Tetrapyrrolic Glycosylated Macrocycles for an Application in PDT

Michel Momenteau, ${ }^{\dagger}$ Philippe Maillard, ${ }^{\dagger}$ Marie-Anne De Bélinay, ${ }^{\dagger}$ Danièle Carrez, ${ }^{\text {T }}$ and Alain Croisy ${ }^{\text {¹ }}$
${ }^{\dagger}$ CNRS UMR 176, Institut Curie Section de Recherche, Laboratoire Raymond Latarjet, Bâtiments 110-112, Centre Universitaire, 91405 Orsay, France; ${ }^{\dagger}$ INSERM U350, Institut Curie Section
de Recherche, Laboratoire Raymond Latarjet, Bâtiments 110-112, Centre Universitaire, 91405 Orsay, France
(Paper PT-005 received Sep. 7, 1997; revised manuscript received May 6, 1999; accepted for publication May 6, 1999.)

Abstract

The synthesis and characterization of amphiphilic glycoconjugated porphyrins, benzochlorin, and azaporphyrins were reported. Among these molecules, several were found to be efficient photosensitizers in an in vitro assay using the human tumoral cell line HT29. Moreover, glycosylated benzochlorin and azaporphyrins, whose absorption bands in the red region of the visible spectrum are substantially increased as compared to porphyrins, display a good photocytotoxicity on tumor cells after irradiation with wavelength above 590 nm . © 1999 Society of Photo-Optical Instrumentation Engineers. [S1083-3668(99)00703-0]

Keywords glycoconjugated porphyrins; benzochlorin; azaporphyrins; photocytotoxicity; synthesis.

1 InTroduction

Although the photodynamic properties of hematoporphyrin derivative (HpD) were first described by Lipson and Baldes in 1960, ${ }^{1}$ its utilization for the photodynamic therapy (PDT) of human cancers was first mentioned by Dougherty in 1978. ${ }^{2}$ In spite of considerable efforts devoted to the development of PDT for the treatment of human malignancies, this procedure remains largely underestimated by physicians, mainly because HpD and its active fraction, Photofrin ${ }^{\circledR}$, are complex mixtures which are retained for a long time in normal tissues, inducing long-lasting light hypersensitivity.

The search for new, well-characterized photosensitizers has become a major goal for the scientific community engaged in this field and several research groups have focused their attention on the synthesis of new tetrapyrrolic macrocycles with improved distribution kinetics and biological activities. Actually, the design of new photosensitizers having well-defined structure with great selectivity for tumor cells, fast elimination from healthy tissues, and strong light absorption in the red region of the visible spectrum is an important challenge for chemists. ${ }^{3}$ Thus, synthesis of many tetrapyrrolic compounds such as purpurins, ${ }^{4}$ chlorins, ${ }^{5}$ phthalocyanins, ${ }^{6}$ and benzochlorins ${ }^{7}$ has developed.

For the last few years, we were engaged in the preparation of neutral glycoconjugated porphyrins derived from the 5,10,15,20-tetraarylporphyrins in which mono- or disaccharides were linked directly

[^0]at the phenyl groups. ${ }^{8}$ The study of this series of neutral water-soluble glycosylated porphyrins as photosensitizing dyes allowed us to define the effect of structural and chemical modifications and of the balance between hydrophilic glycosyl groups and hydrophobic substituents on their photocytotoxic properties. The resulting structure-activity relationships suggest that both planar structure and amphiphilic character are essential factors for photodynamic activity on human tumoral KB cell line in vitro as exemplified by the high photosensitizing properties of $\operatorname{tris}(p$-glucosylphenyl) phenyl porphyrin $\left[\mathrm{TPP}(\mathrm{GluOH})_{3}\right]$ and the relative inefficiency of tetrakis(p-glucosylphenyl) porphyrin $\left[\operatorname{TPP}(\mathrm{GluOH})_{4}\right] .{ }^{9}$
In this paper, we report the synthesis of meso tetrakis and tris-glycoconjugated phenylporphyrins 1-5 (Figure 1) bearing monosaccharides linked, via an alkoxy spacer, to meso-phenyl groups directly from meso-(p-hydroxyphenyl) porphyrins. These molecules were designed to study the influence of the alkoxy spacer on the in vitro photocytotoxic properties.

During the course of this work, P. Krausz and collaborators described the synthesis of 13 new meso-mono or tetrakis-glycosylated phenylporphyrins where the carbohydrate moieties were also linked to the phenyl group by an alkoxy spacer; however, these molecules were obtained either by direct condensation of glycosides on hydroxyalkoxyarylporphyrin or by condensation of the corresponding glycosylated benzaldehydes with pyrrole or meso-(p-tolyl)dipyrromethane. ${ }^{10}$

[^1]

$\mathrm{X}=\mathrm{N} 7$
$\mathrm{X}=\mathrm{CH} 10$

12

Fig. 1 Structures of glycoconjugated tetrapyrrolic macrocycles.

We also described glycoconjugated benzochlorin 6, azaporphyrins 7-9, and the corresponding porphyrins 10-12 (Figure 1) to study the influence of the absorption intensity in the red region of the visible spectrum on the photodynamic properties.

In vitro photocytotoxic properties were evaluated on the human colon adenocarcinoma cell line HT29. Several new molecules were found equally or more efficient than Photofrin ${ }^{\circledR}$ in this experimental model.

2 RESULTS AND DISCUSSION

2.1 SYNTHESIS

The synthesis of glycosylated mesotetraarylporphyrins usually required the condensation of pyrrole and glycosylated benzaldehyde under Lindsey's conditions. ${ }^{11}$ However, many trials have been performed in an attempt to link directly a glycoside to porphyrin. Thus condensation of bromoalkanes on meso-(hydroxyphenyl) porphyrins under Little's conditions gives alkoxy derivatives in very good yields. ${ }^{12}$ Using the same synthetic method, condensation of 1-bromoalkoxy-per-acetylglycosides I-IV on meso-tetrakis-(p hydroxyphenyl)porphyrin V or on meso-tris-(p hydroxyphenyl)phenylporphyrin VI following by
transesterification ${ }^{13}$ gave meso-(alkoxy-glycoside phenyl)porphyrins $1-5$ in $65 \%-70 \%$ yields (Scheme 1). Meso-tris-(p-hydroxyphenyl)phenylporphyrin VI was obtained by condensation of pyrrole (4 equiv.), benzaldehyde (1 equiv.), and paramethoxybenzaldehyde (3 equiv.) under Lindsey's conditions following by demethylation with BBr_{3} in dry methylene chloride. ${ }^{14}$ Preparation of 1-bromoalkoxy-per-acetylglycosides were performed by condensation of per-acetylated sugars on bromo alcohol using the boron-etherate method in dry methylene chloride. ${ }^{15}$
Synthesis of glycosylated benzochlorins derived from 5-meso-aryl octaethylporphyrin ${ }^{16}$ was performed from nickel (II) porphyrin 13^{17} by electrophilic substitution with 3-(dimethylamino)acrolein under Vilsmeier's conditions, ${ }^{18}$ which led to the two isomeric nickel (II) complexes 14 a and 14 b (total yield 85%, ratio $14 \mathrm{a} / 14 \mathrm{~b}, 85.5 / 14.5$) in which the $2^{\prime \prime}$-formylvinyl group is linked either at the adjacent meso-carbon $\left(C_{10}\right)$ in 14a or at the opposite $\left(C_{15}\right)$ to the meso-aryl position in 14 b . Treatment of porphyrin 14a, by trifluoroacetic acid under argon atmosphere at room temperature, afforded nickel (II) benzochlorin 15 in

1-OAc, 2-OAc

1-2

3-OAc-5-OAc

3-5

Scheme 1 Synthesis of compounds 1-5.
58% yield. HPLC analysis and ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) studies showed the presence of a single compound corresponding exclusively to one of the two possible nickel monoarylbenzochlorins 15. Dealkylation by boron tribromide in dry methylene chloride afforded nickel complex 16. Demetallation of 16 in concentrated sulfuric acid gave the metal-free benzochlorin 17 which was glycosylated, in dimethylformamide in the presence of potassium carbonate, by 1-bromoethoxy-per-acetylmaltose to benzochlorin 18. Transesterification of 18 afforded the maltose deacetylated glycoconjugated derivative 6 in quantitative yield (Scheme 2).

Azaporphyrin 7 bearing two sugar moieties directly linked to β-pyrrolic positions was preparedfrom glycosylated pyrrole 21, obtained by the Barton and Zard's method ${ }^{19}$ from 1,2,3,4-di-O-isopropyliden-5-formyl- α-D-galactopyranose 19^{20} via the nitro derivative 20 in 75% yield. Condensation of its benzyl ester 22 with dimethoxymethane in the presence of catalytic amount of paratoluenesulfonic acid gave dipyrromethane 23 which was deprotected by catalytic hydrogenation to give dicarboxylic dipyrromethane 24 . Coupling 24 with 2 -formyl-3,4-diethyl pyrrole afforded 2, 8-di($1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-di-O-isopropylidene- α-D-galactosyl)-3, 7-dimethyl-12, 13, 17, 18-tetraethylbiladien $a-c$ hy-
drobromide 27. Cyclization of 27 in methanol, in presence of $\mathrm{K}_{3} \mathrm{FeCN}_{6}$ and ammonium hydroxide, followed by treatment with a mixture of trifluoroacetic acid, water ($9: 1, \mathrm{v} / \mathrm{v}$) led to the expected azaporphyrin 7 . Condensation of the glycosylated dicarboxylic dipyrromethane 24 with dialdehyde dipyrromethane ${ }^{21} 25$ in presence of catalytic amount of para-toluenesulfonic acid gave, after deprotection of sugars by a mixture of trifluoroacetic acid water ($9: 1, \mathrm{v} / \mathrm{v}$), the glycosylated porphyrin 10 (Scheme 3).
Glycoconjugated azaporphyrins 8-9, bearing two glucose or maltose moieties via an aryl spacer, were prepared from 3-(3'-nitro-4'-hydroxyphenyl)-4-methyl-2-ethoxycarbonyl pyrrole 30 obtained by the method of Barton et al. ${ }^{19}$ from 3-nitro-4hydroxybenzaldehyde in 73% yield. Condensation of this pyrrole on dimethoxymethane led quantitatively to dipyrromethane 31. This last compound was hydrolyzed by $\mathrm{NaOH} / \mathrm{MeOH}$, almost quantitatively, to dicarboxylic dipyrromethane 32. Coupling 32 with 2 -formyl-3,4-diethyl pyrrole 33 afforded 2, 3, 17, 18-tetraethyl-7, 13-di-(3'-nitro-4'-hydroxyphenyl)-8, 12-dimethylbiladien a-c 34 (74%). This biladien was cyclized under the same

13

14a
(ii)

15
$\mathbf{M}=\mathbf{N i}$

$$
\mathrm{R}=\mathrm{CH}_{3}
$$

(iii)

$$
\begin{array}{ll}
\mathrm{M}=\mathrm{Ni} & \mathrm{M}=\mathrm{H}_{2} \\
\mathrm{R}=\mathrm{H} & \mathrm{R}=\mathrm{H}
\end{array}
$$

14b

19

$100 \% 24$

27

TFA- $\mathrm{H}_{2} \mathrm{O}: 9 / 1$ 24 h

Scheme 3 Synthesis of β-glycoconjugated porphyrin 10 and of its aza analog 7.

2.2 SPECTROSCOPIC PROPERTIES

Absorption properties of compounds 1-12 and 17, in different solvents according to their solubility,are shown in Table 1. The electronic spectra of all meso substituted porphyrins $1-5$ are very similar to
those of known free base meso-5,10,15,20tetrakisphenylporphyrins with a Soret band around 420 nm and four less intense Q bands near 520,550, 590 and 650 nm . The UV-visible spectra of porphyrins bearing substituents on β-pyrrolic positions, $10-12$, are of the "etio" type, characterized by a

$9 \% 35$

Scheme 4 Synthesis of β-glycoconjugated diphenyl azaporphyrins 8 and 9 and porphyrins 11 and 12.

Soret band near 400 nm and four Q bands with decreasing relative intensity IV $>\mathrm{III}>\mathrm{II}>\mathrm{I}$.

The absorption characteristics of parahydroxyphenylbenzochlorin 17 and its glycosylated derivative 18 and 6 are similar to Gunter's. ${ }^{4}$ Our monophenyl compounds have not lost the shift and the increased absorbance in the red region which were seen for compounds bearing two phenyl groups. Red absorption (672 nm) of benzochlorins was exactly in the minimum absorption of oxyhemoglobin as shown in Figure 2. Such spectroscopic properties are suitable for use in photodynamic therapy.

Fischer and Fridrich ${ }^{23}$ have shown that introduction of one nitrogen atom at a meso position of tetrapyrrolic macrocycles (monoazaporphyrins) increases absorbance in the red region (610-615 nm). Actually, azaporphyrins 8 and 9 have molecular absorption coefficient ϵ between 23 and 24 $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$. In contrast, for compound 7, intensity of the band at 607 nm is decreased to $\epsilon=7.3 \mathrm{~L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$ (Figure 3).

$2.3{ }^{1} \mathrm{H}$ NMR CHARACTERIZATION

${ }^{1} \mathrm{H}$ NMR spectroscopy (200 MHz) was used for the characterization of protected and unprotected com-

Table 1 Electronic spectra of glycoconjugated porphyrins, benzochlorin, and monoazaporphyrins, solvent: (a) pyr, (b) pyr/ $\mathrm{MeOH} 1 / 24$, (c) MeOH , (d) THF, (e) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Compound	Soret band $\left(\epsilon \mathrm{Lmmol}^{-1} \mathrm{~cm}^{-1}\right)$	Visible bands $\left(\epsilon \mathrm{Lmmol}^{-1} \mathrm{~cm}^{-1}\right)$
1a	425 (337)	520.5(15.8), 558(13), 596.5(7.7), 653(8.2)
2 b	418.5 (435)	516.5(18), 553.5(14), 593(8.3), 650(8.6)
3 b	417.5 (385)	515(17), 552(12.4), 591(8.4), 648(8)
4 b	417 (363)	515.5(15.2), $551(10.6), 591.5(6.3)$
$5 b$	417.5 (361)	515.5(14.5), 551.5(9.9), 591.5(6), 648(5.5)
6c	415 (69)	546 (shoulder), 582(10.2), 618(11.3), 672(24.3)
7d	379 (41)	500(2.9), 534(8.2), 557(3.3), 607(7.3)
8 d	381 (119)	507(8.1), 537(24.9), 563(8.9), 614(24.7)
9d	382 (118)	504(8.5), 538(25.2), 563(9.1), 614(24.7)
10e	397 (105)	498(6.5), 532(5.1), 566(4.3), 618(1.6)
11d	407 (160)	504(13.4), 539(10.3), 572(6.7), 627(4.1)
12d	408 (162)	504(13.6), 540(11.5), 573(7), 627(3.8)
17e	418 (95)	$548.5(7.4), 581.5(9.6), 618(11), 673(26.1)$

pounds in CDCl_{3} and DMF d_{7} or pyridine d_{5} solution. Assignment of the resonances to individual proton are based on integration and selective homonuclear decoupling experiments. The general aspect of the spectra of glycoconjugated porphyrins 1-5 derived from meso-5,10,15,20tetrakisphenylporphyrin is similar to that of the para-glycoconjugated porphyrins previously studied. ${ }^{8}$ These spectra show six groups of resonance. The NMR spectral properties of these molecules are governed by symmetry characteristic. Because of the $D_{2 h}$ symmetry of mesotetraarylporphyrins, the resonance of pyrrolic pro-

Fig. 2 Electronic spectra of oxyhemoglobin in water (A), derivative 5 (B), and maltosylbenzochlorin (C) in methanol.
tons appears as single peaks at 8.85 ppm in CDCl_{3} and near 9.1 ppm in DMF d_{7} solution. The aromatic protons appear between 8.2 and 7.2 ppm , "ose" protons of protected and unprotected glycosylated compounds between 5 and 3 ppm , acetyl protons as singlets around 2 ppm and pyrrolic NH at -2.7 ppm . Protons of spacer appear at 4.4 (triplet) and 4.15 (triplet) ppm for $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ - and at 4.4, (triplet) 4.1 (triplet) and 2.3 ppm (multiplet) for $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-$ parts. Furthermore, the resonance of the anomeric proton of glycosyl groups in all protected and unprotected glycosylated porphyrins appears as well-defined doublet near 4.9 ppm

Fig. 3 Electronic spectra of protected porphyrin 11 OAc (A), protected azaporphyrin $80 \mathrm{Ac}(\mathrm{B})$ in a THF solution.

