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Abstract. The imaging of living cells and tissues using laser-scanning
microscopy is offering dramatic insights into the spatial and temporal
controls of biological processes. The availability of genetically en-
coded labels such as green fluorescent protein (GFP) offers unique
opportunities by which to trace cell movements, cell signaling or gene
expression dynamically in developing embryos. Two-photon laser
scanning microscopy (TPLSM) is ideally suited to imaging cells in vivo
due to its deeper tissue penetration and reduced phototoxicity; how-
ever, in TPLSM the excitation and emission spectra of GFP and its
color variants [e.g., CyanFP (CFP); yellowFP (YFP)] are insufficiently
distinct to be uniquely imaged by conventional means. To surmount
such difficulties, we have combined the technologies of TPLSM and
imaging spectroscopy to unambiguously identify CFP, GFP, YFP, and
redFP (RFP) as well as conventional dyes, and have tested the ap-
proach in cell lines. In our approach, a liquid crystal tunable filter was
used to collect the emission spectrum of each pixel within the TPLSM
image. Based on the fluorescent emission spectra, supervised classifi-
cation and linear unmixing analysis algorithms were used to identify
the nature and relative amounts of the fluorescent proteins expressed
in the cells. In a most extreme case, we have used the approach to
separate GFP and fluorescein, separated by only 7 nm, and appear
somewhat indistinguishable by conventional techniques. This ap-
proach offers the needed ability to concurrently image multiple col-
ored, spectrally overlapping marker proteins within living cells.
© 2001 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1383780]
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1 Introduction
Although multilabel fluorescence microscopy has had an im
mense impact on research in several areas of biology, th
advanced tools used elsewhere to perform multispectra
analyses are rarely, if ever, applied. The difficulty of rapidly
tuning the excitation wavelength in two-photon laser scanning
microscopy~TPLSM!, as well as the significant broadening of
the excitation spectrum, makes the typical approach of selec
tively exciting different fluorochromes impractical and neces-
sitates more advanced approaches. Imaging spectroscopy h
been a major tool used to classify images derived from sate
lite and aircraft instruments.1 Here, we report the construction
and use of an imaging spectrometer to acquire data from ou
fluorescent specimens as image cubes, three-dimensional da
sets with two spatial dimensions(x,y), and one wavelength
dimension~l!. Although there are a variety of approaches to
obtaining an image cube, we employed a simple and straigh
forward modification of a technique developed at the Jet Pro
pulsion Laboratory as part of a program to miniaturize imag-
ing instruments for planetary spacecraft.2 A liquid crystal
tunable filter~LCTF!, which can be tuned quickly to allow

Address all correspondence to Rusty Lansford. Tel: 626-395-2004; Fax: 626-
449-5163; E-mail: rusty@gg.caltech.edu
l

-

as

r
ta

-

only a single, narrow wavelength range to pass,3 was inserted
into the optical path of a TPLSM in place of the normal ba
rier filter. The LCTF permitted us to collect emission data
consecutive 5 nm steps between 450 and 625 nm, thus a
like a filter wheel with a very large number of filters, each
which has a high rejection ratio(,1024) for out-of-band
transmission@Figure 1~A!#.

2 Experimental Protocol
2.1 Cell Labeling with Fluorescent Properties and
DiI
Human Phoenix-GP cells4 or chick embryo fibroblast cells
were transfected withpECFP-C1, pEGFP-C1, pEYFP-C1
~Clontech!, pH2B.CFP,pH2B.GFP~Ref. 5! and/orpH2B.YFP
using Lipofectamine~GibcoBRL!. Some cells were infected
with retroviruses expressing nuclear localized H2B.CF
H2B.GFP, and/or H2B.YFP. Cells were stained with the lip
philic dye DiI following conditions described elsewhere6

Cells were stained with between 0.2 and 2 units/mL of flu
rescein phalloidin~Molecular Probes, Eugene, OR!, and 1
mg/mL of EtBr.

