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Abstract

Significance: While clinical treatment of actinic keratosis by photodynamic therapy (PDT) is
widely practiced, there is a well-known variability in response, primarily caused by hetero-
geneous accumulation of the photosensitizer protoporphyrin IX (PpIX) between patients and
between lesions, but measurement of this is rarely done.

Aim: Develop a smartphone-based fluorescence imager for simple quantitative photography of
the lesions and their PpIX levels that can be used in a new clinical workflow to guide the reli-
ability of aminolevulinic acid (ALA) application for improved lesion clearance.

Approach: The smartphone fluorescence imager uses an iPhone and a custom iOS application
for image acquisition, a 3D-printed base for measurement standardization, an emission filter for
PpIX fluorescence isolation, and a 405-nm LED ring for optical excitation. System performance
was tested to ensure measurement reproducibility and the ability to capture photosensitizer accu-
mulation and photobleaching in pre-clinical and clinical settings.

Results: PpIX fluorescence signal from tissue-simulating phantoms showed linear sensitivity in
the 0.01 to 2.0 μM range. Murine studies with Ameluz® aminolevulinic acid (ALA) gel and
initial human testing with Levulan® ALA cream verified that in-vivo imaging was feasible,
including that PpIX production over 1 h is easily captured and that photobleaching from the
light treatment could be quantified.

Conclusions: The presented device is the first quantitative wide-field fluorescence imaging sys-
tem for PDT dosimetry designed for clinical skin use and for maximal ease of translation into
clinical workflow. The results lay the foundation for using the system in clinical studies to estab-
lish treatment thresholds for the individualization of PDT treatment.
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1 Introduction

Clinical use of protoporphyrin-IX (PpIX)-based photodynamic therapy (PDT) is widespread for
treatment of actinic keratosis (AKs) and increasingly adopted for treatment of nonmelanoma
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skin cancers, due to its effectiveness, safety, and cosmetic results.1 PpIX-based skin PDT
involves the topical application of the prodrug aminolevulinic acid (ALA) or methyl aminole-
vulinate (MAL) to selectively generate the photosensitizer PpIX in the lesion; after incubation, the
lesion is commonly irradiated with light where localized cytotoxicity is induced via reactive
molecular species.2 While there is widespread use of skin PDT, the complete clearance rate of
AKs can vary from ∼59% to 91%,3 where the origins of this variability in response is thought
to come from the heterogeneity of drug absorption and PpIX accumulation between patients and
between lesions.4,5 Dosimetry of PpIX at the point of care can help guide critical decisions in PDT,
given that initial accumulation and PDT-induced photobleaching serve as strong indicators for
patient outcomes in treatment.6–8 Nonetheless, in the clinical setting, dosimetry is rarely performed
during PDT treatments to personalize incubation times and light doses, primarily due to a lack of
practical dosimetry devices and limited predictive methods for corrective action if the PpIX levels
look low. The sparse use of dosimetry in clinical PDT studies has led to a restricted understanding
of optimal treatment parameters that are further confounded by the adoption of newer treatment
protocols, such as daylight PDTwith minimization of the ALA incubation time. Nonetheless, if it
was known that there were suboptimal levels of PpIX, there is a range of things that could be done
to mitigate this, including increased incubation times, increased skin temperature,9 reapplication of
ALA after curettage,10 differentiation therapy,11 and fractionated light treatment.12 Wide-field im-
aging of PpIX shows promise in guiding PDT by providing easily accessible drug production
information at the point of care for these treatment enhancements, which may reduce repeat
PDT visits or the added cost of future surgical treatments.4,13

Point-probe and wide-field PpIX fluorescence have been used in a limited number of clinical
studies for visual localization of lesions and to correlate photosensitizer accumulation and photo-
bleaching to treatment outcomes.5–8,14–32 Devices that have achieved translational clinical use, for
example FluoDerm (Dia Medico ApS, Denmark), are used primarily for qualitative visualization
and are unable to provide quantitative wide-field dosimetry of a lesion, which is necessary to
account for the millimeter-level variations in photosensitizer accumulation. Devices capable of
quantitative dosimetry have not achieved translational use mainly due to problems with measure-
ment reproducibility, system cost, and ease of use. Point-probe measurements suffer from repro-
ducibility issues due to variability of PpIX accumulation along the surface of the skin and sensitivity
to applied probe pressure during measurement. Wide-field devices suffer from measurement incon-
sistencies related to system warm-up, measurement angle, and varying lighting environments.32

In this work, we present the first quantitative wide-field fluorescence imaging system for
PpIX-PDT dosimetry designed for clinical treatment of the skin and for maximal ease in trans-
lation into clinical workflow. The handheld system consists of a custom application for image
acquisition and analysis based on an iPhone 6s platform, with physical light management from
a 3D-printed base that includes a long-pass emission filter for signal isolation, and a custom
405-nm wavelength light source and electronics for PpIX excitation. In the following sections,
an overview is provided of the dosimeter design, followed by system characterization and pre-
clinical and clinical results.