Fig. 4 Numbering of glycoconjugated benzochlorin 6 .
with $J=7.5 \mathrm{~Hz}(1,3)$ and $J=1.5 \mathrm{~Hz}(2,4$, and 5$)$. These coupling constants are indicative of a pure configuration for the anomeric carbon: β for glucosylated compounds 1 and 3 , and α for mannose derivatives 2,4 , and 5 .

1D and homonuclear 2D ${ }^{1} \mathrm{H}$ NMR studies confirm the structure of benzochlorins 6 and 17. NOESY cross-correlation peaks were seen between ethyl groups carried by carbon 7 and the two ortho protons of the meso-phenyl group (Figure 4). Moreover ${ }^{1} \mathrm{H}$ NMR 2D spectra of benzochlorin 6 showed NOE interactions between the ten protons (1.96 ppm CH 2 ethyl and $-0.02 \mathrm{ppm} \mathrm{CH}_{3}$) of the C_{7} ethyls and H_{0} and H_{0}, ortho protons of the meso-phenyl group (7.79 ppm). Such a behavior corresponds to a cyclization of the vinylformyl group on the C_{8} atom with ethyl migration from C_{8} to C_{7} atom. The resonance of the C_{1} proton of the maltosyl group which appears as a doublet $(J=7.5 \mathrm{~Hz})$ indicates a pure β-configuration of the anomeric carbon of maltose.

The ${ }^{1} \mathrm{H}$ NMR spectra of porphyrins 10-12 and azaporphyrins 7-9 show five resonance groups: aromatic protons between 7 and 9 ppm ; from 4 to 0 ppm, β-pyrrolic alkyl substituents; acetyl protecting groups at 2.1 ppm and isopropylidene moieties from 1.8 to 1.2 ppm ; between 10 and 11.7 ppm , meso protons, and pyrrolic NH from -3 to -3.7 ppm for porphyrins $10-12$ and from -1.8 to -2.9 ppm for azaporphyrins $7-9$. The resonance of the anomeric proton of glycosyl groups in compounds 7-12 appears as a well-defined doublet with $J=3 \mathrm{~Hz}$ for 7 and 10 (α anomeric configuration) and $J=8 \mathrm{~Hz}$ for $8,9,11$, and 12 , respectively (β anomeric configuration).

2.4 PARTITION PROPERTIES

Amphiphilic property is a characteristic of dies which may be decisive for photosensitizing activity
since this parameter may influence their ability to cross cell membrane as well as their localization within the cell. The partition between 2-octanol and PBS buffer at $p \mathrm{H} 7.4$, determined by equilibrating equal parts of PBS and 2-octanol at $20^{\circ} \mathrm{C}^{24}$ allows us to define the partition coefficient (PC) which is dependent on the amphiphily of the molecule. Optical density (OD) was measured between 400 and 450 nm and PC was calculated as the ratio of OD(2octanol)/OD(PBS). Except for compounds 1 and 2, the repartition of hydrophilic and lipophilic substituents around the macrocycles confers a variable amphiphilic character to the molecules, confirmed by the values of partition coefficient; however, no direct correlation was found with the in vitro photocytotoxicity (Table 2).

2.5 IN VITRO PHOTOCYTOTOXICITY

All these compounds were evaluated in vitro on the human colic adenocarcinoma cell line HT29. None of them were found cytotoxic in absence of light at the tested concentrations (up to $10 \mu \mathrm{~g} / \mathrm{mL}$). Photoactivation was performed using a home made "light box" giving a fluence of $3.8 \mathrm{~mW} / \mathrm{cm}^{2}$ on the whole visible spectrum. Irradiation with red light was carried out using the same device fitted with an orange filter $(0 \% T$ at 520 nm and $80 \% T$ at 590 nm and above) leading to a fluence of $2 \mathrm{~mW} / \mathrm{cm}^{2}$. As previously observed with glycophenyl porphyrins, ${ }^{9}$ tetrakis derivatives 1 and 2 were found inefficient as photosensitizers while trisubstituted compounds 3-5, which are amphiphilic molecules, display good photocytotoxic properties equal to or better than Photofrin ${ }^{\circledR}$, in this experimental model. The best compound of these series was the trismannosyloxypropylphenyl derivative 5 which displayed an activity equal to that of TPP(GluOH) 3 (Figure 5).

Table 2 Log (PC) and survival fraction of HT29 tumor cells after irradiation. HT29 cells were grown in DMEM supplemented with 10% FCS. Surviving fraction was estimated using the MTT assay.

Compound	\log (P.C.)	Surviving Fraction, after irradiation ${ }^{\text {c }}$ (\% controls)
TPP(GluOH) ${ }_{4}^{\text {a }}$	0,3	70
$1^{\text {a }}$	-0,32	100
$2^{\text {a }}$	0,18	70
$3^{\text {a }}$	1,4	62
TPP(GluOH) ${ }_{3}{ }^{\text {a }}$	1,8	13
$4^{\text {a }}$	0,78	10
$5^{\text {a }}$	1,6	14
benzochlorin 17 ${ }^{\text {b }}$	>3	100, $\left(85^{\text {d }}\right.$)
$6^{\text {b }}$	>3	75, $\left(55^{\text {d }}\right.$)
$7^{\text {a }}$	1,48	70, $\left(59^{\text {d }}\right.$)
$8^{\text {a }}$	1	47, (40 ${ }^{\text {d }}$)
$9^{\text {a }}$	0,43	47, $73^{\text {d }}$)
$10^{\text {a }}$	1,48	70
$11^{\text {a }}$	0,65	30
$12^{\text {a }}$	1	90
Photofrin ${ }^{\text {a }}$	\ldots	45

a Dose $1 \mu \mathrm{~g} / \mathrm{mL}$.
${ }^{\text {b }}$ Dose $5 \mu \mathrm{~g} / \mathrm{mL}$.
${ }^{c}$ Whole spectrum irradiation, total light dose $2.3 \mathrm{~J} / \mathrm{cm}^{2}$, fluence 3.8 $\mathrm{mW} / \mathrm{cm}^{2}$.
${ }^{d}$ Red light irradiation ($\lambda>590 \mathrm{~nm}$): orange filter $520 \mathrm{~nm} 0 \%$ T, 590 nm $80 \% \mathrm{~T}$, light dose $2.5 \mathrm{~J} / \mathrm{cm}^{2}$, fluence $2 \mathrm{~mW} / \mathrm{cm}^{2}$.

As shown in Figure 6, azaporphyrins were also found good in vitro sensitizers. In spite of a relatively high partition coefficient ($\log \mathrm{PC}=1.48$), which is indicative of its low water solubility, compound 7 , which has two adjacent glucose residues on β-pyrrolic positions, gives a regular dose response curve from 90% survival at $0.1 \mu \mathrm{~g} / \mathrm{mL}$ to 13% at $10 \mu \mathrm{~g} / \mathrm{mL}$ for a light dose of $2.3 \mathrm{~J} / \mathrm{cm}^{2}$. Regarding the nitrophenyl glycoconjugated molecules, activities are also relevant: however, the glucosylated dye 11 is more efficient than the maltosyl derivative 12 as well as than Photofrin ${ }^{\circledR}$ (respectively $63 \%, 100 \%$, and 85% survival at $0.1 \mu \mathrm{~g} / \mathrm{mL}$ for a light dose of $0.6 \mathrm{~J} / \mathrm{cm}^{2}$). The corresponding azaporphyrins 8 and 9 are fairly less active with around 40% survival at $10 \mu \mathrm{~g} / \mathrm{mL}$ and $0.6 \mathrm{~J} / \mathrm{cm}^{2}$.
Because one aim of this work was to improve photosensitization to red light, which is the only one able to enter deeply in living tissues, we com-

Fig. 5 In vitro response of HT29 cells to glycoconjugated alkoxy TPP 1-5 following 24 h incubations and irradiation with white light $\left(0.6 \mathrm{~J} / \mathrm{cm}^{2}\right)$.
pared the activity of aza derivatives and of benzochlorins following whole spectrum irradiation ($2.3 \mathrm{~J} / \mathrm{cm}^{2}$, fluence $3.8 \mathrm{~mW} / \mathrm{cm}^{2}$), or red light irradiation ($\lambda>590 \mathrm{~nm}, 2.5 \mathrm{~J} / \mathrm{cm}^{2}$, fluence $2 \mathrm{~mW} / \mathrm{cm}^{2}$). Data are given in Figure 7 with those obtained under the same conditions with Photofrin ${ }^{\circledR}$ and $\operatorname{TPP}(\mathrm{GluOH})_{3}$ used as standards. As expected, because of the relatively low absorption in the red, Photofrin ${ }^{\circledR}$ is less active with light above 590 nm [Figure 7(A)]. For $\operatorname{TPP}(\mathrm{GluOH})_{3}$, this difference appears only at low dose $(0.5 \mu \mathrm{~g} / \mathrm{mL})$ since this compound displays outstanding activity [Figure 7(B)]. Activity of azaporphyrins 7-9 did not show significant variation because of the strong increase of absorbance in the red region [Figures 7(E)-7(G)]. Benzochlorin 17 did not elicit any photosensitizing property, probably because of its very high hydrophobicity [Figure 7(C)], while its maltosyl derivative 6 , although poorly hydrophilic ($\log \mathrm{PC}>3$), exhibits significant photodynamic activity above 5 $\mu \mathrm{g} / \mathrm{mL}$ with light above 590 nm [Figure 7(D)].

Fig. 6 In vitro response of HT29 cells to azaporphyrins 7, 8, and 9 , and porphyrins 11 and 12 following 24 h incubations and irradiation with white light ($0.6 \mathrm{~J} / \mathrm{cm}^{2}$). Photofrin ${ }^{\circledR}$ data are given for comparison.

Fig. 7 Survival of HT29 cells treated with various compounds (24 h incubations) without irradiation (filled) or after whole spectrum (dotted, $2.3 \mathrm{~J} / \mathrm{cm}^{2}, 3.8 \mathrm{~mW} / \mathrm{cm}^{2}$) or red light irradiation (shaded, $2.5 \mathrm{~J} / \mathrm{cm}^{2}, 2 \mathrm{~mW} / \mathrm{cm}^{2}$). Panel A: photofrin, B: TPP(GluOH) ${ }_{3}$, C: benzochlorin 17, (D): maltosyl benzochlorin 6, E: di- β-glucosyl porphyrin 10, F: di- β-glucosyl phenyl porphyrin 8, G: di- β-maltosyl phenyl porphyrin 9.

2.6 CONCLUSION

Various new glycoconjugated tetrapyrrolic macrocycles have been described and characterized. Preliminary in vitro biological data confirm previous observations suggesting the requirement of amphiphily for efficient photodynamic activity. ${ }^{9}$ Gly-
coconjugation is obviously a good mean to introduce such a balance between hydrophilicity and hydrophobicity: however, the nature of the sugar residues seems to take a significant part in the photosensitizing properties and remains to be elucidated. This should be undertaken in the light of the
knowledge of the various lectines occurring at the surface of the cell membrane and of their implication in glycoconjugated dyes internalization. As expected, increase of light absorption above 590 nm may improve the photosensitizing properties; this is particularly true in the benzochlorin series for which the maltosyl derivative displays, for a constant energy exposition, a higher activity when irradiated with red light than with all the visible spectrum. This last compound is however too poorly water soluble to be considered as a good candidate for PDT; further synthesis of di or tri glycoconjugated analogs should be considered to reach highly efficient molecules.

3 Experimental SECTION

3.1 GENERAL

All chemicals used were of reagent grade and were purchased from Aldrich or Fluka. Merck silica gel 60 ($0.040-0.060 \mathrm{~mm}$) was used for column chromatography. Macherey-Nagel precoated plates (SIL G-200, 2 mm) were used for preparative thin layer chromatography. Elemental analysis were carried out by the "Service Central de Microanalyse du CNRS. ${ }^{\prime \prime}{ }^{1} \mathrm{H}$ NMR spectra were obtained in the indicated deuteriated solvents with Brucker AM-200 and AM-400 instruments. Acidic impurities of chloroform- d_{3} were removed with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. Chemical shift values were given in ppm relative to TMS. Coupling constants were given in Hz. Optical spectra were recorded using a Varian DMS 200 spectrometer.

Isomeric ratios were determined by HPLC analysis which was performed with a Gilson apparatus with a dynamic mixer module Gilson 811, a manometric module Gilson 802, a pump Gilson 303 and a holochrom module Gilson (detection at 420 nm). Column:Hibar Lichrosorb SI 60, 7 mm Merck, mobile phase, gradient heptane/methylene chloride ($1.5 \mathrm{~mL} / \mathrm{min}$, start at 80% heptane, then 50% at 15 min and 80% at 49 min).

3.2 GENERAL PROCEDURE FOR THE PREPARATION OF BROMO ALKOXY PERACETYLATED-D-GLYCOSIDES

To a cooled solution of per acetylated glycoside (25 mmol) and 2-bromo ethanol (or 3-bromo propanol) (30 mmol) in dry methylene chloride (50 mL) was added, drop by drop (15 min), boron trifluoride etherate complex ($15.4 \mathrm{~mL}, 125 \mathrm{mmol}$). The solution was stirred 1 h at $0^{\circ} \mathrm{C}$ then at room temperature overnight. The crude solution was poured into ice water. The aqueous solution was extracted with methylene chloride. The organic phase was washed with water, diluted sodium hydrogenocarbonate, water, dried over sodium sulfate, filtered and concentrated. The yellow syrup was chromatographied
on silica gel column eluted by a mixture of methylene chloride/ether ($10: 1, \mathrm{v} / \mathrm{v}$). The first fraction was title compound.