1083-3668/2001/$15.00 © 2001 SPIE
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Fig. 1 Image cube acquisition. (A) Spectral image cube of a human brain acquired with an LCTF. There are 24 images in the cube, each at a
different wavelength between 450 and 680 nm, with a typical bandwidth of 10 nm. The side of the displayed cube has been false colored to
correspond to the signal in each exposed pixel—in effect, the sides display the spectrum of the edge pixels. (B) For each pixel, the spectrum can
be obtained by plotting signal in each of the wavelength bands; the inset shows the spectrum of the blue rectangle in (A). The spectral dips between
550 and 580 nm are due to hemoglobin. (C) The reference TPLSM emission spectra, excited at 900 nm, obtained from cells that expressed only
CFP, GFP, YFP, or RFP or cells that were stained with Dil or EtBr. The spectra have been corrected for the relative transmission of the LCTF and
detector sensitivity as a function of wavelength.
312 Journal of Biomedical Optics d July 2001 d Vol. 6 No. 3



Resolution of multiple green fluorescent protein . . .
Fig. 2 Comparison of band pass optics and imaging spectroscopy. Cells were transfected with either nuclear localized CFP, GFP, or YFP. (A–C)
Images of labeled cells that one would obtain using emission filter sets for spectral separation (simulated). Each panel was generated from the
spectral cubes by co-adding bands in the appropriate spectral ranges to simulate conventional fluorescent filter sets. We used data from two Omega
sets: one designed to separate CFP from YFP and one for dual labeling with GFP and YFP. Before co-adding, the data was filtered with a 333
median filter to remove saturated pixels and salt and pepper noise in the background. (D–F) Supervised classification analysis (SCA) of the image
cube of (A–C). The lack of overlap in the images shown in (D), (E), and (F) shows that spectral signatures permit unambiguous separation of the
three GFP color variants. The data were filtered with a 939 Gaussian filter and then classified with a Mahalanous distance algorithm with spectral
signatures defined from the single cell data. (G) Composite pseudocolored images of the SCA data depicted in (D–F). The YFP image is the red
channel, the GFP in the green channel and the CFP in the blue channel. (H) Linear unmixing applied to that same image cube, shown as a
composite, pseudocolored image. For the cells with single labels, linear unmixing performs well, yielding little or no signal from the other spectral
signatures. Results of a constrained linear unmixing algorithm displayed directly into the RGB color planes. The image has been multiplied by each
pixel’s summed signal so that the color intensity is proportional to the amount of probe.
Journal of Biomedical Optics d July 2001 d Vol. 6 No. 3 313
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Lansford, Bearman, and Fraser
2.2 Two-Photon Microscopy and Spectroscopy
The TPLSM was built from a Molecular Dynamics~Sunny-
vale, CA! Sarastro 2000 upright CLSM, using a titanium:sap-
phire mode-locked IR laser~Coherent Mira 900, Palo Alto,
CA!.7 The cells were excited by the TPLSM tuned to 900 nm
with 200 fs pulses, peak amplitude of 50 kW and a repetition
rate of 76 MHz. We empirically determined that optimal pan
excitation was achieved from 895 to 910 nm for the fluoro-
phores used. We removed the conventional band pass filte
usually employed and inserted the LCTF into the signal path
immediately in front of the detector housing. Each data se
consisted of an(x,y) imaging scan at fixedz for an entire
wavelength set. The band pass of the filter was;8 nm.

2.3 Liquid Crystal Tunable Filter
We used the Varispec~model VS-VIS2-05-HC-20! tunable fil-
ter ~Cambridge Research and Instrumentation, Inc., Cam
bridge, MA!. The Varispec LCTF can cover a 400–720 nm
spectral range. The LCTF consists of several cascaded stag
of a Lyot birefringent filter that has been made tunable with
the addition of a liquid crystal layer in each stage;3 a narrow
band pass is obtained by using successive stages to suppr
the out-of-band transmission of the previous stage.