2 Materials and Methods

2.1 Smartphone Dosimeter

The fluorescence imaging system consists of an iPhone 6s smartphone and an application
for streamlined image acquisition, a 3D-printed base for measurement standardization and
system integration, an emission filter for PpIX signal isolation, and a custom LED ring and
electronics for PpIX excitation. A schematic of the system is presented in Fig. 1. The following
sections briefly summarize the design and function of each component; a detailed description of
the system design, beyond the scope of this paper, can be found in Ruiz et al.33

2.1.1 Smartphone and iOS application

The 12MP back-facing camera of the iPhone 6s is used for imaging, given its ability to manually
control camera parameters and provide the RAW pixel intensity values in 12-bit format. A native

Ruiz et al.: Smartphone fluorescence imager for quantitative dosimetry. . .

Journal of Biomedical Optics 063802-2 June 2020 • Vol. 25(6)



iOS application was developed for providing fixed imaging parameters, generating RAWoutput
images, and developing a streamlined clinical workflow. Current implementation of the appli-
cation fixes the imaging parameters via software and only allows, through the visual interface,
for the user to name the image and initiate a measurement through a single button press. The
result of this measurement is both RAW and JPEG images taken at the fixed, software-deter-
mined, imaging parameters.

2.1.2 3D-printed base

The 3D-printed base is used for system integration and measurement standardization by physi-
cally blocking room light with a black plastic printing material. Furthermore, a cushioned ring is
attached to the exit aperture, which allows coupling to the skin. The measurement base fixes the
detector-to-imaging plane distance for consistent quantitative images. The base consists of three
components: the measurement cone, electronics bay, and top cover. These components are
fastened together using M3 screws. It is worth emphasizing that the design of the 3D-printed
base, alongside the cushioned ring, forms an isolated lighting environment that allows the system
to overcome measurement repeatability issues faced by previously reported systems, including
variation in measurement angles and lighting environments.

The detector-to-imaging plane distance was set at 72 mm, which is approximately the mini-
mum focusing distance achievable by the iPhone 6s back-facing camera. The output aperture of
the measurement base provided a circular field of view of 48 mm.

2.1.3 Emission filter

The emission filter was chosen to block the 405-nm excitation light and to isolate the PpIX
fluorescent signal (600 to 700 nm). For filter selection, dielectric, color-glass, and gel filters
were tested. The decision criteria of a filter were based on maximizing emission throughput,
while minimizing filter autofluorescence. Both dielectric and gel filters were assessed for
the final system design. The current design used a 600-nm long-pass dielectric filter (600LP
RapidEdge, Omega Optical Inc., Brattleboro, Vermont), which, based on in-vivo testing, led
to a maximal PpIX signal-to-skin autofluorescence signal ratio.

2.1.4 LED ring and power electronics

The system uses a custom LED ring to provide a phone-independent uniform light source for UV
excitation and white-light illumination. The ring consists of 405-nm LEDs (Vishay VLMU3100)

Fig. 1 Schematic representation of the dosimeter system: (a) iPhone 6s smartphone and custom
iOS application for RAW image acquisition and image analysis; (b) 3D-printed measurement base
for system integration and measurement distance and light leakage standarization; (c) 600-nm
wavelength long-pass emission filter for PpIX signal isolation; and (d) 405-nm wavelenth LED ring
and electronics for excitation and to provide rechargeability in a modular package. FOV, field of view.
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and 3000 K white LEDs (Cree J-Series JE2834AWT) providing light intensities of 4.5
and 2.6 mW∕cm2 at the measurement output, respectively. The LEDs are mounted on a 1.6-mm
aluminum metal core printed circuit board (2-oz Cu trace) to provide passive thermal
management.