Compounds I-IV were synthesized by this method:
2-bromoethyloxy 2, 3, 4, 6-tetra-O-acetyl- β-Dglucose I. This compound crystallized in white needles from ethyl acetate/iso-octane, yield 40%. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{10} \mathrm{Br}$: C, $42.21 ; \mathrm{H}, 5.09$; Br , 17.55. Found: $\mathrm{C}, 42.50 ; \mathrm{H}, 5.07 ; \mathrm{Br}, 16.39$. m.p. $116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{RMN}\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 5.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$ "ose"), 5.01 ($m, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose") ${ }^{\prime} 4.55\left(d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}\right.$ "ose," $J=7.8 \mathrm{~Hz}), 4.15\left(m, 3 \mathrm{H}, \mathrm{H}\right.$ "ose" and $\left.\mathrm{CH}_{2 \alpha}\right)$, 3.70, 3.80 ($m, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}$ "ose"), 3.43 ($t, 2 \mathrm{H}, \mathrm{CH}_{2 \beta}$), 2.06 (s, 3H, AcO), 2.04 ($s, 3 \mathrm{H}, \mathrm{AcO}$), 1.99 ($s, 3 \mathrm{H}$, AcO), 1.98 ($s, 3 \mathrm{H}, \mathrm{AcO}$).
2-bromoethyloxy 2, 3, 4, 6-tetra-O-acetyl- α-Dmannose II. This compound crystallized in white needles from ethyl acetate/iso-octane, yield 63%. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{10} \mathrm{Br}$: C $42.21 ; \mathrm{H}, 5.09$; Br , 17.55. Found: C, 42.29; H, 5.07; Br, 18.42, m.p. $114{ }^{\circ} \mathrm{C}$, pasty. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{ppm}): 5.31$ (s , $1 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose"), $5.23\left(t, 2 \mathrm{H}, \mathrm{CH}_{2 \alpha}\right), 4.80(d, 1 \mathrm{H}, \mathrm{H}$ C_{1} "ose," $\left.J=1.1 \mathrm{~Hz}\right), 4.28\left(\mathrm{~d}, 1 \mathrm{H},{ }^{\prime} \mathrm{ose}^{\prime}\right), 4.22(d, 1 \mathrm{H}$, "ose"), 4.13 (m, 2H, "ose"), 3.88 ($m, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}$ "ose"), $3.50\left(t, 2 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 2.13(s, 3 \mathrm{H}, \mathrm{AcO}), 2.08$ (s, $3 \mathrm{H}, \mathrm{AcO}), 2.02(s, 3 \mathrm{H}, \mathrm{AcO}), 1.97$ ($s, 3 \mathrm{H}, \mathrm{AcO}$).
3-bromopropyloxy 2, 3, 4, 6-tetra-O-acetyl- α-Dmannose III. Yield 77\%. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{10} \mathrm{Br}, 0.5 \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}: \mathrm{C}, 41.24 ; \mathrm{H}$, 5.33; Br, 22.25. Found: C, 40.85; H, 5.27; Br, 21.80, amorphous. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 5.27(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H} \mathrm{C}_{2}$ "ose"), $5.25\left(t, 2 \mathrm{H}, \mathrm{CH}_{2 \alpha}\right), 4.85\left(d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}\right.$ "ose" $J=1.4 \mathrm{~Hz}), 4.30\left(d, 1 \mathrm{H},{ }^{\prime}\right.$ ose"' $\left.^{\prime}\right), 4.24(\mathrm{~d}, 1 \mathrm{H}$, "ose" $), 4.11\left(m, 2 \mathrm{H},{ }^{\prime}\right.$ ose" $\left.^{\prime}\right), 3.92\left(m, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}\right.$ "ose"), $3.50\left(m, 4 \mathrm{H}, \mathrm{CH}_{2 \beta}\right.$, and $\left.\mathrm{CH}_{2 \gamma}\right), 2.15(\mathrm{~s}, 3 \mathrm{H}$, AcO), 2.10 ($s, 3 \mathrm{H}, \mathrm{AcO}$), 2.04 ($s, 3 \mathrm{H}, \mathrm{AcO}$), 1.99 (s, $3 \mathrm{H}, \mathrm{AcO}$).
2-bromoethyloxy 2, 3, 6-2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-hepta-O-acetyl- $\boldsymbol{\beta}$-D-maltose IV. Yield 70% Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{18} \mathrm{Br}: \mathrm{C}, 45.23$; H, 5.29; Br 10.75. Found: C, 45.53 ; H, 5.32 ; Br, 10.10 m.p. $74{ }^{\circ} \mathrm{C}$, pasty. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 5.38\left(d, 1 \mathrm{H}, \mathrm{H}_{1},{ }^{2}\right.$ ose," J $=3.8 \mathrm{~Hz}), 5.25\left(q, 2 \mathrm{H}, \mathrm{CH}_{2 \alpha}, J=10 \mathrm{~Hz}\right), 5.02(t, 1 \mathrm{H}$, "ose," $J=9.8 \mathrm{~Hz}), 4.48$ ($m, 2 \mathrm{H}$, "ose" $), 4.56(d, 1 \mathrm{H}, \mathrm{H}$ C_{1} "ose," $\left.J=7.9 \mathrm{~Hz}\right), 4.46(d d, 1 \mathrm{H}, "$ ose," $J=2.5$ and $12 \mathrm{~Hz}), 4.27-3.70(\mathrm{M}, 8 \mathrm{H}$, "ose" $), 3.42\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2 \beta}\right.$, $J=5 \mathrm{~Hz}), 2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcO}), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcO}), 2.07$ ($s, 3 \mathrm{H}, \mathrm{AcO}$), $2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcO}), 2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcO})$, 1.99 ($s, 3 \mathrm{H}, \mathrm{AcO}$), 1.97 ($s, 3 \mathrm{H}, \mathrm{AcO}$).

5, 10 , 15-tri(4-methoxyphenyl)-20-phenyl porphyrin (methyl ether of VI). A solution of pyrrole ($15.66 \mathrm{~mL}, 226 \mathrm{mmol}$), benzaldehyde ($6 \mathrm{~g}, 56.6$ mmol), and 4-methoxybenzaldehyde ($23 \mathrm{~g}, 169$ mmol) in propionic acid (250 mL) were refluxed during 30 min . The crude solution was concentrated under vacuum. The black crystals were purified by silica gel chromatography eluting with a mixture of methylene chloride/heptane (3/1,v/v).

The first red band corresponded to 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin (methyl ether of V$)$, (2.6 g , yield 6.3%), the second one was title compound and the other red bands corresponded to meso tetraphenyl porphyrin and its mono and dimethoxy analogs (3.3 g). The trimethoxy compound was crystallized from a mixture of methylene chloride/methanol (2 g , yield 4.8%).

Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 80.09; H, $5.15 ; \mathrm{N}$, 7.95. Found: C, 79.44; H, 5.20; N, 7.82. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.67(\mathrm{~s}, 8 \mathrm{H}$, pyrrole $), 8.20(m, 2 \mathrm{H}$, phenyl), 8.14 (d, 6 H , phenyl, $J=8.1 \mathrm{~Hz}$), 7.67 (m, 3 H , phenyl), 7.27 (d, 6 H , phenyl, $J=8.6 \mathrm{~Hz}$), 4.08 (s, $\left.9 \mathrm{H}, \mathrm{OCH}_{3}\right),-2.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right)$: 420.5 (522.8), 5.17 (21.4), 554 (14.2), 592.5 (8.4), 649 (9).

5,10 , 15-tri(4-hydroxyphenyl)-20-phenyl porphyrin VI. 5,10,15-tri(4-methoxyphenyl)-20-phenyl porphyrin VI-Me ($1 \mathrm{~g}, 1.412 \mathrm{mmol}$) in dry methylene chloride (75 mL) was cooled to $-20^{\circ} \mathrm{C}$ under argon. Bore tribromide ($2 \mathrm{~mL}, 21.2 \mathrm{mmol}$) was slowly added to the porphyrin solution. This solution was stirred at $-20^{\circ} \mathrm{C}$ for 30 min and at room temperature overnight. The green crude solution was diluted in ice and neutralized by a sodium hydrogenocarbonate solution. The solution was extracted by ethyl acetate. The organic phase was washed with water $(2 \times)$, dried over sodium sulfate and concentrated under vacuum. The porphyrin was crystallized from methylene chloride/ methanol ($0.905 \mathrm{~g}, 96 \%$). Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 77.63 ; \mathrm{H}, 4.74 ; \mathrm{N}, 8.23$. Found: C, 77.32; H, 4.78; N, 7.88. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{MeOD}_{4}\right), \delta$ (ppm): 8.82 (s broad, 6H, pyrrole), 8,73 (s, broad, 2 H , pyrrole), 8.09 ($\mathrm{m}, 2 \mathrm{H}$, phenyl), 7.93 ($\mathrm{d}, 6 \mathrm{H}$, phenyl, $J=8 \mathrm{~Hz}$), 7.73 ($m, 3 \mathrm{H}$, phenyl), 7.14 ($\mathrm{d}, 6 \mathrm{H}$, phenyl, $J=8 \mathrm{~Hz}$). UV-visible spectrum in methanol: $\lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 417$ (423.7), 515.5 (18.4), 552 (13.7), 593.5 (8.7), 649 (8.8).

3.3 GENERAL PROCEDURE FOR THE PREPARATION OF PER-O-ACETYLATED GLYCOSYLATED PORPHYRINS

meso-5, 10, 15, 20-tetrakis(4-hydroxyphenyl) porphyrin V or meso-5,10,15-tri(4-hydroxyphenyl)-20-phenylporphyrin VI $\left(7.5 \times 10^{-7} \mathrm{~mol}\right)$ and bromo alkyl 2,3,4,6-tetra-O-acetylated-D-glycosides (7.5 equiv. $/ \mathrm{OH}$) were dissolved in dry dimethylformamide $(30 \mathrm{~mL})$ added of potassium carbonate $(1.5 \mathrm{~g})$. The solution was heated at $60^{\circ} \mathrm{C}$ and vigorously stirred during three days. The crude solution was concentrated under vacuum. The residue was dissolved in methylene chloride, washed with water. The organic phase was dried over sodium sulfate, filtered and the solvent was evaporated. The crude product was purified by silica gel chromatography eluting with a mixture of methylene chloride/ acetone ($10: 1, \mathrm{v} / \mathrm{v}$) and crystallized from a mixture of methylene chloride/heptane or methylene chloride/methanol.

The following porphyrins were synthesized by this method:
meso-5,10,15,20-tetrakis[4-(2-ethoxy-2', $3^{\prime}, 4^{\prime}, 6^{\prime}$ -tetra-O-acetyl- β-D-glucosyl)phenyl]porphyrin, 1OAc. Crystallized from a mixture of methylene chloride/heptane, yield 62%. Anal. Calcd for $\mathrm{C}_{108} \mathrm{H}_{118} \mathrm{~N}_{4} \mathrm{O}_{44}$: C, 59.61; H, 5.47; N, 2.57. Found: C, 59.68; H, 5.55; N, 2.32. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{ppm})$: 8.83 ($s, 8 \mathrm{H}$, pyrrole), 8.10 (d, 8 H , ortho-phenyl, J $=8.4 \mathrm{~Hz}), 7.26(d, 8 \mathrm{H}$, meta-phenyl, $J=8.4 \mathrm{~Hz}), 5.31$ $\left(t, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}\right.$ "ose," $\left.J=9.3 \mathrm{~Hz}\right), 5.19\left(t, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}\right.$ "ose," $J=9.3 \mathrm{~Hz}$), $5.10\left(t, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}\right.$ "ose," J $=9.3 \mathrm{~Hz}), 4.82\left(d, 4 \mathrm{H}, \mathrm{HCC}_{1}\right.$ "ose," $\left.J=7.9 \mathrm{~Hz}\right), 4.38(t$, $8 \mathrm{H}, \mathrm{CH}_{2 \alpha}$), 4.28 (dd, $8 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}$ "ose"), 4.14 ($m, 8 \mathrm{H}$, $\mathrm{CH}_{2 \beta}$), 3.85-3.79 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}$ "ose" $)$, 2.13 ($s, 12 \mathrm{H}$, AcO), 2.10 ($s, 12 \mathrm{H}, \mathrm{AcO}$), 2.05 ($s, 12 \mathrm{H}, \mathrm{AcO}$), 2.03 (s, $12 \mathrm{H}, \mathrm{AcO}),-2.78$ ($s, 2 \mathrm{H}, \mathrm{NH}$). UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 422.5$ (433), 519 (16.8), 556 (12), 594 (9), 650 (7.2).
meso-5,10,15,20-tetrakis[4-(2-ethoxy-2', $3^{\prime}, 4^{\prime}, 6^{\prime}$ -tetra-O-acetyl- α-D-mannosyl)phenyl]porphyrin, 2-OAc. Crystallized from a mixture of methylene chloride/methanol, yield 61%. Anal. Calcd for $\mathrm{C}_{108} \mathrm{H}_{118} \mathrm{~N}_{4} \mathrm{O}_{44}, 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.61 ; \mathrm{H}, 5.60 ; \mathrm{N}, 2.53$. Found: C, 58.57; H, 5.55; N, 2.48. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{ppm}): 8.86(s, 8 \mathrm{H}$, pyrrole), $8.13(d, 8 \mathrm{H}$, orthophenyl, $J=8 \mathrm{~Hz}), 7.28(d, 8 \mathrm{H}$, meta-phenyl, $J=8 \mathrm{~Hz})$, 5.46 ($m, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}$ "ose"), 5.39 ($m, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose"), 5.30 ($m, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}$ "ose"), 5.08 ($d, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}$ "ose," $J=1 \mathrm{~Hz}), 4.45\left(m, 8 \mathrm{H}, \mathrm{CH}_{2 \alpha}\right), 4.28\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}\right.$ "ose"), $4.10\left(t, 8 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 2.21(s, 12 \mathrm{H}, \mathrm{AcO}), 2.16$ $(s, 12 \mathrm{H}, \mathrm{AcO}), 2.05(s, 12 \mathrm{H}, \mathrm{AcO}), 2.02(s, 12 \mathrm{H}, \mathrm{AcO})$, -2.78 (s, 2H, NH). UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 422.5$ (506.5), 490 (6), 519 (19.2), 556 (12.9), 593 (7.1), 650 (7.2).
meso-5, 10, 15-tri[4-(2-ethoxy-2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetraO -acetyl- $\boldsymbol{\beta}$-D-glucosyl)phenyl]-20-phenyl porphyrin, 3-OAc. Crystallized from a mixture of methylene chloride/heptane, yield 66%. Anal. Calcd for $\mathrm{C}_{92} \mathrm{H}_{96} \mathrm{~N}_{4} \mathrm{O}_{33}, 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.65$; H, 5.53; $\mathrm{N}, 3.08$. Found: C, 60.95; $\mathrm{H}, 5.44 ; \mathrm{N}, 3.06 .{ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{ppm}): 8.84(d, 8 \mathrm{H}$, pyrrole), 8.20 (dd, 2 H , orthophenyl, $J=7.5 \mathrm{~Hz}), 8.11$ (d, 6 H , ortho-phenyl, J $=7.8 \mathrm{~Hz}), 7.76(\mathrm{~m}, 3 \mathrm{H}$, phenyl), $7.26(d, 6 \mathrm{H}$, metaphenyl, $J=8 \mathrm{~Hz}$), 5.31 ($t, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}$ "ose," J $=9.3 \mathrm{~Hz}), 5.17\left(t, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}\right.$ "ose," $\left.J=7.6 \mathrm{~Hz}\right), 5.13(t$, $3 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose," $J=7.4 \mathrm{~Hz}$), $4.82\left(d, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}\right.$ "ose," $J=7.4 \mathrm{~Hz}), 4.40\left(t, 6 \mathrm{H}, \mathrm{CH}_{2 \alpha}\right), 4.33\left(d d, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}\right.$ "ose"), 4.22 (dd, 3H, H C 6 "ose"), 4.14 ($m, 6 \mathrm{H}$, $\mathrm{CH}_{2 \beta}$), 3.83-3.80 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}$ "ose"), 2.13 ($s, 9 \mathrm{H}$, AcO), 2.09 ($s, 9 \mathrm{H}, \mathrm{AcO}$), 2.05 ($s, 9 \mathrm{H}, \mathrm{AcO}$), 2.03 (s, $9 \mathrm{H}, \mathrm{AcO}),-2.78$ (s, 2H, NH). UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 421.5$ (522.7), 518 (20.9), 555 (13.5), 591 (8.8), 649 (8.3).
meso-5, 10, 15-tri[4-(2-ethoxy-2', $3^{\prime}, 4^{\prime}, 6^{\prime}$ - tetra-O-acetyl- α-D-mannosyl)phenyl]-20-phenyl porphyrin, 4-OAc. Crystallized from a mixture of methylene chloride/heptane, yield 73%. Anal. Calcd for $\mathrm{C}_{92} \mathrm{H}_{96} \mathrm{~N}_{4} \mathrm{O}_{33}, 3 \mathrm{H}_{2} \mathrm{O}$: C, 60.06 ; $\mathrm{H}, 5.59$; $\mathrm{N}, 3.05$.

