resolution capability of the ISM and IES methods in a more
realistic setting where the objects are in arbitrary shapes. Figure 4(a) shows the restorations of
an object consisting of four nonsparse patterns with their distinctive features defined by a small
number of nearly black pixels in regions where the local sparsity is close to zero. In this case,
the ISM restoration faithfully preserves many of the dark features in the object, whereas the
IES restoration shows strong intensity fluctuations in areas where the object is uniformly bright.
Such an artifact in the IES restoration makes the dark features in the object patterns almost
invisible.

Figure 4(b) shows the restorations of a clock-pattern object with its features being, in con-
trast, decided by a few bright pixels. Although the distance between the hour markings and
the clock frame is ∼0.5dR, we find that the ISM restoration fails to resolve these gaps clearly.
In addition, the ISM restoration falsely creates a dim but visible inner circle connecting all of the
hour markings, which in turn makes the restoration visually resemble a rotary dial (of antique
telephones) instead of a clock. In the IES restoration in Fig. 4(b), we again observe intensity
fluctuations, which is likely responsible for the broken minute hand in the restoration. Aside
from this, the IES restoration faithfully preserves the hour markings and the clock frame; there-
fore, we can easily recognize the clock pattern in the restoration.

(a)

(b)

Fig. 4 ISM and IES restorations of arbitrary objects consisting of (a) nonsparse patterns and
(b) a sparse pattern. Arrows in the IES restoration in (a) indicate the dark features that are poorly
resolved.
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3.4 Fluorescence Imaging of a Biological Sample

Finally, we image a fluorescent biological sample to examine whether our simulation results are
valid in real-world imaging experiments. In such experiments, it is technically challenging to
obtain exact Iobj, without which the restoration comparison can be highly subjective. To over-
come this issue, we collect focused-spot illuminated images with a moderate NA (∼0.5) objec-
tive lens for ISM and IES restorations and use a much higher NA (∼1.4) objective lens to acquire
a widefield image at the same location on the sample [Figs. 5(a) and 5(b)]. Here the NA1.4
widefield image serves as a super-resolving reference that has a resolution of more than twice
the NA0.5 Rayleigh resolution limit. At a ∼600-nm emission wavelength, dR for NA0.5 imaging
is ∼0.8 μm.

The biological sample in use is a commercially available fixed slide (FluoCell Prepared Slide
#1, Thermo Fisher Scientific) for general observation purposes by fluorescence microscopy. The
imaged fluorophore is MitoTracker Red CMXRos, labeling mitochondria in bovine pulmonary
artery endothelial (BPAE) cells. We describe and illustrate the optical system used for image
acquisition in Sec. 5 and Fig. S6 in the Supplementary Material.

(a)

(b)

(c)

Fig. 5 Biological fluorescence imaging of BPAE cells. The object consists of fluorescently labeled
mitochondria, with ∼600 nm emission wavelengths. (a) NA0.5 conventional widefield image,
zoom-in restorations in white boxes 1 and 2, and NA1.4 conventional widefield images. dR for
the NA0.5 imaging is ∼0.8 μm. (b) Intensity line plots for linear regions indicated by the pairs
of arrows in (a). (c) Another region of the same sample imaged with an NA1.4 objective and
the corresponding ISM and IES restorations.
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In Fig. 5(a), the ISM restoration indeed shows substantial resolution improvement compared
with the NA0.5 conventional widefield image, although certain details seen in the NA1.4 wide-
field image are not correctly resolved. The IES method, in contrast, shows a restoration almost
identical to the NA1.4 widefield image. Figure 5(b) shows two intensity profile line plots taken
across the regions indicated in the enlarged illustrations in Fig. 5(a) to confirm the quantitative
accuracy of the IES restoration. The comparison of the two methods in Fig. 5(a) is consistent
with the simulation results in Fig. 3(a), where the IES method produces more accurate restora-
tions for objects of both high sparsity (e.g., two lines) and reduced sparsity (e.g., three to
six lines).

Figure 5(c) shows the results of imaging this biological sample with an NA1.4 objective and
focused-spot illumination. As observed in the case of NA 0.5, the ISM restoration shows sub-
stantial resolution improvement over the widefield image. The IES restoration further improves
the resolution such that the internal compartments of the mitochondria are clearly resolved.