The system power electronics consist of a 3.7-V lithium polymer battery (#259, Adafruit Inc.,
New York City), a USB battery manager (#2011, Adafruit Inc., New York City), and a constant
current driver (MIC2287, Microchip Technology Inc., Chandler, Arizona) to provide power to
the LED ring (40 mA, constant current) and enable stable light output and rechargeability in
a modular package. Current electronics implementation utilizes a physical switch mounted on
the side of the 3D-printed base for manual operation of the light source.

2.2 Dosimeter Calibration and Characterization

To ensure measurement reproducibility, the dosimeter’s spectral, electrical, and pixel linearity
characteristics were evaluated. To measure the spectral output of the 405-nm and white LEDs, an
Apogee SS-110 VIS spectrometer was used. To measure the emission filter transmission spectra,
a Cary 50 Bio UV-VIS spectrophotometer was used.

Pixel linearity of the iPhone camera was tested by varying the driving current of the white
LED array to generate increasing irradiances, which were measured by a photometer (S120VC,
Thorlabs Inc., Newton, New Jersey). These irradiances were then imaged by the phone on a
highly reflective silicone TiO2 phantom (μa ¼ 0.0078, μ 0

s ¼ 1.967 at 526 nm). The RAW- and
JPEG-generated images were analyzed using MATLAB to generate average pixel values versus
irradiance curves.

To ensure electrical and emission output stability of the design, which is necessary for
reproducible illumination environments, an optical power meter (S120C, Thorlabs, Newton,
New Jersey) was used to observe the potential on/off current spikes as well as to test the
long-term output stability of the device.

The fluorescence sensitivity of the dosimeter was studied using 1% intralipid phantoms with
varying PpIX concentrations (0.01 to 2 μM), alongside a control sample with no PpIX. Intralipid
was used as a scattering agent in the mixture. The liquid phantoms were manufactured by com-
bining PpIX powder (P8293-1G, Sigma-Aldrich Inc.) with dimethyl sulfoxide and serially dilut-
ing with a 1% intralipid solution manufactured from 20% intralipid stock and 1× phosphate-
buffered saline. The serial dilutions were deposited in 5-ml DELRIN wells and imaged with the
dosimeter. The PpIX concentrations imaged were 2, 1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01, and 0 μM.
The imaging parameters used for these measurements were RAW images with ISO 400 and
exposure set to 1/10th s. Images were preprocessed using the “Adobe DNG Converter” software
and analyzed using MATLAB and ImageJ to extract the RAW pixel values.

2.3 Preclinical In-Vivo Murine Measurements

All animal procedures were carried out following a protocol approved by the Dartmouth College
Institutional Animal Care and Use Committee. The nude mouse model was used to examine the
dosimeter’s ability to capture in-vivo production of PpIX. The measurements were performed
on five athymic nude mice fed a low-chlorophyll diet to minimize tissue autofluorescence. For
imaging, the mice were placed under anesthesia and onto a heated pad to regulate their body
temperature. The temperature was monitored using an IR camera (TG165, FLIR Systems Inc.)
and kept in the 32°C to 36°C range. Ameluz® (Biofontera Inc., Boston, Massachusetts), a
10% ALA hydrochloride gel, was topically applied to the backs of the mice so as to contain
an ALA-applied area and a control area within the field of view of the imaging system. The mice
were kept in a low-light environment to prevent photobleaching of the accumulated PpIX.
Images of the mice were taken at 10-min intervals for the first hour with subsequent images
at 2 and 3 h of incubation. The mice were kept under anesthesia during the first hour, placed
back in the cage, and briefly placed back under anesthesia for imaging at 2 and 3 h of incubation.
The imaging parameters used for these measurements were iOS-generated images with ISO 400
and exposure set to 1/10th s. The images were processed in ImageJ, where the red pixels were
isolated for region-of-interest (ROI) pixel intensity calculation.
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2.4 Human Skin Test Measurement