Found: C, 59.65; H, 5.52; N, 2.84. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{ppm}): 8.86$ ($s, 4 \mathrm{H}$, pyrrole), 8.86 ($d, 2 \mathrm{H}$, pyrrole), 8.81 (d, 2H, pyrrole), 8.20 (dd, 2H, ortho-phenyl, J $=7.5 \mathrm{~Hz}), 8.12(\mathrm{~d}, 6 \mathrm{H}$, ortho-phenyl, $J=7.8 \mathrm{~Hz}), 7.75$ ($m, 3 \mathrm{H}$, phenyl), 7.8 (dd, 6 H , meta-phenyl, $J=8 \mathrm{~Hz}$), 5.49 (dd, $3 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}$ "ose," $J=6.5$ and 3 Hz), 5.42 (m, $3 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose"), 5.38 ($t, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}$ "ose," J $=10.3 \mathrm{~Hz}), 5.08\left(d, 3 H, \mathrm{H} \mathrm{C}_{1} "\right.$ ose, $\left.^{\prime} \mathrm{J}=1.4 \mathrm{~Hz}\right), 4.44$ $\left(m, 6 \mathrm{H}, \mathrm{CH}_{2 \alpha}\right), 4.49$ (dd, 3H, H C 6 "ose"), 4.22 (dd, 3H, H C 6 "ose" $), 4.28$ ($m, 3 \mathrm{H}, \mathrm{HC}_{5}$ "ose" $), 4.09$ (m, $\left.6 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 2.20(s, 9 \mathrm{H}, \mathrm{AcO}), 2.15(\mathrm{~s}, 9 \mathrm{H}, \mathrm{AcO}), 2.05$ ($s, 9 \mathrm{H}, \mathrm{AcO}$), 2.01 ($s, 9 \mathrm{H}, \mathrm{AcO}$), -2.78 ($s, 2 \mathrm{H}, \mathrm{NH}$). UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 421.5 (450), 489 (5.4), 518 (17.6), 555 (10.9), 592.5 (6.5), 649 (6.1).
meso - 5, 10, 15 - tri[4-(3-propoxy-2', $3^{\prime}, 4^{\prime}, 6^{\prime}$ -tetra-O-acetyl- α-D-mannosyl)phenyl]-20-phenyl porphyrin, 5-OAc. Crystallized from a mixture of methylene chloride/heptane, yield 43%. Anal. Calcd for $\mathrm{C}_{95} \mathrm{H}_{102} \mathrm{~N}_{4} \mathrm{O}_{33}, \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.82 ; \mathrm{H}, 5.68$; N, 3.04. Found: $\mathrm{C}, 61.71 ; \mathrm{H}, 6.01 ; \mathrm{N}, 2.55 .{ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.86(\mathrm{~s}, 6 \mathrm{H}$, pyrrole $), 8.81(d, 2 \mathrm{H}$, pyrrole), 8.18 ($m, 2 \mathrm{H}$, ortho-phenyl, $J=8.4 \mathrm{~Hz}$), 8.12 $(d, 6 \mathrm{H}$, ortho-phenyl, $J=8.6 \mathrm{~Hz}), 7.76(m, 3 \mathrm{H}$, phenyl), 7.28 (d, 6H, meta-phenyl), 5.36 ($m, 10 \mathrm{H}$, "ose"), 4.96 (d, 3H, H C 1 "ose," $J=1.5 \mathrm{~Hz}$), 4.33 ($m, 10 \mathrm{H}$, "ose," and $\mathrm{CH}_{2 \alpha}$), 4.10 ($m, 10 \mathrm{H}$, "ose"), 3.84 (m, $\left.6 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 2.30\left(t, 6 \mathrm{H}, \mathrm{CH}_{2 \gamma}\right), 2.18(s, 9 \mathrm{H}, \mathrm{AcO}), 2.16$ (s, 9H, AcO), 2.15 ($s, 9 \mathrm{H}, \mathrm{AcO}), 2.01$ ($s, 9 \mathrm{H}, \mathrm{AcO}$), $-2.77(s, 2 H, N H)$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 421$ (450), 518 (18.1), 554.5 (12.2), 594 (7.1), 650 (7.3).

3.4 GENERAL PROCEDURE FOR THE PREPARATION OF GLYCOCONJUGATED PORPHYRINS

Sodium methanolate in dry methanol ($100 \mu \mathrm{~L}, 0.1$ N) was added to a solution of protected glycosylated porphyrin $\left(2 \times 10^{-5} \mathrm{~mol}\right)$ in dry methanol (10 $\mathrm{mL})$. The solution was stirred at room temperature for 60 min . Amberlite MB3 (200 mg) was added to the solution which was stirred 15 min then filtered. The resin was washed with methanol. The solution was concentrated under vacuum. The crude product was crystallized from MeOH , 1,2dichloroethane and used without purification.
The following glycoconjugated porphyrins were synthesized by this method:
meso-5, 10, 15, 20 - tetrakis [4- (2-ethoxy - β-D glucosyl)phenyl]porphyrin, 1. Yield 100\%. Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{28}, 12 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.14 ; \mathrm{H}, 6.34 ; \mathrm{N}$, 3.26. Found: C, $52.94 ;$ H, $5.74 ;$ N, 3.44. ${ }^{1} \mathrm{H}$ RMN (pyridine $\left.\mathrm{d}_{5}\right), \delta(\mathrm{ppm}): 9.15(\mathrm{~s}, 8 \mathrm{H}$, pyrrole), $8.26(d, 8 \mathrm{H}$, ortho-phenyl, $J=7.6 \mathrm{~Hz}$), 7.42 ($d, 8 \mathrm{H}$, meta-phenyl, J $=7.6 \mathrm{~Hz}), 5.08\left(d, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}\right.$ "ose," $\left.J=8.4 \mathrm{~Hz}\right), 4.63$ and $4.46\left(m, 8 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}\right.$ "ose"), 4.63 and $4.53(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2 \alpha}\right), 4.30\left(t, 8 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 4.32\left(m, 8 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}\right.$, and H $\mathrm{C}_{4}{ }^{\prime \prime}$ ose" $^{\prime \prime}$), 4.18 ($t, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose"), 4.06 ($m, 4 \mathrm{H}, \mathrm{H}$ C_{5} "ose"), -2.26 (s, 2H, NH). UV-visible spectrum
in pyridine: $\lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 425.5$ (337), 520.5 (15.8), 558 (13), 596.5 (7.7), 653 (8.2).
meso-5, 10, 15, 20 -tetrakis[4-(2-ethoxy- α-D-mannosyl)-phenyl]prophyrin, 2. Yield 100%. Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{28}, 5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.28 ; \mathrm{H}, 6.07$; N, 3.52. Found: C, $56.95 ; \mathrm{H}, 5.78 ; \mathrm{N}, 3.76 .{ }^{1} \mathrm{H}$ RMN (DMF d_{7}), $\delta(\mathrm{ppm}): 8.98(s, 8 \mathrm{H}$, pyrrole), $8.82(d, 8 \mathrm{H}$, ortho-phenyl, $J=8.2 \mathrm{~Hz}$), 7.48 (d, 8 H , meta-phenyl, $J=8.2 \mathrm{~Hz}$), 5.08 (broad, $4 \mathrm{H}, \mathrm{OH} \mathrm{C}_{2}$ "ose"), $5.00(d$, $4 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}$ "ose," $J=1.5 \mathrm{~Hz}$), 4.93 (broad, $4 \mathrm{H}, \mathrm{OH} \mathrm{C}_{3}$ "ose"'), 4.86 (broad, 4H, OH "ose"), 4.62 (broad, 4H, OH "ose"), $4.56\left(t, 8 \mathrm{H}, \mathrm{CH}_{2 \alpha}, J=4.8 \mathrm{~Hz}\right), 4.25$ ($d t$, $\left.4 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 4.02\left(d t, 4 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 3.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}\right.$ "ose"), 3.80-3.75-3.73 ($m, 16 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}, \mathrm{H} \mathrm{C}_{5}, \mathrm{HC}_{6}$ "ose"), -2.70 (s, 2H, NH). UV-visible spectrum in pyridine $\mathrm{MeOH}(1 / 24, \mathrm{v} / \mathrm{v})$: $\lambda_{\max }, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 418.5 (434.9), 486 (7.8), 516.5 (18), 553.5 (14), 593 (8.3), 650 (8.6).
meso-5,10,15-tri[4-(2-ethoxy- $\boldsymbol{\beta}$-D-glucosyl)phen-yll-20-phenyl porphyrin, 3. Yield 100%. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{21}, 12 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 54.54 ; \mathrm{H}, 6.46 ; \mathrm{N}$, 3.74. Found: C, 54.77; H, 5.28; N, 3.63. ${ }^{1} \mathrm{H}$ RMN (DMF d_{7}), $\delta(\mathrm{ppm}): 8.98(s, 4 \mathrm{H}$, pyrrole $), 8.95(d, 2 \mathrm{H}$, pyrrole), 8.91 (d, 2H, pyrrole), 8.31 ($\mathrm{dd}, 2 \mathrm{H}$, phenyl, $J=8 \mathrm{~Hz}), 8.22(d, 6 \mathrm{H}$, phenyl, $J=8 \mathrm{~Hz}), 7.89(d d, 3 \mathrm{H}$ phenyl), 7.46 (d, 6H, meta-phenyl, $J=8 \mathrm{~Hz}$), 5.40 (s broad, $3 \mathrm{H}, \mathrm{OH} \mathrm{C}_{2}$ "'ose"), 5.29 (s broad, $6 \mathrm{H}, \mathrm{OH} \mathrm{C}_{3}$ and $\mathrm{OH} \mathrm{C}_{4}$ "ose"), 4.53 (d, 3H, H C ${ }_{1}$ "ose"), 4.76 (s broad, $3 \mathrm{H}, \mathrm{OH} \mathrm{C}_{6}$ "ose" $), 4.53$ (d, 3H, H C 3 " ose"), $4.53\left(m, 6 \mathrm{H}, \mathrm{CH}_{2 \alpha}\right), 4.41$ and $4.12\left(q, 6 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 3.93$ and $3.72\left(m, 6 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}\right.$ "ose" $), 3.46\left(m, 6 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}\right.$, and $\mathrm{H} \mathrm{C}_{4}$ "ose"), $3.37\left(m, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}\right.$ "ose" $)$, $3.30(t$, $3 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose"), -2.69 (s, 2H, NH). UV-visible spectrum in pyridine/ $\mathrm{MeOH}(1 / 24, \mathrm{v} / \mathrm{v})$: $\lambda_{\text {max }}, \mathrm{nm}$ $\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 417.5$ (384.9), 515 (17), 552 (12.4), 591 (8.4), 648 (8).
meso-5,10,15-tri[4-(2-ethoxy- α-D-mannosyl) phenyll-20-phenylporphyrin, 4. Yield 85\%. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{21}, 10 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 55.88$; H, 6.35; N, 3.83. Found: C, 55.22; H, 5.30; N, 3.85. ${ }^{1} \mathrm{H}$ RMN (DMF d_{7}), $\delta(\mathrm{ppm}): 8.98(s, 4 \mathrm{H}$, pyrrole $), 8.98(d, 2 \mathrm{H}$, pyrrole, $J=4.4 \mathrm{~Hz}), 8.90(d, 2 \mathrm{H}$, pyrrole, $J=4.4 \mathrm{~Hz})$, 8.31 (dd, 2H, ortho-phenyl, $J=8 \mathrm{~Hz}$), 8.21 (d, 6H, ortho-phenyl, $J=8 \mathrm{~Hz}$), 7.89 (dd, 3H, phenyl, J $=8 \mathrm{~Hz}), 7.46(d, 6 \mathrm{H}$, meta-phenyl, $J=8 \mathrm{~Hz}), 5.04(s$ broad, $3 \mathrm{H}, \mathrm{OH} \mathrm{C}_{2}$ "ose" $), 4.99$ (d, 3H, H C 1 "ose"), 4.95 (s broad, $3 \mathrm{H}, \mathrm{OH} \mathrm{C}_{3}$ "ose"), 4.64 (broad, 6 H , OH "ose"), $4.54\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2 \alpha}\right), 4.23$ and 4.03 (m, $6 \mathrm{H}, \mathrm{CH}_{2 \beta}$), 3.93 ($m, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose"), 3.91 ($m, 3 \mathrm{H}, \mathrm{H}$ C_{3} "ose"'), 3.80 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}$ "ose"), 3.76-3.731 (m , $9 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}$ and $\mathrm{H} \mathrm{C}_{6}$ "ose"), -2.71 ($s, 2 \mathrm{H}, \mathrm{NH}$). UVvisible spectrum in pyridine/ $\mathrm{MeOH}(1 / 24, \mathrm{v} / \mathrm{v})$: $\lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, \mathrm{Lmmol}^{-1} \mathrm{~cm}^{-1}\right): 417$ (362.9), 515.5 (15.2), 551 (10.6), 591.5 (6.3), 648 (6.2).
meso-5,10,15-tri [4-(3-propoxy- α-D-mannosyl) phenyl]-20-phenylporphyrin, 5. Yield 100\%. Anal. Calcd for $\mathrm{C}_{71} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}_{21}, 5 \mathrm{H}_{2} \mathrm{O} . \mathrm{C}, 60.33 ; \mathrm{H}, 6.28 ; \mathrm{N}$, 3.96. Found: C, 60.38; H, 6.52; N, 3.81. ${ }^{1} \mathrm{H}$ RMN $\left(\right.$ DMF $\left.d_{7}\right), \delta(\mathrm{ppm}): 8.99(s, 4 \mathrm{H}$, pyrrole), $8.98(d, 2 \mathrm{H}$,
pyrrole, $J=4.4 \mathrm{~Hz}), 8.91(d, 2 \mathrm{H}$, pyrrole, $J=4.4 \mathrm{~Hz})$, 8.32 (dd, 2 H , ortho-phenyl, $J=8$ and 3 Hz), 8.22 (d, 6 H , ortho-phenyl, $J=8.3 \mathrm{~Hz}$), 7.89 (dd, 3 H , phenyl, $J=8$ and 3 Hz$), 7.47(d, 6 \mathrm{H}$, meta-phenyl, $J=8.3 \mathrm{~Hz})$, 4.99 (s broad, 3H, OH C 2 "ose"), 4.89 (d, 3H, H C 1 "ose"), 4.87 (s broad, 3H, OH C ${ }_{3}$ "ose"), 4.75 (s broad, $3 \mathrm{H}, \mathrm{OH} \mathrm{C}_{4}$ "ose"), 4.55 (broad, $3 \mathrm{H}, \mathrm{OH}$ "ose"'), $4.45\left(t, 6 \mathrm{H}, \mathrm{CH}_{2 \alpha}, J=6 \mathrm{~Hz}\right), 4.09$ and 3.77 $\left(m, 6 \mathrm{H}, \mathrm{CH}_{2 \gamma}\right), 3.89\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}\right.$ and $\mathrm{H} \mathrm{C}_{3}$ "ose"), 3.71 ($m, 3 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}$ "ose"), 3.72 ($m, 9 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}$ and H C_{6} "ose"), $2.27\left(m, 6 \mathrm{H}, \mathrm{CH}_{2 \beta}\right)$, $-2.69(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in THF/ $\mathrm{H}_{2} \mathrm{O}(4 / 1, \mathrm{v} / \mathrm{v}): \lambda_{\max }$, $\mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 420$ (298.7), 516.5 (12.1), 553 (8.5), 594 (4.6), 651 (4.8).
meso-5-(2'-formylvinyl)-10-(4-methoxyphenyl)-$2,3,7,8,12,13,17,18$-octaethylporphyrin nickel, 14a and meso-5-(2^{\prime}-formylvinyl)-15-(4-methoxy-phenyl)-2,3,7,8,12,13,17,18-octaethylporphyrin nickel, 14b. To a stirred suspension of 3-dimethylamino acrolein (2.10 mL) in dry dichloroethane (90 mL) at $-20^{\circ} \mathrm{C}, \mathrm{POCl}_{3}(1.8 \mathrm{~mL})$ was added drop by drop. Powder of nickel complex 13 $(300 \mathrm{mg})$ was added and the solution was warmed to room temperature and stirred for three and a half hours. The reaction was controlled by thin layer chromatography. The reaction mixture was quenched into a saturated sodium acetate solution (25 mL) and stirred vigorously ($1 / 2$ hour) then filtered, washed with water, dilute HCl , then water. The organic layer was dried over sodium sulfate, filtered and concentrated. The residue was chromatographied on silica gel and eluted in dichloromethane/heptane (5:1). Two green fractions were collected which corresponded to each isomer. The first one is the compound $14 a$ and the other 14b.
meso-5-(2'-formylvinyl)-10-(4-methoxyphenyl)2, 3, 7, 8, 12, 13, 17, 18-octaethylporphyrin nickel, 14a. 235 mg , yield 72.5%. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Ni}: \mathrm{C}, 73.51 ; \mathrm{H}, 6.97$; N, 7.45. Found: C, $72.96 ; \mathrm{H}, 6.94 ; \mathrm{N}, 7.27 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm})$: $9.71(d, 1 \mathrm{H}, \mathrm{CHO}, J=8 \mathrm{~Hz}), 9.24\left(d, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right.$ vinyl, J $=15 \mathrm{~Hz}), 9.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso $), 9.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso $)$, 7.76 (d, 2H, ortho-phenyl, $J=8 \mathrm{~Hz}), 7.09(d, 2 \mathrm{H}$, metaphenyl, $J=8 \mathrm{~Hz}$), $5.63\left(d d, 1 \mathrm{H}, \mathrm{H}_{\beta}\right.$ vinyl, $J=8$ and 15 $\mathrm{Hz}), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65\left(m, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}, J\right.$ $=7.3 \mathrm{~Hz}), 0.44\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right)$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }$, $\mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right)$: 454 (101.9), 618.5 (11.6).
meso-5-(2'-formylvinyl)-15-(4-methoxyphenyl)-$2,3,7,8,12,13,17,18$-octaethylporphyrin nickel, 14b. 40 mg yield 12.5%. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Ni}, 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 70.33 ; \mathrm{H}, 6.73 ; \mathrm{N}$, 7.06. Found: C, 70.82; H, 7.06; N, 6.90. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 9.77(d, 1 \mathrm{H}, \mathrm{CHO}, J=8 \mathrm{~Hz}), 9.29$ (d, 1H, H ${ }_{\alpha}$ vinyl, $J=15 \mathrm{~Hz}$), 9.16 ($s, 2 \mathrm{H}, \mathrm{H}$ meso), 7.75 (d, 2 H , ortho-phenyl, $J=8 \mathrm{~Hz}$), 7.07 (d, 2 H , metaphenyl, $J=8 \mathrm{~Hz}), 5.56\left(d d, 1 \mathrm{H}, \mathrm{H}_{\beta}\right.$ vinyl, $J=8$ and 15
$\mathrm{Hz}), 4.05$ ($s, 3 \mathrm{H}, \mathrm{OMe}$), 3.67 ($m, 12 \mathrm{H}, \mathrm{CH}_{2}$), 2.60 (q, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65\left(m, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(t, 6 \mathrm{H}, \mathrm{CH}_{3}, J\right.$ $=7.3 \mathrm{~Hz}$). UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }$, $\mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right)$: 420 (shoulder, 65.5), 449.5 (77.1), 548 (6.7), 581 (8), 608 (8.2).
meso-5-(4-methoxyphenyl)-2,3,7,8,12,13,17,17-octaethyl-8-10-benzochlorin nickel, 15. To (2-formylvinyl)-5-(para-methoxyphenyl)porphyrin 14a ($100 \mathrm{mg}, 1.3 \times 10^{-4} \mathrm{~mol}$) under an argon atmosphere was added trifluoroacetic acid (7 mL). The mixture was stirred for 1 h , the color of solution changed from green/orange. Dichloromethane was added after evaporation of acid, and the mixture was washed with water and neutralized with saturated sodium bicarbonate solution. The organic layer was washed with water and dried over sodium sulfate. The residue obtained after filtration and evaporation was chromatographied on silica gel eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane $(5 / 1)$. The first green fraction was collected and evaporated to give a green powder (57 mg , yield 58%).

Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{ONi}$: C, 75.11; H, 7.12; N, 7.62. Found: C, 75.00; H, 7.42; N, 6.90. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}\right.$ meso, and H_{c} benzo), 8.40 ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 7.62 (d, 2 H , orthophenyl, $J=8 \mathrm{~Hz}$), $7.64\left(m, 2 \mathrm{H}, \mathrm{H}_{a}\right.$ and H_{b} benzo), 6.96 (d, 2H, meta-phenyl, $J=8 \mathrm{~Hz}$), 3.96 ($s, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.40\left(m, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11\left(q, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.88(q$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.63$ $\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.06\left(t, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 429.5$ (70), 523.5 (shoulder), 590 (shoulder), 642 (shoulder), 693.5 (31.1).
meso-5-(4-hydroxyphenyl)-2,3,7,8,12,13,17,17-octaethyl-8-10-benzochlorin nickel, 16. A solution of meso-5-(para-methoxyphenyl)-2, 3, 7, 8, 12, 13, 17, 17-octaethyl-8-10-benzochlorin Nickel 15 (171 mg, $2.31 \times 10^{-4} \mathrm{~mol}$) in dry methylene chloride (30 mL) was cooled to $-20^{\circ} \mathrm{C}$ under argon. Bore tribromide ($1.665 \mathrm{~mL}, 15$ equiv.) was slowly added to the solution which was stirred at $-20^{\circ} \mathrm{C}$ for 30 min then heated to room temperature overnight. The green crude solution was diluted in ice and neutralized by a sodium bicarbonate solution then extracted by methylene chloride. The organic phase was washed by water $(2 \times)$, dried over sodium sulfate, filtered and concentrated under vacuum. The benzochlorin was chromatographied on silica gel eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /heptane ($5 / 1$) then crystallized from methylene chloride/methanol ($141 \mathrm{mg}, 84 \%$).

Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{ONi}, 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.34 ; \mathrm{H}$, 7.18; N, 7.40. Found: C, 71.34; H, 6.79; N, 7.21. UVvisible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 429.5 (92.7), 523.5 (shoulder), 647 (shoulder), 693 (43.2).
meso-5-(4-hydroxyphenyl)-2,3,7,8,12,13,17,17-octaethyl-8-10-benzochlorin, 17. Solid nickel benzochlorin 16 ($110 \mathrm{mg}, 1.5 \times 10^{-4} \mathrm{~mol}$) was dissolved in concentrated sulfuric acid (8 mL) and stirred at room temperature for $1 / 2$ hour. Dichloromethane
and water was slowly added and the solution was neutralized with saturated hydrogen carbonate solution. The organic layer was dried over sodium sulfate. The residue obtained after filtration and evaporation was chromatographied on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone $(100 / 1, \mathrm{v} / \mathrm{v})$. The title compound as green powder (71 mg) was collected (yield: 73\%).
Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, ~ 81.29 ; \mathrm{H}, 7.98$; N, 8.43. Found: C, 81.05; H, 7.75; N, 8.05. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 9.20\left(d, 1 \mathrm{H}, \mathrm{H}_{c}\right.$ benzo, $\left.J=8.3 \mathrm{~Hz}\right)$, 8.89 ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 8.35 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}$ meso), 7.89 ($\mathrm{t}, 1 \mathrm{H}$, H_{b} benzo, $J=7.8 \mathrm{~Hz}$), 7.72 (d, 2 H , ortho-phenyl, J $=8 \mathrm{~Hz}), 7.72\left(d, 1 \mathrm{H}, \mathrm{H}_{a}\right.$ benzo, $\left.J=8.3 \mathrm{~Hz}\right), 6.93(d$, 2 H , meta-phenyl, $J=8 \mathrm{~Hz}$), 4.07 (d, 2H, NH), 3.68 (m , $4 \mathrm{H}, \mathrm{CH}_{2}$), $3.46\left(t, 6 \mathrm{H}, \mathrm{CH}_{2}, J=7.6 \mathrm{~Hz}\right.$), 2.70 (broad, H, OH), $2.21\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73$ $\left(t, 3 H, C_{3}, J=7.4 \mathrm{~Hz}\right), 1.59\left(m, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92(t$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right),-0.02\left(t, 6 \mathrm{H}, \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right)$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 418 (95.4), 548.5 (7.4), 581.5 (9.6), 618.5 (11.1), 673 (26.1).
meso-5-[4-(2-ethoxy-2', $3^{\prime}, 6^{\prime}-2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}-h e p t a-$ O-acetyl- $\boldsymbol{\beta}$-D-maltosyl) phenyl]-2,3, 7, 8, 12, 13,17, 17-octaethyl-8,10-benzochlorin, 18. Benzochlorin $17\left(15 \mathrm{mg}, 2.26 \times 10^{-5} \mathrm{~mol}\right)$ and 2-bromo ethoxy 2, 3, 6-2' $\mathbf{3}^{\prime}, 4^{\prime}, 6^{\prime}$-hepta-O-acetyl- β-D-maltose IV $\left(127 \mathrm{mg}, 1.7 \times 10^{-4} \mathrm{~mol}\right)$ were dissolved in dry dimethylformamide (15 mL) added of potassium carbonate $(0.250 \mathrm{~g})$. The solution was heated at $60^{\circ} \mathrm{C}$ and vigorously stirred during three days under argon without light. The crude solution was concentrated under vacuum. The residue was dissolved in methylene chloride, washed by water. The organic phase was dried over sodium sulfate, filtered and the solvent was evaporated. The crude product was purified by silica gel chromatography eluted by a mixture of methylene chloride/acetone (20/1, v/v) and crystallized from a mixture of methylene chloride/heptane (38 mg , yield 95%).

Anal. Calcd for $\mathrm{C}_{73} \mathrm{H}_{90} \mathrm{~N}_{4} \mathrm{O}_{19}, 7 \mathrm{H}_{2} \mathrm{O}$: C, 60.16; H , 6.33; N, 3.14. Found: C, 60.14; H, 6.80; N, 3.14. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}), $\delta(\mathrm{ppm}): 9.21\left(d, 1 \mathrm{H}, \mathrm{H}_{c}\right.$ benzo), 8.88 ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 8.36 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}$ meso), $7.90\left(t, 1 \mathrm{H}, \mathrm{H}_{b}\right.$ benzo), 7.79 (d, 2H, ortho-phenyl), 7.69 (d, 1H, H_{a} benzo), 7.01 (d, 2 H , meta-phenyl), 5.39 ($d d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{3^{\prime}}$ "ose"), 5.34 ($d d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}$ "ose"), 5.07 ($t, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}$ ' "ose"), 4.95 ($d d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose"), 4.88 ($d \mathrm{~d}, 1 \mathrm{H}, \mathrm{H}$ C_{2}, "ose"), $4.88\left(d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}\right.$ ' "ose", $J=4 \mathrm{~Hz}$), 4.80 (dd, 1H, H C ${ }_{1}$ "ose", $J=8 \mathrm{~Hz}$), $4.57\left(d d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{6}\right.$ "ose"), 4.29 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2 \alpha}$), 4.27 (dd, 1H, H C 6^{\prime} "ose"), 4.07 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}$), 4.07 ($t, 2 \mathrm{H}, \mathrm{CH}_{2 \beta}$), 4.07 (m , $3 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}, \mathrm{H} \mathrm{C}_{6}$, and $\mathrm{H} \mathrm{C}_{6}$, "ose"), 3.99 ($m, 1 \mathrm{H}, \mathrm{H}$ C_{5}, "ose"), 3.78 ($t, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}$ "ose"), 3.69 ($q, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}_{12}$), $3.62\left(q, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{2}\right), 3.45\left(q, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{17}\right)$, $3.42\left(q, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{12}\right.$ and $\left.\mathrm{C}_{13}\right), 2.19\left(q, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{3}\right)$, $1.96\left(q, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{7}\right), 1.73\left(t, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{12}\right), 1.58(t$, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{12}$ and C_{13}), $1.52\left(t, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{2}\right), 0.90(t$, $\left.3 \mathrm{H}, \quad \mathrm{CH}_{3} \quad \mathrm{C}_{3}\right),-0.02\left(t, 6 \mathrm{H}, \mathrm{CH}_{3} \quad \mathrm{C}_{7}\right)$. UV-
visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\lambda_{\max }, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 418 (74.5), 548.5 (shoulder), 581.5 (7.9), 618.5 (9), 673 (22.7).
meso -5-[4-(2 -ethoxy - $\boldsymbol{\beta}$-D-maltosyl)phenyl]-2, 3, 7, 8, 12, 13, 17,17-octaethyl-8,10-benzochlorin, 6. Sodium methanolate in dry methanol ($100 \mu \mathrm{~L}, 0.1$ N) was added to a solution of protected glycosylated benzochlorin $18\left(10 \mathrm{mg}, 0.7 \times 10^{-5} \mathrm{~mol}\right)$ in dry methanol (10 mL). The solution was stirred at room temperature for 60 min . Amberlite MB3 (100 mg) was added to the solution which was stirred 15 min then filtered. The resin was washed with methanol. The solution was concentrated under vacuum. The crude product was crystallized in a mixture $\mathrm{MeOH} / 1-2$ dichloroethane/heptane and used without purification (8 mg , yield 100%).

Anal. Calcd for $\mathrm{C}_{59} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{12}$: C, 68.58; H, 7.41; N, 5.42. Found: C, 68.27; H, 7.12; N, 5.15. ${ }^{1} \mathrm{H}$ NMR (pyridine $\left.d_{5}\right), \delta(\mathrm{ppm}): 9.50\left(d, 1 \mathrm{H}, \mathrm{H}_{c}\right.$ benzo), 9.26 (s, $1 \mathrm{H}, \mathrm{H}$ meso), 8.68 ($s, 1 \mathrm{H}, \mathrm{H}$ meso), $8.12\left(t, 1 \mathrm{H}, \mathrm{H}_{b}\right.$ benzo), 7.96 ($d, 2 \mathrm{H}$, ortho-phenyl), $7.89\left(d, 1 \mathrm{H}, \mathrm{H}_{a}\right.$ benzo), $7.49\left(m, 2 \mathrm{H}, \mathrm{OH} \mathrm{C} C_{2}\right.$ and $\left.\mathrm{C}_{3}\right), 7.47(t, 1 \mathrm{H}, \mathrm{OH}$ C_{2}), 7.28 (d, 2H, meta-phenyl), 7.09 ($m, 2 \mathrm{H}, \mathrm{OH} \mathrm{C}_{3}$, and $\left.\mathrm{C}_{4^{\prime}}\right), 6.38\left(t, 2 \mathrm{H}, \mathrm{OH} \mathrm{C}_{6}\right), 6.32\left(t, 2 \mathrm{H}, \mathrm{OH} \mathrm{C} 6^{\prime}\right)$, $5.95\left(d, 1 H, \mathrm{H} \mathrm{C}_{1}, ~ "\right.$ ose" $\left.^{\prime}, J=4 \mathrm{~Hz}\right), 4.61(d d, 1 \mathrm{H}, \mathrm{H}$ C_{3}, "ose" $), 4.95$ (d, 1H, H C ${ }_{1}$ "ose", $J=8 \mathrm{~Hz}$), 4.51 (dd, 2H, H C 6 "ose" $), 4.54\left(t, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}\right.$ "ose"), 4.47 $\left(t, 2 \mathrm{H}, \mathrm{CH}_{2 \alpha}\right), 4.20\left(t, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}\right.$, "ose" $), 4.40(m, 2 \mathrm{H}$, $\mathrm{H} \mathrm{C}_{3}$ and $\mathrm{H} \mathrm{C}_{4}$ "ose"), $4.39\left(t, 2 \mathrm{H}, \mathrm{CH}_{2 \beta}\right), 4.09(d d$, $1 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ "ose"), 4.17 (dd, 1H, H C 2_{2}, "ose"), 4.05 (dd, 1H, H C 6 , "ose"), 4.03 (dd, 1H, H C 6 , "ose"), $3.87\left(m, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}\right.$, "ose"'), $3.67\left(q, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{12}\right), 3.63$ $\left(q, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49\left(q, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42\left(q, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.38\left(q, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{3}\right), 2.13\left(q, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{7}\right)$, $1.72\left(t, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{12}\right), 1.66\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65(t, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.58\left(t, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03(t, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}_{3}\right), 0.15\left(t, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{7}\right)$. UV-visible spectrum in $\mathrm{MeOH}: \lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 415$ (68.9), 546 (shoulder), 582 (10.2), 618 (11.3), 672 (24.3).

1, 2, 3, 4-di-O-isopropylidene-6-(1-acetoxy-2-methyl-2-nitro)- $\boldsymbol{\alpha}$-D-galactose, 20. A solution of formyl protected galactose $19(1.98 \mathrm{~g}, 7.68 \mathrm{mmol})$ and dimethyl-aminopyridine ($31 \mathrm{mg}, 0.26 \mathrm{mmol}$) in nitromethane (1.1 mL) was stirred under reflux and argon for 48 h .1 .5 mL of acetic anhydride (15 mmol) in 5.5 mL of methylene chloride was added. The solution was stirred during 24 h . The crude mixture was quenched by a solution of aqueous sodium hydrogenocarbonate (3 g in 15 mL) and then the aqueous phase was extracted by methylene chloride. The organic layers were dried over sodium sulfate, filtered and evaporated. The title product was purified by silica gel chromatography eluted with methylene chloride (2.61 g , yield 91%) and used without other characterization.