2.4 Data Analysis
The spectral data were analyzed with a commercially avail
able software package, ENVI~Research Systems, Inc., Boul-
der, CO!, originally written for data from remote sensing in-
struments.

Methods such as chemometrics,8 principal components,9,10

linear unmixing11 and convex hull geometry12 can also be
used to analyze these types of data. These approaches per
spatially and spectrally overlapping fluorophores to be identi
fied and distinguished, which is biologically essential when
analyzing the expression patterns of two or more genes fo
example.

For a mixed pixel with linear spectral mixing, we ex-
pressed the measured spectrum,S, of any pixel as

S~l!5A1CFP~l!1A2GFP~l!1A3YFP~l!,

or more generally as

S~l!5( A i* Ri~l! or S5A*R,

where R are the measured reference spectra. It is a linea
algebra problem to solve for the weighting matrixA, and the
solution is usually obtained with an inverse least square pro
cedure that minimizes the difference between the measure
and modeled spectrum. We used the ENVI algorithm, which
allowed constrained unmixing to force the weights to sum to
unity, making it easier to compare the separate images an
threshold the data to classify pixels. The result of the linea
unmixing is three images, each an image of the complet
scene of the weighting coefficients,Ai , for each spectral com-
ponent. A red–green–blue~RGB! composite, pseudocolored
to represent the constrained weights, shows that linear unmix
ing can generate abundance maps for cells expressing fro
none to three fluorescent proteins@Figure 3~A!#. Pixels that
express more than one color variant are displayed as a line
314 Journal of Biomedical Optics d July 2001 d Vol. 6 No. 3
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admixture of R, G, and B, reflecting the amounts of YF
GFP, and CFP, respectively. The final color seen is depen
on both the type and amount of the fluorescent proteins
pressed.

3 Results and Discussion
3.1 Establishing a Spectral Library
The ability to collect emission data from multiple, narro
bandwidths is critical for recovering spectra that can be co
pared with standard emission spectral libraries or those fr
other laboratories. A spectral library contains the compl
spectral signatures of various fluorescent entities@Figure
1~B!#. To establish a spectral library for calibrations, ce
were transfected with plasmids encoding CFP, GFP, YFP
RFP, or they were incubated with phalloidin-fluorescein, D
or ethidium bromide so that each cell would express onl
single fluorescent entity. We then excited the various fluor
cent entities with the TPLSM and collected spectral profi
with the LCTF incremented in 5 nm steps to establish o
standards@Figure 1~B!#. To verify that photobleaching did no
deleteriously affect the sequentially collected emission sp
tra, we collected the spectra both in ascending~450–625 nm!
and descending~625–450 nm! order. The emission profiles
detected for the various fluorophores were identical~data not
shown!. Image cubes generated in this way permit the em
sion spectrum of any pixel in the scene to be calculated@Fig-
ures 1~B! and 1~C!#. Because each cell expressed only
single label, these image cubes yielded the TPLSM emiss
spectra for CFP, GFP, YFP, DiI, RFP, and EtBr needed
spectral standards for identifying components in the tar
@Figure 1~C!#. The TPLSM spectra obtained are similar
those obtained with conventional single photon excitat
~Ref. 14 and data not shown!. The advantage of using spect
measured from the TPLSM image cube is that this direc
calibrates the spectra for any contributions from the tuna
filter transmission function, detector response, or excitat
wavelength.

In order to determine if we could distinguish multiple fluo
rescent entities from the same image, we mixed three gro
of cells after they were individually transfected with a pla
mid encoding CFP, GFP, or YFP, so that each cell wo
express only a single fluorescent protein~Figure 2!. The
TPLSM was set at a single excitation wavelength~;900 nm!
to pan excite all three fluorescent proteins; multiple scans
the same focal plane of the specimen were performed with
LCTF incremented in 5 nm steps. To create a set of image
which we can compare our multispectral approaches we
ated a set of images that correspond to those generated
conventional barrier filters. As shown in Figures 2~A!–2~C!,
we processed our spectral data with the transmission spe
of the standard interference filter sets designed to sepa
GFP/YFP and CFP/YFP~we convolved the spectral data wit
the transmission curves of Omega filter sets XF500 a
XF114 without the exciter!. The three images presented
Figures 2~A!–2~C! thus accurately reflect images collecte
using conventional filters in the hope of separating the th
fluorescent proteins based on their emission differences al
This is more challenging in the TPLSM employed than
conventional microscopy because the single excitation wa
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Resolution of multiple green fluorescent protein . . .
length excites all three GFP color variants. The images dem
onstrate considerable spectral crosstalk; that is, each imag
contains intensity that represents more than a single fluore
cent protein.