All human imaging was done on patients who gave informed consent to participate in the study,
following the procedures approved in a protocol, approved by the Dartmouth College
Institutional Review Board. In this human testing, the system performance was evaluated on
three patients undergoing their standard clinical PDT treatment at the Dartmouth-Hitchcock
Dermatology Department for treatment of AKs using Levulan® (Sun Pharma Industries Ltd.,
Mumbai, India), a 20% ALA solution [Fig. 2(a)]. The standard procedure involves treatment
of a site (i.e., face, scalp, arms, or legs), which is cleaned using ethanol, and followed by non-
occluded topical application of the ALA. The patient is then transferred to a low-light rest area
for a 60-min incubation period. After the 1-h incubation, the patient is given 10 to 16 min of
blue-light (Sun Pharma Industries Ltd., Mumbai, India) PDT based on the dermatologist’s pre-
scription. Fluorescence images from a treatment site are gathered before the ALA is applied, at
the 60-min incubation, and post-PDT treatment [Fig. 2(b)]. Discomfort levels experienced by the
imaged patients were recorded during light irradiation via verbal rating of the pain. The goal of
performing dosimeter imaging during treatment is to correlate the measured PpIX accumulation
and PDT-induced photobleaching to patient outcomes and generate thresholds that can be used
for individualized treatment guidance [Fig. 2(c)]. The dosimetry procedure can be inserted into a
regular clinical workflow adding less than a minute to the total treatment time. The imaging
parameters used for these measurements were RAW images with ISO 400 and exposure set
to 1/10th s. Images were preprocessed using the Adobe DNG Converter software and analyzed
using MATLAB and ImageJ to extract the RAW pixel values.

3 Results

3.1 Dosimeter Calibration and Characterization

3.1.1 Characterization and measurement reproducibility

The assembled dosimeter [Fig. 3(a)] was tested for pixel linearity and emission output stability.
The pixel linearity results [Figs. 3(b) and 3(c)] showed the camera’s ability to recover a linear

Fig. 2 Schematic representation of the clinical workflow and dosimeter imaging integration:
(a) clinical procedure used for Levulan in AK-PDT treatment at Dartmouth-Hitchcock Dermatology,
(b) dosimeter image acquisition, and (c) proposed PDT guidance from PpIX accumulation and
PDT-induced photobleaching measurements.
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relationship between pixel intensity and irradiance at the imaging plane when using the RAW
image format. The “phone-processed” RGB images were not linear with external irradiance
values. Another advantage of using the RAW image format on the iPhone is its 12-bit dynamic
range output, compared to the standard 8-bit range for the phone-processed images.

Spectral measurements of the system [Fig. 3(d)] showed great overlap of the 405-nm emis-
sion with the PpIX absorption spectra,34 blockage of the excitation emission by the spectral filter
(OD 4 to 5), and transmission of 95%þ for the PpIX fluorescence signal. It is worth noting that
pixel intensity measurements with varying long-pass filters showed a significant transmission
of blue-green wavelengths into the red-specific pixels. This meant that, to truly isolate the PpIX

Fig. 3 (a) Assembled dosimeter. The system was tested for pixel linearity where (b) varying irra-
diances at the imaging plane are acquired using the RAW image format and (c) pixel intensity
versus irradiance values are plotted; least-squares fit to the data verified a linear relationship
between RAW pixel values and image plane irradiance with R2 ¼ 0.999. (d) Spectral plots of
PpIX absorption and emission34 alongside the system’s 405-nm excitation output and long-pass
filter transmission.
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signal and prevent excitation wavelengths from “bleeding” into the red-channel signal, the
system required a long-pass filter specific for the red wavelengths.

Electrical and emission stability measurements showed an output power stability within 1%
for the 405-nm source driven at 40 mA for a 2-min period. Furthermore, on/off cycling of
the light source showed flat top-hat profiles with no significant spikes in emission or electrical
output.

The irradiance imaging, spectral, electrical, and excitation emission measurements showed
the ability of the system to reliably reproduce measurement conditions. The system’s light output
stability, imaging linearity, consistent illumination environment, and fixed detector-to-imaging
plane distance allows our smartphone dosimeter system to overcome the reproducibility chal-
lenges faced by previously reported wide-field fluorescence systems.32

3.1.2 Protoporphyrin-IX concentration calibration

Measurement of the dosimeter’s sensitivity involved imaging of 1% intralipid phantoms with
varying PpIX concentrations within the 0.01 to 2 μM range, alongside a control, followed by
isolating of the red-pixel RAW values to generate a calibration curve. A visual overview of this
procedure is shown in Fig. 4(a). The imaging results [Fig 4(b)] showed the dosimeter’s ability to
detect the full 0.01 to 2 μM range [Fig. 4(c)], where plotting the data in a log-log scale shows
linearity with an R2 ¼ 0.996 for a least-squares fit [Fig. 4(d)].