4 Discussions and Conclusions

Our work distinguishes two super-resolution methods that utilize the same image datasets
acquired with focused-spot illumination. We demonstrate that their super-resolving restorations
show significant differences in their maximum achievable resolution. In particular, we point out
that the OTF expansion created by pixel reassignment in the ISM method is not necessarily an
efficient approach to maximizing achievable resolution. It is worthwhile to note that this finding
is in agreement with two previous reports on the deconvolution approaches for images acquired
with focused-spot illumination.19,20 In both reports, all acquired images are deconvolved together
using a generalized Richardson–Lucy deconvolution algorithm, without going through the pixel
reassignment for OTF expansion, and it is shown that the results are at least equivalent to the ISM
restorations.

In this report, for simplicity, we manipulate object sparsity by adding more structures or a
uniform background into the object. In many biomedical applications, the object sparsity can
also be affected by other factors, such as unspecific staining, photobleaching, and fluorophore
blinking. In addition, object sparsity can be manipulated by stimulated emission or optical
switching applied to switchable fluorescent probes. We believe that both the ISM and IES meth-
ods are subject to these factors and manipulations in terms of resolution enhancement,
and we hope to investigate their individual and combined effects in future studies based on the
methodology developed in this work.

Although we consider only the case of 2D imaging in this paper, we are currently investigat-
ing the super-resolution characteristics of the ISM and IES methods in three dimensions, as both
methods can perform 3D imaging by utilizing 3D deconvolution. For the IES method, in par-
ticular, because the detection PSF of the optical system is nearly symmetrical along the depth
dimension, at least two images, separated in depth, have to be taken at each illumination spot
position. Such a requirement is analogous to using multifocal plane imaging for 3D particle
tracking.25 An alternative strategy is to create an axially asymmetrical detection PSF via intro-
ducing a small amount of geometric aberration into the detection part of the optical system. This
will then allow 3D deconvolution of a single image at each illumination spot position and is
analogous to implementing PSF engineering for 3D localization microscopy.26,27 We hope to
present our findings in 3D imaging in the near future.

To conclude, we find that the IES method is superior for imaging sparse objects, especially
objects with main features being bright and small against a dark, large background. In such
cases, IES restorations can often achieve resolution substantially higher than twice the
Rayleigh resolution limit. We demonstrate that both the ISM and IES methods are negatively
affected by the decrease in object sparsity, and we show the different artifacts that they create
when imaging objects of arbitrary shapes. For objects that are largely bright with small dark
features, the ISM method is favorable because the intensity fluctuation artifact in IES restora-
tions can make the small dark features invisible. Since the two methods use the same data and
differ only in postprocessing, in some cases it may be beneficial for researchers to implement
both, particularly when it is suspected that the object has dark features in nonsparse regions.

Yu et al.: Analyzing the super-resolution characteristics of focused-spot illumination. . .

Journal of Biomedical Optics 056501-11 May 2020 • Vol. 25(5)



Disclosures

The authors declare no conflicts of interest and have no relevant financial interests in this
manuscript.

Acknowledgments

This work was supported by the U.S. National Science Foundation (Award No. 1353444) and
Colorado Advanced Industries Accelerator Grant.

References

1. M. Minsky, “Microscopy apparatus,”U.S. Patent No. 3,013,467, United States Patent Office
(1961).

2. B. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high
aperture immersion lens,” J. Microsc. 117, 219–232 (1979).

3. W.-E. Kalisch, T. Whitmore, and A. Siegel, “Laser scanning microscopy of surface spread
polytene chromosomes,” J. Microsc. 137, 217–224 (1985).

4. D. E. Koppel et al., “Dynamics of fluorescence marker concentration as a probe of mobility,”
Biophys. J. 16, 1315–1329 (1976).

5. H. Qian and E. L. Elson, “Analysis of confocal laser-microscope optics for 3-D fluorescence
correlation spectroscopy,” Appl. Opt. 30, 1185–1195 (1991).

6. D. Huang et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
7. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emis-

sion: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782
(1994).

8. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,”
Opt. Lett. 24, 954–956 (1999).