2-ethoxycarbonyl-3-(1', 2', 3', 4'-di-O-iso-propylidene- α-D-galactosyl)-4-methyl-pyrrole, 21. Compound 20 ($2.24 \mathrm{~g}, 5.96 \mathrm{mmol}$) was dissolved in isopropanol THF $(1 / 1, \mathrm{v} / \mathrm{v}, 4.4 \mathrm{~mL})$. This solution
was added to 1,8-diazabicyclo(5.4.0)undec-7-en (DBU) (1.95 g), ethyl isocyanate ($5.2 \mathrm{~mL}, 0.65 \mathrm{mmol}$) in isopropanol THF ($12.5 \mathrm{~mL}, 1 / 1, \mathrm{v} / \mathrm{v}$) at $0^{\circ} \mathrm{C}$. The solution was stirred 48 h at room temperature then was concentrated under vacuum. The crude product was purified by silica gel chromatography eluted by methylene chloride. The title product $(1.89 \mathrm{~g})$ was obtained in 83% yield.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{7}$: C, 59.83; $\mathrm{H}, 7.14$. Found: C, 59.93; H, 7.07. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta$ (ppm): 8.74 (s, 1H, NH), 6.64 (d, 1H, H_{5}-pyr, J $=2.7 \mathrm{~Hz}), 5.75\left(d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}\right.$, "ose"), $5.67(d, 1 \mathrm{H}, \mathrm{H}$ C_{1}, "ose," $J=4 \mathrm{~Hz}$), 4.69 (dd, 1H, H C 4_{4} ' "ose"), 4.45 (dd, 1H, HC 2 , "ose"), $4.30\left(q, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.25$ (d, 1H, H C 3_{3} ' "ose"), 2.24 ($s, 3 \mathrm{H}, 4-\mathrm{CH}_{3}$), 1.57-1.54-$1.37-1.28(s, 12 \mathrm{H}$, isopropylidene $), 1.30(t, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$).

2-benzyloxycarbonyl-3-(1', $2^{\prime}, 3^{\prime}, 4^{\prime}$-di-O-iso-propylidene- α-D-galactosyl) 4-methyl-pyrrole, 22. To a solution of sodium ($30 \mathrm{mg}, 1.29 \mathrm{mmol}$) dissolved in benzylic alcohol (6 mL) pyrrole 21 (1.9 g , 4.98 mmol) was added and the mixture was warmed to $100^{\circ} \mathrm{C}$ during 4 h under a pressure of 10 mm Hg . After cooling, the solvent was evaporated and the residue was dissolved in toluene, washed with acidic water $(p \mathrm{H}=5)$ with neutral water, then dried on sodium sulfate, filtered and evaporated. The crude product was purified by silica gel chromatography (methylene chloride/ether: $2 / 1, \mathrm{v} / \mathrm{v}$). Title compound was obtained as yellow crystals (2.15 g , yield 87%).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{7}: \mathrm{C}, 64.98 ; \mathrm{H}, 6.62$: N, 3.25. Found: C, 64.98: H, 6.59; N, 3.16. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.36(m, 5 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \underline{\mathrm{Ph}}\right), 6.60\left(d, 1 \mathrm{H}, \mathrm{H}_{5}-\mathrm{pyr}, J=2.7 \mathrm{~Hz}\right), 5.76(d$, $1 \mathrm{H}, \mathrm{HC} \mathrm{C}_{5}$ ' "ose"), $5.66\left(d, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}\right.$,,$\left.J=5 \mathrm{~Hz}\right), 5.39-$ 5.33 (d, 2H, CO2 $\mathrm{CH}_{2} \mathrm{Ph}$), 4.61 (dd, 1H, H C 3_{3}, "ose"), 4.38 (dd, 1H, H C 4^{\prime} ' "ose" $), 4.31$ (d, 1H, H C $\left.2, ~ " o s e "\right), ~$ $2.24\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.52-1.50-1.33-1.25(\mathrm{~s}, 12 \mathrm{H}$, isopropylidene).

3, 3^{\prime} - dimethyl-4,4'-di($1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-di- O -iso-propylidene- $\boldsymbol{\alpha}$-D-galactosyl-5-5'-dibenzocarbonyl dipyrromethane, 23. Pyrrole 22 ($500 \mathrm{mg}, 1.13$ $\mathrm{mmol})$ and methylale ($250 \mu \mathrm{~L}$) were stirred in dichloromethane (6 mL) at room temperature during four days under argon. Every morning and evening, methylale ($250 \mu \mathrm{~L}$) was added. The reaction was controlled by thin layer chromatographic analysis until vanishing of pyrrole. The solution was washed by water than a saturated solution of sodium hydrogenocarbonate. The pure title compound was obtained as yellow crystals by silica gel chromatography with a mixture of methylene chloride/ether (10/1, v/v) (275 mg , yield 54%).

Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{14}$: C, 66.22; H, 6.74; N, 2.87. Found: C, 65.47; H, 6.5; N, 3.12. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 7.33(m, 10 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 5.75 (d, 2H, H C 5^{\prime} " ose", $J=1.5 \mathrm{~Hz}$), $5.64\left(d, \overline{2 H}, \mathrm{H} \mathrm{C}_{1}, ~ "\right.$ ose" $\left.^{\prime}, J=1.5 \mathrm{~Hz}\right), 5.31-5.17$ (dd,
$\left.4 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57$ (d, 2H, H C 3^{\prime} " ${ }^{\prime}$ ose" $^{\prime}$), 4.35 (dd, $2 \mathrm{H}, \mathrm{H} \mathrm{C}_{4}$ '"ose"), 4.33 (dd, 1H, H C 2_{2}, "ose"), 3.78 (dd, 1H, H C ${ }_{2}$, "ose" $), 2.18$ ($s, 6 \mathrm{H}, \mathrm{CH}_{3}$ pyrrole), 1.55-1.48-1.33-1.25 ($s, 12 \mathrm{H}$, isopropylidene).

3, 3^{\prime}-dimethyl-4, 4^{\prime}-di($1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-di- O - isopro-pylidene- α-D-galactosyl)-5,-5' -dicarboxyldipyrromethane, 24. A solution of dipyrromethane 23 (250 $\mathrm{mg}, 0.28 \mathrm{mmol})$ and palladium 10% on activated carbon (33 mg) in tetrahydrofurane (4 mL) was stirred under hydrogen. The end of reaction was controlled by thin layer chromatographic analysis. The crude solution was filtered on celite, evaporated, and used quickly without purification (200 mg , yield 100%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 11.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 6.89$ ($s, 2 \mathrm{H}, \mathrm{H}-\mathrm{pyr}$), 5.60 (d, 2H, H C 1_{1} " "ose", $J=5 \mathrm{~Hz}$), 5.38 (d, broad, $2 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}$, "ose", $J=5 \mathrm{~Hz}$), 4.62 (dd, $2 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}$, "ose"), 4.35 (dd, 2H, H C ${ }_{1}$, "ose"'), 4.33 (dd, 1H, H C 2 , "ose"), 3.67 (dd, 2H, CH_{2} pyr), 2.18 ($s, 6 \mathrm{H}, \mathrm{CH}_{3}$ pyrrole), 1.49-1.42-1.34-1.27-1.21-1.17 ($s, 24 \mathrm{H}$, isopropylidene).
$2,8-\mathrm{di}\left(1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right.$ - di-O-isopropylidene- α -D-galactosyl)-3, 7-dimethyl-12, 13, 17, 18 -tetraethylporphyrin, 26. A solution of dipyrromethane $24(160 \mathrm{mg}, 0.223 \mathrm{mmol})$ and $3,3^{\prime}$, 4, 4' -tetraethyl-5, 5'-diformyl-dipyrromethane ${ }^{18} 25$ $(84 \mathrm{mg}, 0.267 \mathrm{mmol})$ in methylene chloride/ methanol $(8 \mathrm{~mL})$ was diluted in a mixture of paratoluene sulfonic acid (2.4 mg) in methylene chloride $(20 \mathrm{~mL})$ and methanol $(1 \mathrm{~mL})$ and was stirred at room temperature for 48 h . The mixture was evaporated, dissolved in methylene chloride and washed threefold with water. The organic phase was dried over sodium sulfate, filtered, and concentrated to dryness. The crude product was purified by silica gel chromatography eluted by methylene chloride/ ether $(100 / 5, \mathrm{v} / \mathrm{v})$, then by gel filtration on LH20 eluted by methanol. The title compound was obtained in 14% yield (28 mg).

Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{10}$: C, 68.85; H, 7.33; N, 6.18. Found: C, 68.28; H, 7.19; N, 5.98. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{5-15}\right.$ meso), 10.1810.04 (s, 1H, H C 10 meso), 6.80 ($s, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}$, "ose", $J=1.5 \mathrm{~Hz}), 6.21\left(d d, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{1}\right.$, "ose", $\left.J=5 \mathrm{~Hz}\right), 5.05$ (dd, 4H, H C ${ }_{3}$, and C_{4}, "ose"), 4.75 (dd, 2H, H C ${ }_{2}$, "ose"), 4.09 ($q, 8 \mathrm{H}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}}$), $3.80\left(s, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{pyr}\right)$, 1.96-1.90-1.86-1.25 (s, 24H, isopropylidene), 1.73$1.57\left(t, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right),-3.67(s, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right)$: 402 (168.5), 500 (13.7), 534 (8.6), 569 (6.3), 622 (3.6).
2, 8-di(α - D - galactosyl)-3, 7-dimethyl-12, 13, 17, 18-tetraethyl-porphyrin, 10. Porphyrin $26(60 \mathrm{mg}$, $6.6 \times 10^{-5} \mathrm{~mol}$) in trifluoroacetic acid/water (21.5 $\mathrm{mL}, 9 / 1, \mathrm{v} / \mathrm{v}$) was stirred at room temperature for 24 h . The solvent was evaporated and the residue was neutralized by ammoniac vapors. The porphyrin crystallized from a mixture of methylene chloride methanol as blue crystals (41 mg , yield 82%).

Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{10}$: C, 64.30; H, 6.75; N, 7.5. Found: C, $49.14 ; \mathrm{H}, 5.71 ; \mathrm{N}, 7.7 .{ }^{1} \mathrm{H}$ NMR (pyridine d_{5}), $\delta(\mathrm{ppm})$: 11.7-11.6 ($s, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{5-15}$ meso), 10.28 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{10-20}$ meso), 6.88-6.21-5.05-4.75 (m , 10H, H "ose"), 4.05 ($q, 8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 3.79 ($s, 6 \mathrm{H}$, CH_{3} pyr), $1.84\left(t, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right),-3.67(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\text {max }}, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 397 (104.8), 498 (6.5), 532 (5.1), 566 (4.3), 618 (1.6).

2, 8-di(1', 2', $3^{\prime}, 4^{\prime}$-di-O-isopropylidene- α-D-galac-tosyl)-3, 7-dimethyl-12, 13, 17, 18 -tetraethylbiladienbromide, 27. A mixture of dipyrromethane $24(0.4 \mathrm{~g}, \quad 0.577 \mathrm{mmol})$ and 2 -formyl-3,4diethylphyrrol ${ }^{20}(168 \mathrm{mg}, 1.11 \mathrm{mmol})$ was warmed to $80^{\circ} \mathrm{C}$ during 15 min under argon. After cooling 66% bromhydric acid aqueous solution (0.577 mL) was added and the solution was stirred for 5 min . The crude mixture was used immediately without other purification.
2, 8 -di($\mathbf{1}^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-di-O-isopropylidene- α-D-galactosyl)-3, 7-dimethyl-12, 13, 17, 18 -tetraethyl15 -azaporphyrin, 28 . To the crude solution of previous biladien bromide 27, in methanol (320 mL), potassium ferricyanide ($250 \mathrm{mg}, 0.76 \mathrm{mmol}$) and 20% ammoniac solution in water (21 mL) were added. The mixture was warmed to $100^{\circ} \mathrm{C}$ for 30 min , then stirred at room temperature for 48 h . After evaporation to dryness the crude product was dissolved in methylene chloride, washed with water, dried over sodium sulfate, filtered, and concentrated under vacuum. The pure azaporphyrin was obtained by a column silica gel chromatography eluted by methylene chloride/ether ($100 / 5, \mathrm{v} / \mathrm{v}$), then by preparative silica gel thin layer chromatography (methylene chloride/ether, 100/3, v/v), (40 mg , yield 8%).

Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{10}, \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.14 ; \mathrm{H}$, 7.29; N, 7.56. Found: C, 66.07; H, 7.32; N, 6.61. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.27\left(s, 1 \mathrm{H}, \mathrm{H} \mathrm{C}_{15}\right.$ meso $)$, 10.28 (s, 2H, H C $10-20$ meso), 6.57 ($s, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{5}$, "ose"), 6.17 (dd, 2H, H C C 1 ' "ose", J=5 Hz), 5.0 (dd, $4 \mathrm{H}, \mathrm{H} \mathrm{C}_{3}$ ' and C_{4}, "ose"), 4.73 ($d d, 2 \mathrm{H}, \mathrm{H} \mathrm{C}_{2}$ ', "ose"), 3.92 ($q, 8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 3.64 ($s, 6 \mathrm{H}, \mathrm{CH}_{3}$ pyr), 1.87 ($t, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.90-1.71-1.51-1.25 ($s, 24 \mathrm{H}$, isopropylidene), -2.31 ($s, 2 \mathrm{H}, \mathrm{NH}$). UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\text {max }} \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 386$ (101.9), 503 (7.7), 535 (20.9), 558 (8.4), 609 (17.6).

2, 8 -di (α-D -galactosyl) -3, 7-dimethyl-12, 13, 17, 18-tetraethyl-15-azaporphyrin, 7. Glycosylated azaporphyrin 28 ($35 \mathrm{mg}, 3.85 \times 10^{-5} \mathrm{~mol}$) was dissolved in trifluoroacetic acid and water ($11 \mathrm{~mL}, 1 / 1$, v / v) and was stirred at room temperature for a day. The solvents were evaporated and the residue was neutralized by ammoniac vapors. The azaporphyrin crystallized from methylene chloride methanol as red-brown crystals (41 mg , yield 82%).

Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{10}$: C, $62.64 ; \mathrm{H}, 6.6 ; \mathrm{N}$, 9.36. Found: C, $34.36 ; \mathrm{H}, 4.05 ; \mathrm{N}, 8.98 .{ }^{1} \mathrm{H}$ NMR (pyridine $\left.d_{5}\right), \delta(\mathrm{ppm}): 11.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), $11.4(\mathrm{~s}, 1 \mathrm{H}$, H meso), 10.09 (s, broad, $1 \mathrm{H}, \mathrm{H}$ meso), 6.66 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}$
"ose"), 5.88 ($s, 2 \mathrm{H}, \mathrm{H}$ "ose"), 5.68 ($s, 2 \mathrm{H}, \mathrm{H}$ "ose"), 5.09 ($s, 2 \mathrm{H}, \mathrm{H}$ "ose"), $4.04\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$), 3.58 (s, $\left.6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{pyr}\right), 1.88\left(t, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right),-1.79(s, 2 \mathrm{H}$, NH). UV-visible spectrum in THF: $\lambda_{\text {max }}, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 397 (409), 500 (29), 534 (8.2), 557 (3.3), 607 (7.3).