These results show the dosimeter’s ability to detect clinically relevant PpIX concentrations
within the 0.01 to 2 μM range, alongside with high linearity in these measurements
(slope ¼ 0.83, R2 ¼ 0.996, least-squares fit). The high linearity obtained should enable the cre-
ation of skin–PpIX concentration curve calibrations based on the more intricate phantom models
and in-vivo measurements. These results show the system’s viability to perform quantitative
dosimetry and were the basis for proceeding to preclinical and clinical measurements of fluo-
rescence in the next sections.

Fig. 4 PpIX concentration calibration. (a) Workflow for generating a calibration curve when im-
aging PpIXþ 1% intralipid phantoms with the dosimeter system for varying PpIX concentrations
in the 0.01 to 2 μM range. (b) Resulting red-pixel intensity images using RAW format; (c) plot of
normalized pixel intensity versus Concentration; and (d) log-log plot of data showing high lin-
earity (slope ¼ 0.83, R2 ¼ 0.996, least-squares fit) for our measurement range. These results
show the system’s ability to measure clinically relevant concentrations with high linearity in
pixel response.
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3.2 Preclinical In-Vivo Measurements

Five mice were imaged for tracking the in-vivo accumulation of PpIX via topical application of
ALA, showing monotonic increase of the fluorescence over the 3 h of incubation (Fig. 5).

In this murine model, it was possible to quantitatively observe the PpIX accumulation in
the ALA-applied area as early as 10 min [Fig. 5(c)], with a clear visual accumulation in the
20- to 30-min time frame [Fig. 5(b)]. In contrast, the control region was relatively flat for the
first hour with a moderate increase in fluorescence observed at the 2- and 3-hour measurements
as the mice begin systematic accumulation of the PpIX [Figs. 5(b) and 5(c)].

3.3 Human Clinical Measurement

Three patients undergoing standard AK treatment were imaged before ALA application, at
60-min incubation, and post-PDT treatment. The resulting average pixel values from each treated
site ROI (four sites in total) were plotted for each image [Fig. 6(a)]. Measurements of all three
patients (four sites in total) showed PpIX fluorescence accumulation as well as PDT-induced
photobleaching. With the baseline (pre-ALA) value set to 10, the average 60-min incubation
and post-PDT values (averaged over the four sites) were 21.1� 6.1 and 11.8� 2.6, respectively.

Furthermore, we observe a positive correlation between PDT-induced photobleaching and
reported patient discomfort during treatment, where a higher drop in fluorescence correlated
with a higher patient discomfort. Although the sample size of clinical measurements presented
is small, this correlation has been reported in other publications.18,22,35

A representative set of images for a single site is shown in Fig. 6(b). This image set
corresponds to the patient 3 forehead measurements plotted in Fig. 6(a). In this image set,
we observe the heterogeneous accumulation and photobleaching of the PpIX fluorescence
throughout the skin of the patient. It is worth noting that bright spots observed in the images
correspond to the patient’s sebaceous glands.

4 Discussion

4.1 System Performance

The characterization tests for pixel linearity, spectral output, and excitation stability showed the
system’s ability to overcome measurement reproducibility challenges faced by previously
reported quantitative dosimetry systems.32 Concentration sensitivity tests demonstrated the
dosimeter’s ability to linearly measure PpIX concentrations over 2 orders of magnitude, as
shown in Fig. 4, with a sensitivity of detection down to 0.01 μM and a maximum linear detection

Fig. 5 (a) Testing setup for in-vivo imaging of PpIX accumulation in athymic nude mice (note:
a 3D-printed mount (not shown) was used to standarize the distance to the mice and fix the angle
of the dosimeter during measurement). (b) Resulting images that include topically applied ALA and
control ROIs. (c) Pixel intensity versus time plot for the ALA and control ROI (averaged for five
mice) shows the monotonic increase in fluorescence due to the PpIX accumulation in the ALA
region and a relatively flat response in the control region; a moderate increase in fluorescence
is observed in the control region at 2 and 3 h of incubation as the mice begin systematic accu-
mulation of PpIX.
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range defined near 2 μM. These concentrations are the PpIX ranges expected in tissue, based on
previous fiber probe measurements,5 and so it was concluded that the dosimeter’s combination of
the 405-nm LED ring, measurement base, 12-bit RAW imaging format, fixed imaging distance,
and double-filtered red emission, was suitable for in-vivo imaging.