3.2 Analysis of Image Cubes Using Supervised
Classification and Linear Unmixing Algorithms
We used three approaches to process the experimentally o
tained image cubes:~1! supervised classification algorithms
~SCA!, ~2! principal components analysis~PCA!, and~3! lin-
ear unmixing~LU!. Each approach offered superior perfor-
mance to that from the conventional band pass filtering tech
niques used in epifluorescence or laser scanning microscop
@Figures 2~A!–2~C!#. In the following we will demonstrate
the performance of each approach using the spectral data fro
a group of cells in which each expresses only a single GF
color variant.

SCA calculates a ‘‘distance’’ between the experimental
spectrum of each test pixel and emission target references.9,10

It does this by treating each spectrum as a vector in
n-dimensional space. The distance of each pixel in that spac
from the target reference spectrum is determined; the smalle
the distance between a pixel’s spectrum and a reference th
more likely it is to belong to that spectral class. Results of
such a calculation are shown in Figures 2~D!–2~F! in which a
Mahalanous classifier was used to determine which of th
three color variants were expressed in a given pixel of the
image. In samples in which each cell expresses only a singl
fluorescent protein, SCA yields images in which each cell is
clearly defined as being either labeled or not labeled; there i
little or no ‘‘crosstalk’’ between channels. The performance of
SCA is most obvious when the three fluorescent protein chan
nels are pseudocolored~red, green, and blue for YFP, GFP,
and CFP, respectively! and merged into a single image@Figure
2~G!#. The absence of cyan, yellow, or magenta pixels in the
image shows there is little if any crosstalk among the three
channels.

We also used principal component analysis~PCA!. In ef-
fect, PCA locates the spectral components from the data itse
without any a priori knowledge by searching for variance
within the data. A PCA analysis of the image cube from the
slide with cells expressing all three proteins showed that ther
are three significant bands and analysis of the cubes with tw
proteins yields two such components. A RGB composite, us
ing the three eigenvector bands, shows a classified image th
compares very favorably with the one obtained from a super
vised classification with target end members in Figure 2. One
can derive the PCA spectra for the pixels that belong to eac
of the three classes from the RGB image and transform them
back into wavelength space: those match the reference spec
derived previously. We actually used a minimum noise
transformation,15 which can be thought of as a noise-whitened
PCA. Both of these analysis methods are well suited for fluo
rescence microscopy because we have extensive prior know
edge about reference spectra, unlike Earth remote sensing.

Linear unmixing11 offers another approach based on refer-
ence spectra that is capable of processing multispectral im
ages by assuming that the spectrum of each pixel is a linea
admixture of a set of target spectra. As described in Sec. 2, th
approach uses an inverse least square approach to extract
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relative amounts of each species for which a target spect
is available. In Figure 2~G! we have mapped the results of
constrained linear unmixing algorithm directly into the RG
color planes~red, green, and blue for YFP, GFP, and CF
respectively!. For example, a pixel expressing equal amou
of GFP and YFP~0% CFP, 50% GFP, and 50% YFP! would
be displayed as an equal combination of green and red~seen
as yellow!, much like the images obtained in multilabel fluo
rescence microscopy. In the data of Figure 2, each of the c
was expressing only a single GFP color variant, thus the
sence of yellow, green, or cyan pixels in the RGB compos
of the linear unmixing@Figure 2~G!# demonstrates the supe
rior performance of the approach. Figure 2~I! has been
mapped so that the intensity of the color of each pixel
proportional to the amount of fluorescent probe present. To
so, Figure 2~G! was multiplied by the summed spectral sign
over the entire spectral range.