1-(3' -nitro-4'-hydroxyphenyl)-2-nitroethylene, 29. 3-nitro-4-hydroxybenzaldehyde ($10 \mathrm{~g}, 60 \mathrm{mmol}$) and ammonium acetate ($6.4 \mathrm{~g}, 84 \mathrm{mmol}$) were refluxed in nitroethane (95 mL) for 2 h . After cooling in ice, title compound precipitated and was filtered. The crude crystals were washed with cold methanol. The pure product was obtained as white crystals $(9.05 \mathrm{~g})$ in 67% yield.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{5}, 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 43.03$; H , 4.49; N, 11.15. Found: C, 43.28; H, 3.44; N, 10.89. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.70(s, 1 \mathrm{H}, \mathrm{OH}), 8.22(d$, 1 H , phenyl), $8.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.67(\mathrm{dd}, 1 \mathrm{H}$, phenyl), $7.24\left(d, 1 \mathrm{H}\right.$, phenyl), $2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
2-ethoxycarbonyl-3-(3' -nitro-4'-hydroxyphenyl)4 -methyl pyrrole, 30 . The previous nitroalkene 29 $(1.2 \mathrm{~g}, 5.6 \mathrm{mmol})$ and ethyl isocyanate $(1.15 \mathrm{~mL}, 10.5$ mmol) were dissolved in tetrahydrofurane/ isopropanol ($28 \mathrm{~mL}, 1 / 1, \mathrm{v} / \mathrm{v}$). DBU ($1.5 \mathrm{~mL}, 10$ mmol) was added slowly and the solution was stirred for a day at room temperature. The solvent was evaporated and the crude residue was purified by silica gel chromatography eluted with methylene chloride. The pure product was obtained as yellow crystals (1.44 g , yield 70%)
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 58.13; $\mathrm{H}, 4.53$; N , 9.68. Found: C, 58.21; H, 5.06; N, 9.37. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.09(\mathrm{~s}, 1 \mathrm{H}$, NH), 8.10 ($d, 1 \mathrm{H}$, phenyl), 7.60 ($d d, 1 \mathrm{H}$, phenyl), 7.17 (d, 1H, phenyl), $6.79\left(s, 1 \mathrm{H}, \mathrm{H}_{\text {pyr }}\right), 4.18(q, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.00\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16$ ($t, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$).
3-3'-dimethyl-4-4'-di(3'-nitro-4'-hydroxyphenyl)-5,5'-diethoxycarbonyl-dipyrromethane, 31 . The previous pyrrole 30 ($3 \mathrm{~g}, 10 \mathrm{mmol}$) and dimethoxymethane ($2.3 \mathrm{~mL}, 30 \mathrm{mmol}$) were dissolved in methylene chloride (50 mL) with paratoluensulfonic acid $(0.2 \mathrm{~g})$. The solution was stirred under argon for 8 days. Every morning and evening, dimethoxymethane (3 mL) was added. The end of reaction was controlled by thin layer chromatographic analysis (methylene chloride/ ether, 100:5, v/v). The crude solution was washed with water, dried over sodium sulfate, filtered, and evaporated. The residue was chromatographied on silica gel eluted with methylene chloride. 3.006 g of pure yellow crystals were obtained (yield 100%).
Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{10}$: C, 58.78; H, 4.76; N, 9.45. Found: C, 58.42; H, 5.15; N, 8.83. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 9.60(\mathrm{~s}, 2 \mathrm{H}$, NH), 8.08 ($d, 2 \mathrm{H}$, phenyl), 7.60 ($d d, 2 \mathrm{H}$, phenyl), 7.13 (d, 2H, phenyl), $4.18\left(q, 4 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.99(s$, 2 H, pyr- CH_{2}-pyr), $1.96\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14(t, 6 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$).

3, 3^{\prime} 'dimethyl-4-4' -di(3'-nitro-4' -hydroxyphen-yl)-5, 5' -dicarboxy dipyrromethane, 32 . Previous dipyrromethane $31(0.2 \mathrm{~g}, 0.338 \mathrm{mmol})$ was dissolved in methanol (3 mL) containing sodium hydroxide (52 mg in $650 \mu \mathrm{~L}$ of water). The solution was kept under reflux for 3 h . Then the cold solution was concentrated under vacuum. The residue was dissolved in water, acidified by acetic acid until $p \mathrm{H}=4$. The precipitate was filtered, then dried (181 mg , yield 100%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.60-10.55(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OH}), 9.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.08$ (d, 2H, phenyl), 7.60 (dd, 2 H , phenyl), $7.13\left(d, 2 \mathrm{H}\right.$, phenyl), $6.8\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\text {pyr }}\right){ }^{25}$ 3.99 ($s, 2 \mathrm{H}$, pyr- CH_{2}-pyr), $2.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

2,3,17,18-tetraethyl-7,13-di(3'-nitro-4' -hydroxy-phenyl)-8, 12-dimethyl-biladien dibromide, 34. To a solution of 2-formyl-3,4-diethyl pyrrole 33 (113 $\mathrm{mg}, 0.746 \mathrm{mmol}$) and dipyrromethane 32 (180 mg , 0.34 mmol) in methanol (10 mL) previously degazed with argon, aqueous solution of 66% bromhydric acid (0.75 mL) was added. The mixture was stirred overnight. The brown precipitate was filtered (100 mg , yield 34%) and used immediately without purification.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 13.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$, 13.43 ($s, 2 \mathrm{H}, \mathrm{NH}$), 11.23 ($s, 1 \mathrm{H}, \mathrm{OH}$), 10.59 ($s, 1 \mathrm{H}$, $\mathrm{OH}), 8.06$ (d, 2H, phenyl), $7.80(s, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}$ pyr), 7.54 (d, 2H, phenyl), 7.22 (dd, 2H, phenyl), 7.00 (s, $2 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.48\left(s, 2 \mathrm{H}\right.$, pyr- $\left.\mathrm{CH}_{2}-\mathrm{pyr}\right), 2.50(q, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.13,\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.12(t, 12 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$).

2, 3, 17, 18-tetraethyl-7, 13-di(3'-nitro-4' -hydroxy-phenyl)-8, 12-dimethyl-20-azaporphyrin, 35 . Biladien $34(0.1 \mathrm{~g}, 0.118 \mathrm{mmol})$ was dissolved in methanol (190 mL). Potassium ferricyanide ($145 \mathrm{mg}, 0.4$ mmol) and ammoniac (11 mL) were added. The solution was warmed at $100^{\circ} \mathrm{C}$ for 10 min and stirred at room temperature for 1 day. The solvent was remove and the crude product was dissolved in methylene chloride then filtered. The crystals were washed with methylene chloride until colorless solvent. The organic solution was concentrated under vacuum. The title compound was obtained by silica gel chromatography eluted with methylene chloride and crystallization from methylene chloride/ methanol (8 mg , yield 10%).

Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{6}, 2 \mathrm{MeOH}: \mathrm{C}, 65.30$; H, 6.12; N, 12.40. Found: C; 65.60; H, 6.02; N, 11.61. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}$ meso), 10.3 ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 9.6 ($s, 2 \mathrm{H}, \mathrm{OH}$), 8.85 ($s, 2 \mathrm{H}$, phenyl), 8.39 (d, 2H, phenyl), 7.66 (d, 2H, phenyl), $3.98\left(q, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.72\left(q, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.59(s$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.87\left(t, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right),-2.25(s, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in $\overline{\mathrm{CH}}_{2} \mathrm{Cl}_{2}$: $\lambda_{\max }, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 382 (113), 509 (7.7), 539 (21.9), 561 (9.2), 613 (20.2).

2, 3, 17, 18-tetraethyl-7, 13-di(3' -nitro-4' -hydroxy-phenyl)-8, 12-dimethyl-porphyrin, 36. Biladien 34 $(0.2 \mathrm{~g}, 0.28 \mathrm{mmol})$ and formaldehyde (0.176 mL) were dissolved in methanol (38 mL). Bromhydric
acid $(66 \%, 57 \mu \mathrm{~L})$ was added then the solution was refluxed for three days. The cold mixture was concentrated under vacuum and diluted in methylene chloride, washed with aqueous sodium hydrogenocarbonate, water and dried over sodium sulfate. After filtration and evaporation the crude product was purified by silica gel chromatography eluted with methylene chloride/heptane (60:40, v/v). The pure porphyrin crystallized from methylene chloride/methanol to give purple crystals (34 mg , 20\%).

Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{6}, 2 \mathrm{MeOH}: \mathrm{C}, ~ 66.99$; H, 6.13; N, 10.65. Found: C, 66.90; H, 6.28; N, 9.42. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.9(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 10.3(\mathrm{~s}$, 1H, H meso), 10.23 (s, 1H, H meso), 9.62 ($s, 2 \mathrm{H}, \mathrm{H}$ meso), 8.95 (d, 2H, phenyl), 8.40 (dd, 2H, phenyl), 7.45 (d, 2H, phenyl), $4.00\left(q, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.72$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.86\left(t, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right),-3.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\lambda_{\max }, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 405 (129), 503 (11.4), 538 (8.9), 571 (5.7), 624 (3.7).

3.5 GENERAL PROCEDURE FOR THE PREPARATION OF PER-O-ACETYLATED GLYCOSYLATED-B-PYRROLIC PORPHYRINS AND AZAPORPHYRINS

TEA (1.9 mL) and porphyrin (or) azaporphyrin (0.14 mmol) were dissolved in acetonitrile (5 mL) with a-bromo-per acetyl sugar (10 equiv.). The solution was refluxed overnight then concentrated under vacuum. The crude mixture was purified by silica gel chromatography (elution mixture: methylene chloride/ether 100:5, v/v). The pure macrocycle crystallized from methylene chloride/ methanol.
The following glycosylated macrocycles were synthesized by this method: 2,3,17,18-tetraethyl-7, 13-di[3'-nitro-4'-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucosyl)-phenyl]-8,12-dimethylazaporphyrin, 8 -Oac. 29 mg , yield 15%. Anal. Calcd for $\mathrm{C}_{69} \mathrm{H}_{75} \mathrm{~N}_{7} \mathrm{O}_{24}$: C, 59.78; H, 5.45; N, 7.07. Found: C, 61.75; H, 6.42; N, 5.02. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta$ (ppm): 10.15 ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 9.61 ($s, 2 \mathrm{H}, \mathrm{H}$ meso), 8.53 ($s, 2 \mathrm{H}$, phenyl), $8.21(\mathrm{~d}, 2 \mathrm{H}$, phenyl), $7.79(d, 2 \mathrm{H}$, phenyl), 5.47 ($m, 7 \mathrm{H}, \mathrm{H}$ "ose"), 4.37 ($s, 4 \mathrm{H}, \mathrm{H}$ "ose"), 3.98 ($q, 8 \mathrm{H}+3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ and H "ose"), 3.59 $\left(s, 6 H, \mathrm{CH}_{3}\right), 2.2-2.15-2.11$ ($s, 24 \mathrm{H}, \mathrm{AcO}$), 1.86 (t, $\left.12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right),-2.20(s, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 383$ (101.7), 508 (7.3), 539 (20.3), 561 (8.7), 612 (18.3).

2,3,17, 18-tetraethyl-7, 13-di[3-nitro-4-($2^{\prime}, 3^{\prime}, 6^{\prime}$ $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$-hepta-O-acetyl- β-D-maltosyl)-phenyl]-8,12-dimethyl-azaporphyrin, 9-OAc. 13 mg , yield 7%. Anal. Calcd for $\mathrm{C}_{93} \mathrm{H}_{107} \mathrm{~N}_{7} \mathrm{O}_{4}$: C, 80.54; H, 7.78; N, 7.07. Found: C, 80.24; H, 7.37; N, 6.95. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.15$ ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 9.61 ($\mathrm{s}, 2 \mathrm{H}$, H meso), 8.53 (d, 2H, phenyl), 8.23 (d, 2H, phenyl), 7.78 (dd, 2H, phenyl), $5.52(m, 8 \mathrm{H}, \mathrm{H}$ "ose" $)$, $5.15(t$, $2 \mathrm{H}, \mathrm{H}$ "ose"'), $4.94(t, 2 \mathrm{H}, \mathrm{H}$ "ose" $), 4.69(t, 2 \mathrm{H}, \mathrm{H}$
"ose"), 4.28 (d, 6H, H "ose"), 4.01 (q, $8 \mathrm{H}+2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}$ "ose"), 3.59 ($s, 6 \mathrm{H}, \mathrm{CH}_{3}$), 3.55 (d, 2H, H "ose"), 2.34-2.24-2.16-2.13-2.04 (s, 42H, $\mathrm{AcO}), 1.85\left(t, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right),-2.20(s, 2 \mathrm{H}, \mathrm{NH})$. UVvisible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\lambda_{\text {max }}, \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 383 (95.1), 508 (7.4), 539 (20), 561 (8.5), 613 (17.3).

2, 3, 17, 18-tetraethyl-7, 13-di[3-nitro-4-(2' ${ }^{\prime} 3^{\prime}, 4^{\prime}$, 6^{\prime} - tetra - O - acetyl - β - D - glucosyl) -phenyl]-8, 12-dimethyl-porphyrin, 11-OAc. 55 mg , yield 29%. Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{76} \mathrm{~N}_{6} \mathrm{O}_{24}, 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.15 ; \mathrm{H}$, 5.67; N, 5.91. Found: C, $58.78 ; \mathrm{H}, 5.55 ; \mathrm{N}, 5.86 .{ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso $), 10.12$ ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 9.90 ($s, 2 \mathrm{H}, \mathrm{H}$ meso), 8.62 ($s, 2 \mathrm{H}$, phenyl), 8.33 (d, 2H, phenyl), 7.82 (d, 2 H , phenyl), $5.40\left(m, 8 H, H^{\prime o s e}{ }^{\prime \prime}\right), 4.38$ ($s, 4 \mathrm{H}, \mathrm{H}$ "ose"), 4.06 (q, $\left.8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.73\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.58(d, 1 \mathrm{H}, \mathrm{H}$ "ose"'), 2.27-2.11 ($s, 24 \mathrm{H}, \mathrm{AcO}$), 1.90 ($t, 12 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right),-3.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 408$ (178.7), 505 (13.8), 541 (10.8), 572 (7.1), 625 (3.6).

2, 3, 17, 18-tetraethyl-7, 13-di[3' -nitro-4'-($2^{\prime}, 3^{\prime}$, $6^{\prime}-2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$-hepta-O-acetyl- β-D-maltosyl)-phenyll-8, 12-dimethyl-porphyrin, 12-OAc. 39 mg , yield 14.5%. Anal. Calcd for $\mathrm{C}_{94} \mathrm{H}_{108} \mathrm{~N}_{6} \mathrm{O}_{40}, \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 56.68; H, 5.47; N, 4.92. Found: C, 56.63; H, 5.29; N, 4.92. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.30(s, 1 \mathrm{H}, \mathrm{H}$ meso), 10.12 ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 9.91 ($s, 2 \mathrm{H}, \mathrm{H}$ meso), $8.62(d, 2 H$, phenyl), $8.32(d, 2 H$, phenyl), 7.83 (dd, 2 H , phenyl), 5.49 ($m, 10 \mathrm{H}, \mathrm{H}$ "ose" $), 5.15(t, 2 \mathrm{H}, \mathrm{H}$ "ose"'), 4.96 ($t, 2 \mathrm{H}, \mathrm{H}^{\prime \prime}$ ose $^{\prime \prime}$), $4.70(t, 2 \mathrm{H}, \mathrm{H}$ "ose"), 4.38 (d, 6H, H "ose"), 3.98 ($q, 8 \mathrm{H}+4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}$ "ose"), 3.69 ($s, 6 \mathrm{H}, \mathrm{CH}_{3}$), 3.55 (d, 2H, H "ose"), 2.25-2.14-2.11-2.04 ($s, 42 \mathrm{H}, \mathrm{AcO}$), 1.85 ($t, 12 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $-3.56(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right)$: 409 (202.5), 506 (15.8), 541 (13.1), 572 (8.5), 625 (3.9).

The following glycoconjugated macrocycles were synthesized by the method used for the preparation of compounds 1-6.

2, 3, 17, 18-tetraethyl-7, 13-di(3' -nitro-4' $\boldsymbol{\beta} \boldsymbol{\beta}$-D-glucosyl-phenyl)-8, 12-dimethyl-azaporphyrin, 8. 20 mg , yield 88%. Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{59} \mathrm{~N}_{7} \mathrm{O}_{16}, 4$ MeOH: C, $58.15 ;$ H, $6.34 ;$ N, 8.33. Found: C, 58.12; $\mathrm{H}, 6.11$; N, 7.67. ${ }^{1} \mathrm{H}$ RMN (Pyridine d_{5}), δ (ppm): 10.56 ($s, 1 \mathrm{H}, \mathrm{H}$ meso), 10.01 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}$ meso), 8.81 (s, 2 H, phenyl), 8.33 (d, 4H, phenyl), $4.70(\mathrm{~m}, 12 \mathrm{H}$, "ose"), 4.51 ($q, 4 \mathrm{H}+1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ and H "ose"), 3.80 ($m, 4 \mathrm{H}+1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ and H "ose"), 3.61 ($s, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.97\left(t, \overline{12 \mathrm{H}}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80\left(t, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, -2.93 (s, 2H NH). UV-visible spectrum in THF $\lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, \mathrm{Lmmol}^{-1} \mathrm{~cm}^{-1}\right): 381$ (118.9), 507 (8.1), 537 (24.9), 563 (8.9), 614 (24.7).