4.2 In-Vivo Demonstrations of Performance and Use

The data presented in Figs. 5 and 6 clearly indicate that there are easily measurable signals of
PpIX within minutes of application of either Ameluz® (on mouse skin) or Levulan® (on human
skin). In the case of human studies, both PpIX accumulation and PDT photobleaching were
captured for all the four skin sites measured. The ALA-produced PpIX had high variability
between sites (21.1� 6.1 standard deviation), and the photobleaching of it was nearly complete
after treatment (falling to an average of 11.8� 2.6 after PDT, where the pre-ALA baseline was
10.0). Both of these facts, variability of production and photobleaching from PDT, are well
known in the published literature, but the measurements here indicate that this can be quantified
and even spatially analyzed with the smartphone dosimeter.

Furthermore, these wide-field images emphasize how point-probe measurements provide
insufficient spatial information to account for variations of PpIX fluorescence throughout the
skin. It is worth noting that bright spots observed in the images [Fig. 6(b)] correspond to the
patient’s sebaceous glands, such that future work could be focused around spatial processing of
these images to separate background fluorescence from ALA-induced fluorescence.

Fig. 6 Human dosimeter measurements: results of imaging four treatment sites (three patients)
during standard AK treatment at the Dartmouth-Hitchcok Dermatology Department using
nonoccluded topical ALA application. Patients were imaged before ALA application, at 60-min
incubation, and post-PDT treatment. (a) Average pixel values of the images are graphed for
each site and baselined to the pre-ALA pixel value with a þ10 value offset; the PDT-induced
photobleaching measurement was positively correlated with the discomfort level reported by the
patients. (b) Representative treatment image set, corresponding to patient 3 forehead, where the
variation of PpIX fluorescence on the surface of the skin can be observed; it is worth noting that
the bright spots on the image correspond to the sebaceous glands of the patient’s forehead.
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These clinical measurement results showcase the smartphone dosimeter’s ability to capture
PpIX accumulation and PDT-induced photobleaching within standard PDT treatment protocols,
providing a translational tool that can be easily incorporated in clinical studies. The next phase
for the smartphone dosimeter is clinical studies that assess the wide-field PpIX accumulation
and PDT-induced photobleaching correlation with patient outcomes to establish treatment
thresholds. With these established thresholds, treatment planning can be incorporated within
the iOS application to generate a streamlined clinical workflow for individualized guided
PDT treatment.

4.3 Dosimeter Design Improvements

Based on the characterization, preclinical, and clinical measurements, changes to the dosimeter
design that would allow for improved performance include (1) fine-tuning of the emission filter
long-pass wavelength to balance the trade-off between signal-to-noise and signal-to-background
ratios and (2) implementation of light-source control within the iOS-app for automatic “flash”
triggering during imaging. Both of these improvements will be realized in a future version of
the system.

Changes to the design that would allow for “cost reduction” include using a gel filter as an
alternative to the dielectric filter long-pass filter. Measurement of gel filters (i.e., 780 AS Golden
Amber, LEE Filters Inc.) showed the ability to have comparable OD stopband performance to
dielectric filters with the caveat of having a lower pass-band transmission and a longer transition
band. Furthermore, implementation of a custom board that integrates battery management and
the constant current driver could also allow for cost reduction and further miniaturization of
the device.

5 Conclusions

In this study, the first low-cost quantitative wide-field fluorescence imaging system for PpIX-
PDT skin dosimetry, designed for use in clinical studies and for easy translation into standard
clinical workflow, was tested for measurement reproducibility and sensitivity as well as in pre-
clinical and clinical environments. Characterization tests of the smartphone-based dosimeter
showed its ability to overcome measurement reproducibility issues encountered by previous
quantitative systems as well as the ability to image clinically relevant concentrations of PpIX
in the 0.01 to 2.0 μM range. Preclinical measurements of athymic nude mice captured the in-vivo
accumulation of PpIX with topical application of ALA, showing the system’s ability to be used
in preclinical skin studies. The device was also tested in a standard clinical procedure for AK
lesion treatment, where it captured wide-field PpIX accumulation and PDT-induced photo-
bleaching. These results lay the foundation for using the system in clinical studies to establish
treatment thresholds for the individualization of PDT treatment. The ultimate goal is the imple-
mentation of these thresholds alongside the system’s dosimetry to create a translational work-
flow that guides critical treatment parameters at the point of care for improved patient outcomes,
including increased clearance rates and reduced treatment pain.
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