9. C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik 80(2), 53–54 (1988).
10. C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101

(2010).
11. C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning

microscopy using pixel reassignment,” Opt. Lett. 38, 2889–2892 (2013).
12. A. G. York et al., “Resolution doubling in live, multicellular organisms via multifocal

structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
13. J. W. Goodman, Introduction to Fourier Optics, Roberts and Company, Greenwood Village

(2005).
14. T. Azuma and T. Kei, “Super-resolution spinning-disk confocal microscopy using optical

photon reassignment,” Opt. Express 23, 15003 (2015).
15. J. Huff et al., “The new 2D superresolution mode for ZEISS Airyscan,” Nat. Methods

14, 1223 (2017).
16. B. R. Frieden and J. J. Burke, “Restoring with maximum entropy, II: Superresolution of

photographs of diffraction-blurred impulses,” J. Opt. Soc. Am. 62, 1202–1210 (1972).
17. D. L. Donoho et al., “Maximum entropy and the nearly black object,” J. R. Stat. Soc. B

54, 41–81 (1992).
18. J.-Y. Yu et al., “Achieving superresolution with illumination-enhanced sparsity,” Opt.

Express 26, 9850–9865 (2018).
19. M. Ingaramo et al., “Richardson–Lucy deconvolution as a general tool for combining

images with complementary strengths,” ChemPhysChem 15, 794–800 (2014).
20. F. Ströhl and C. F. Kaminski, “A joint Richardson–Lucy deconvolution algorithm for

the reconstruction of multifocal structured illumination microscopy data,” Method. Appl.
Fluoresc. 3, 014002 (2015).

21. M. Castello et al., “Image scanning microscopy with a quadrant detector,” Opt. Lett.
40, 5355–5358 (2015).

22. A. G. York et al., “Instant super-resolution imaging in live cells and embryos via analog
image processing,” Nat. Methods 10, 1122 (2013).

Yu et al.: Analyzing the super-resolution characteristics of focused-spot illumination. . .

Journal of Biomedical Optics 056501-12 May 2020 • Vol. 25(5)

https://doi.org/10.1111/j.1365-2818.1979.tb01178.x
https://doi.org/10.1111/j.1365-2818.1985.tb02579.x
https://doi.org/10.1016/S0006-3495(76)85776-1
https://doi.org/10.1364/AO.30.001185
https://doi.org/10.1126/science.1957169
https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1364/OL.24.000954
https://doi.org/10.1103/PhysRevLett.104.198101
https://doi.org/10.1364/OL.38.002889
https://doi.org/10.1038/nmeth.2025
https://doi.org/10.1364/OE.23.015003
https://doi.org/10.1038/nmeth.f.404
https://doi.org/10.1364/JOSA.62.001202
https://doi.org/10.1111/j.2517-6161.1992.tb01864.x
https://doi.org/10.1364/OE.26.009850
https://doi.org/10.1364/OE.26.009850
https://doi.org/10.1002/cphc.201300831
https://doi.org/10.1088/2050-6120/3/1/014002
https://doi.org/10.1088/2050-6120/3/1/014002
https://doi.org/10.1364/OL.40.005355
https://doi.org/10.1038/nmeth.2687


23. P. Wendykier, “Parallel iterative deconvolution,” https://sites.google.com/site/piotrwendykier/
software/deconvolution/paralleliterativedeconvolution (accessed 21 January 2020).

24. S. Berisha and J. G. Nagy, “Iterative methods for image restoration,” in Academic Press
Library in Signal Processing, J. Trussell et al., Eds., Vol. 4, pp. 193–247, Elsevier, Oxford
(2014).

25. S. Ram et al., “High accuracy 3D quantum dot tracking with multifocal plane microscopy
for the study of fast intracellular dynamics in live cells,” Biophys. J. 95, 6025–6043 (2008).

26. B. Huang et al., “Three-dimensional super-resolution imaging by stochastic optical recon-
struction microscopy,” Science 319, 810–813 (2008).

27. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles
using a photon-limited double-helix response system,” Opt. Express 16, 22048–22057
(2008).

Biographies of the authors are not available.

Yu et al.: Analyzing the super-resolution characteristics of focused-spot illumination. . .

Journal of Biomedical Optics 056501-13 May 2020 • Vol. 25(5)

https://sites.google.com/site/piotrwendykier/software/deconvolution/paralleliterativedeconvolution
https://sites.google.com/site/piotrwendykier/software/deconvolution/paralleliterativedeconvolution
https://sites.google.com/site/piotrwendykier/software/deconvolution/paralleliterativedeconvolution
https://sites.google.com/site/piotrwendykier/software/deconvolution/paralleliterativedeconvolution
https://doi.org/10.1529/biophysj.108.140392
https://doi.org/10.1126/science.1153529
https://doi.org/10.1364/OE.16.022048