2, 3,17, 18-tetraethyl-7, 13-di(3'-nitro-4' $\boldsymbol{\beta} \boldsymbol{\beta}$-D-maltosyl-phenyl)-8, 12-dimethyl-azaporphyrin, 9. 15 mg , yield 73%. Anal. Calcd for $\mathrm{C}_{65} \mathrm{H}_{79} \mathrm{~N}_{7} \mathrm{O}_{26}$: C, 56.81; H, 5.79; N, 7.13. Found: C, 39.15; H, 4.33; N, 4.45. ${ }^{1} \mathrm{H}$ RMN (Pyridine d_{5}), $\delta(\mathrm{ppm}): 10.56(s, 1 \mathrm{H}, \mathrm{H}$ meso), 10.07 (s, 2H, H meso), 8.80 (d, 2H, phenyl),
8.32 (d, 2H, phenyl), 8.81 (d, 2H, phenyl), 6.02-3.83 ($m, 8 \mathrm{H}+14 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}^{\prime \prime}$ ose"), $3.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.55 (d, 2H, H "ose"), 1.79 ($t, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), -1.76 ($s, 2 \mathrm{H}, \mathrm{NH}$). UV-visible spectrum in THF: $\lambda_{\text {max }}, \mathrm{nm}$ ($\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 382 (118.1), 504 (8.5), 538 (25.2), 563 (9.1), 614 (24.7).
2, 3, 17, 18-tetraethyl-7, 13-di(3' -nitro-4' $\boldsymbol{\beta} \boldsymbol{\beta}$-D-glucosyl-phenyl)-8, 12-dimethyl-porphyrin, 11. 25 mg , yield 83%. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{16}$: C, 61.82; H, 5.76; N, 8.01. Found: C, 56.48; H, 5.28; N, 7.34. ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 10.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), 10.51 (s, 1H, H meso), 10.40 (s, 2H, H meso), 8.90 (d, 2H, phenyl), 8.35 (d, 4H, phenyl), 4.77-4 (m, $14 \mathrm{H}, \mathrm{H}$ "ose" $), 3.95\left(q, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.72(s, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.87\left(t, 12 \mathrm{H}, \mathrm{CH}_{2} \underline{C H}_{3}\right),-2.93(s, 2 \mathrm{H}, \mathrm{NH})$. UVvisible spectrum in THF: $\lambda_{\max } \mathrm{nm}(\epsilon$, $\mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}$): 407 (160), 504 (13.4), 539 (10.3), 572 (6.7), 627 (4.1).

2, 3, 17, 18-tetraethyl-7,13-di(3'-nitro-4' $\boldsymbol{\beta}$ - ${ }^{\prime}$ -maltosyl-phenyl)-8, 12-dimethyl-porphyrin, 12. 14 mg , yield 71%. Anal. Calcd for $\mathrm{C}_{66} \mathrm{H}_{80} \mathrm{~N}_{6} \mathrm{O}_{26}$: C, 57.72; H, 5.87; N, 6.12. Found: C, 53.73; H, 5.56; N, 5.89. ${ }^{1} \mathrm{H}$ RMN (Pyridine d_{5}), $\delta(\mathrm{ppm}): 10.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), 10.55 (s, 1H, H meso), 10.36 ($s, 2 \mathrm{H}, \mathrm{H}$ meso), 8.90 ($s, 2 \mathrm{H}$, phenyl), 8.41 (d, 4 H , phenyl), 6.02-3.73 ($m, 8 \mathrm{H}+14 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}^{\prime}$ ose"), $3.53\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.85\left(t, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right),-2.92(s, 2 \mathrm{H}, \mathrm{NH})$. UV-visible spectrum in THF: $\lambda_{\max } \mathrm{nm}\left(\epsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 408$ (161.8), 504 (13.6), 540 (11.5), 573 (7), 627 (3.8).

3.6 PARTITION MEASUREMENTS

The partition coefficient of the compounds between 2-octanol and PBS buffer at $p \mathrm{H} 7.4$ was determined by equilibrating equal parts of PBS and 2-octanol at $20^{\circ} \mathrm{C}$. Optical density (OD) of each phase was measured between 400 and 450 nm and the \log (partition coefficient) $[\log (\mathrm{PC})]$ was calculated as the $\log [\mathrm{OD}(2$-octanol)/OD(PBS)].

3.7 IN VITRO PHOTOCYTOTOXICITY TESTS

Photodynamic activity of the glycoconjugated tetrapyrrolic macrocycles have been estimated using the viability of a human colic adenocarcinoma cell line HT29 (ATCC, HTB 38) after 24 h incubation with the tested compounds followed by visible light irradiation.
HT29 cells were cultivated in Dulbecco's MEM supplemented with 10% fetal calf serum (FCS). Cells from log-phase culture were seeded in 24microwell plates ($1 \mathrm{~mL}-5 \times 10^{4}$ cells/well) and kept at $37{ }^{\circ} \mathrm{C}$ in a water-jacketed incubator for 2 days under an air $/ \mathrm{CO}_{2}$ atmosphere $\left(5 \% \mathrm{CO}_{2}\right)$. Tested compounds, in DMSO solution, were added under the minimum volume ($5 \mu \mathrm{~L}$) to reach a concentration ranging from 0.1 to $10 \mu \mathrm{~g} / \mathrm{mL}$. Controls cells received $5 \mu \mathrm{~L}$ of DMSO free of dye. Plates were incubated 24 h , then medium was removed and the cells were washed twice with phosphate buffered saline (PBS) before addition of fresh medium free of
drug and irradiation with visible light using a home made "light box" giving a fluence of $3.8 \mathrm{~mW} / \mathrm{cm}^{2}$ on the whole visible spectrum. Irradiation with red light was carried out using the same device fitted with an orange filter $(0 \% T$ at 520 nm and $80 \% T$ at 590 nm) leading to a fluence of $2 \mathrm{~mW} / \mathrm{cm}^{2}$.

Plates were reincubated for 3 days before evaluation of the cell survival using the MTT assay ${ }^{26}$ using 30 min incubation with $100 \mu \mathrm{~g}$ well of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT, Sigma). After removal of the medium, formazan crystals were taken up with $100 \mu \mathrm{~L}$ of DMSO and absorbance at 540 nm was measured with a Bio-Rad microplate reader (model 450); survival was expressed as \% of untreated controls.

Acknowledgments

This work was carried out under financial support from "Association pour la Recherche sur le Cancer." We wish to thank Christiane Huel for NMR spectroscopic studies. This work is dedicated to the memory of Michel Momenteau who died prematurely in March 1997. He was a worldwide recognized specialist of porphyrin chemistry and he carefully followed this work, which was initiated following his suggestions, until his death. Science lost a great servitor and we lost a great and faithful friend.

REFERENCES

1. R. L. Lipson, E. J. Baldes, and A. M. Olsen, "The use of a derivative of hematoporphyrin in tumor detection," J. Natl. Cancer Inst. 26, 1-8 (1961).
2. T. J. Dougherty, G. Grindey, R. Field, K. R. Weishaupt, and D. Boyle, "Photoradiation therapy II. Cure of animal tumors with hematoporphyrin and light," J. Natl. Cancer Inst. 55, 115-121 (1975); T. J. Dougherty, G. Lawrence, J. E. Kaufman, D. Boyle, and K. R. Weishaupt, "Photoradication in the treatment of recurrent breast carcinoma," ibid. 62, 231-237 (1979).
3. S. B. Brown and T. G. Truscott, "New light on cancer therapy," Chem. Br. 29, 955-958 (1993); M. KreimerBirnbaum, "Modified porphyrins, chlorins, phthalocyanines, and purpurins: Second-generation photosensitizers for photodynamic therapy," Semin. Hematology 26, 157-173 (1989); M. A. Valles, "HpD and second generation photosensitisers for the photodynamic therapy of cancer," Afinidad 448, 469-479 (1993).
4. M. J. Gunter and B. C. Robinson, "Purpurins bearing functionality at the 6,16-meso-positions: Synthesis from 5,15disubstituted meso-[β-methoxycarbonyl)vinyl] porphyrins," Aust. J. Chem. 43, 1839-1860 (1990); M. J. Gunter and B. C. Robinson, "A synthesis of purpurin derivatives substituted at the 6,16-meso-positions," Tetrahedron Lett. 31, 285-288 (1990).
5. F. Y. Shiau, R. K. Pandey, T. J. Dougherty, and K. M. Smith, "Synthetic approaches to long-wavelength photosensitizers for photodynamic therapy," in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, Proc. SPIE 1426, 330-339 (1991); K. M. Smith, R. K. Pandey, F. Y. Shiau, N. W. Smith, P. Iakovides, and T. J. Dougherty, "Syntheses of new porphyrin-type photosensitizers for photodynamic therapy," in Optical Methods for Tumor Treatment and Detection, Proc SPIE 1645, 274-283 (1992); J. D. Spikes, "Chlorins as photosensitizers in biology and medicine," J. Photochem. Photobiol., B 6, 259-274 (1990).
6. G. Jori, "Photosensitized process in vivo: Proposed phototherapeutic application," Photochem. Photobiol. 52, 439-443
(1990); I. Rosenthal, "Phthalocyanines as photodynamic sensitizers," ibid. 53, 859-870 (1991).
7. A. R. Morgan, D. Skalkos, G. Maguire, A. Rampersaud, G. Garbo, R. Keck, and S. H. Selman, "Observations on the synthesis and in vivo photodynamic activity of some benzochlorins," Photochem. Photobiol. 55, 133-136 (1992); A. R. Morgan and G. M. Garbo, "Biomedical application of porphyrin photosensitizers," Trends Photochem. Photobiol. 2, 229-236 (1991); A. R. Morgan, "Reduced porphyrins as photosensitizers: Synthesis and biological effects," in Photodynanic Therapy: Basic Principles and Clinical Applications, B. W. Henderson, and T. J. Dougherty, Ed., p. 157-172 (Marcel Decker, New York, 1992); D. Kessel and A. Morgan, "Photosensitization with ethiobenzochlorins and octaethylbenzochlorins," Photochem. Photobiol. 58, 521-526 (1993); R. W. Boyle and D. Dolphin, "5,15-Diphenyl-7-oxobenzochlorins, novel long-wavelength absorbing photosensitizers for dynamic therapy," J. Chem. Soc. Chem. Commun. 1994, 24632464; D. Kusch, E. Töllner, A. Lincke, and F. P. Montforts, "A simple, chirogenic, enantioselective synthesis of chlorins and isobacteriochlorins," Angew. Chem. Int. Ed. Engl. 34, 784-787 (1995).
8. Ph. Maillard, J.-L. Guerquin-Kern, M. Momenteau, and S. Gaspard, "Glycoconjugated tetrapyrrolic macrocycles," J. Am. Chem. Soc. 111, 9125-9127 (1989); Ph. Maillard, J.-L. Guerquin-Kern, C. Huel, and M. Momenteau, "Glycoconjugated porphyrins. 2. Synthesis of sterically constrained polyglycosylated compounds derived from tetraphenylporphyrins," J. Org. Chem. 58, 2774-2780 (1993); D. Oulmi, Ph. Maillard, J.-L. Guerquin-Kern, C. Huel, and M. Momenteau, "Glycoconjugated porphyrins. 3. Synthesis of flat amphiphilic mixed meso-(glycosylated aryl)arylporphyrins and mixed meso-(glycosylated aryl)alkylporphyrins bearing some mono- and disaccharide groups," ibid. 60, 1554-1564 (1995).
9. M. Momenteau, D. Oulmi, Ph. Maillard, and A. Croisy, "In vitro photobiological activity of a new series of photosensitizers: The glycoconjugated porphyrins," in Photodynamic Therapy of Cancer II, Proc. SPIE 2325, 13-23 (1994).
10. O. Gaud, R. Granet, M. Kaouaddji, P. Krausz, J.-C. Blais, and G. Bolbach, "Synthèse et analyse structurale de nouvelles meso-arylporphyrines glycosylées en vue de l'application en photothérapie des cancers,' Can. J. Chem. 74, 481-499 (1996)
11. J. S. Lindsey, in Metalloporphyrins Catalyzed Oxidations, F. Montanari and L. Casella, Eds., pp. 49-86, Kluwer, The Netherlands (1994).
12. R. G. Little, "The synthesis of covalently linked tetraarylporphyrin dimers," J. Heterocycl. Chem. 15, 203-208 (1978).
13. G. Zemplen, A. Gerecs, and I. Haracsy, "Uber die verseifung acetylierter kohlenhydrate," Chem. Ber. 69, 1827-1839 (1936).
14. J. F. W. McOmie, M. L. Watts, and D. E. West, "Demethylation of aryl methyl ethers by boron tribromide," Tetrahedron 24, 2289-2292 (1968); M. V. Bhatt and S. U. Kulkarni, "Cleavage of ethers," Synthesis 1983, 249-282; E. Tsuchida, T. Komatsu, E. Hasegawa, and H. Nishide, "Synthesis, characterization and oxygenation of bis-fence porphyrinato iron(II) and cobalt(II) complexes," J. Chem. Soc. Dalton Trans. 1990, 2713-2718.
15. G. Magnusson, G. Noori, J. Dahmén, T. Frejd, and T. Lave," BF_{3}-etherate induced formation of 2,2,2-trichloroethyl glycopyranosides. Selective visualization of carbohydrate derivatives on TLC plates," Acta Chem. Scand. 35, 213-216 (1981); J. Dahmén, T. Frejd, G. Grönberg, T. Lave, G. Magnusson, and G. Noori, "2-Bromoethyl glycosides: synthesis and characterisation," Carbohydrate Chem. 116, 303-307 (1993); A Sasaki, N. Murahashi, H. Yamada, and A. Morikawa, "Syntheses of novel galactosyl ligands for liposomes and their accumulation in the rat liver," Biol. Pharm. Bull. 17, 680-685 (1994); A. Sasaki, N. Murahashi, H. Yamada, and Morikawa, "Syntheses of novel galactosyl ligands for liposomes and influence of the spacer on accumulation in the rat liver," ibid. 18, 740-746 (1995).
16. Ph. Maillard, C. Hery, and M. Momenteau, "Synthesis, characterization and photocytotoxicity of a glycoconjugated
meso-monoarylbenzochlorin," Tetrahedron Lett. 38, 37313734 (1997).
17. D. Harris, A. W. Johnson, and R. Gaete-Holmes, "A convenient synthesis of meso-substituted porphyrins," Bioorg. Chem. 9, 63-70 (1980).
18. M. Gosmann and B. Franck, "Synthesis of a fourfold enlarged porphyrin with an extremely large diamagnetic ringcurrent effect," Angew. Chem. Int. Ed. Engl. 25, 1100-1101 (1986).
19. D. H. R. Barton, J. Kervagorer, and S. Zard, "A useful synthesis of pyrroles from nitroolefin," Tetrahedron 46, 75877598 (1990).
20. G. B. Howarth, D. G. Lance, W. A. Szarek, and J. K. N. Jones, "Syntheses related to the carbohydrate moiety in lincomycin," Can. J. Chem. 47, 75-79 (1969).
21. K. Kasai, R. Uchida, and N. Yamaj, "Glycosides having chromophores as substrates for sensitive enzyme analysis. IV. Synthesis of N-acetyl- β-D-glucosaminides of fluorescein
derivatives and their application to the rate-assay of N-acetyl- β-D-glucosaminidase," Chem. Pharm. Bull. 41, 314318 (1993).
22. J. L. Sessler, J. Hugdahl, and M. R. Johnson, "A convenient synthesis of a gable-type porphyrin,'" J. Org. Chem. 61, $2838-$ 2840 (1996); P. S. Clezy, C. J. R. Fookes, and A. J. Liepa, "The chemistry of pyrrolic compounds," Aust. J. Chem. 25, 19761990 (1972).
23. H. Fischer and W. Fridrich, "Synthese von mono-imido-ätio- und mono-imido-koproporphyrin,'" Liebigs Ann. 523, 154-164 (1936).
24. D. Kessel, "Effects of photoactivated porphyrins at the cell surface of leukemia L1210 cells," Biochemistry 16, 3443-3449 (1977).
25. Signal of partially decarboxylated compound.
26. T. Mosmann, "Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays," J. Immunol. Methods 65, 55-63 (1983).

[^0]: Address all correspondence to Alain Croisy. Phone: (33) 016986 31 89; E-mail: Alain.Croisy@curie.u-psud.fr; and Philippe Maillard. Phone (33) 01698631 71; E-mail: Philippe.Maillard@curie.u-psud.fr

[^1]: 1083-3668/99/\$10.00 © 1999 SPIE