3.3 Distinguishing Four Colors and GFP/Fluorescein
in Single Images
As a more rigorous test for our multispectral approach
created specimens in which more than a single GFP c
variant could be present in a single pixel. Cells were infec
with a high titer of three different viruses, each of whic
directs the synthesis of a different nuclear localized GFP co
variant. Given the ability of the viral stock to superinfe
cells, this approach should generate images in which zer
three color variants are expressed in the same cell nucleus
range of different amounts. Thus, the spectrum of any pi
can be a linear sum of up to three spectra, weighted by s
factor that depends on the local concentration, the efficie
of excitation of each fluorescent protein at a given wav
length, and the relative brightness of fluorescent emiss
Linear unmixing results in three images that present
weighting coefficients for each of the three spectral com
nents. A RGB composite, pseudocolored to represent the
strained weights~red, green, and blue for YFP, GFP, and CF
respectively!, shows that linear unmixing can generate abu
dance maps for cells expressing from none to three fluo
cent proteins@Figure 3~A!#. Pixels that express more than on
color variant are displayed as a linear admixture of R, G, a
B reflecting the amounts of YFP, GFP, and CFP, respectiv

Spectrally unmixed data can be classified easily by usin
threshold, as in Figure 3~B!. In the classification map shown
the threshold was set to 0.5 or greater, so that only th
pixels with a linear weighting of greater than 0.5 for a giv
component are displayed. For example, a pixel, which is
termined to be a combination of CFP~25%!, GFP~55%!, and
YFP ~20%! would be classified as GFP and represented a
green pixel. Because of the fixed threshold, some pixels
displayed as unclassified~i.e., pixels with combinations such
as 30% CFP, 30% GFP, and 40% YFP!. These data clearly
show that spectral classification can be used to detect spat
heterogeneous multiple color probes, even within the sa
cell or the same nucleus. While this approach sacrifices s
data on the relative amounts of each label, it is a conven
means by which to find a track individual component even
a noisy background.

We are continuing to ascertain the limits of our a
Journal of Biomedical Optics d July 2001 d Vol. 6 No. 3 315
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Fig. 3 Imaging spectroscopy applied to cells expressing up to three color variants. In cases where a single cell or pixel may express 0, 1, 2, or 3
color variants, the data must be spectrally unmixed to determine how much of each of three possible components is contained in the summed
spectrum of each pixel. The scale bar in (A) represents 10 mm for (A) and (B). (A) Pseudocolored RGB composite image of the results from linear
unmixing. The red, green, and blue image planes contain the relative spectral weights for YFP, GFP, and CFP, respectively. In this false-color
abundance map, a 100% CFP pixel would be blue, for example. The few saturated pixels (shown in black) were masked out of all the data analysis.
(B) Pseudocolored RGB composite image of the results from linear unmixing followed by a 50% threshold classification; any pixel for which the
weight of any one spectral component was greater than 0.5 was classified as belonging solely to that spectral (fluorophore) class. In this case, each
pixel was identified as belonging to a spectra class if its weight was 0.5 or greater. Consequently, some pixels are unclassified (black ones). The
class colors correspond to the three GFP variants: blue=CFP, green=GFP, and red=YFP.

Fig. 4 Imaging spectroscopy applied to cell fields expressing four colors and spectrally overlapping colors. (A) Pseudocolored composite images of
the results from linear unmixing. Cells were individually labeled with nuclear localized CFP, GFP, or YFP and then stained with DiI. Blue=CFP,
green=GFP, yellow=YFP, and red=DiI. (B) Cells were labeled with nuclear localized GFP and then incubated with fluorescein phalloidin that binds
to f-actin in the cytoplasm. Green=H2B-GFP and red=fluorphalloidin. The inset shows the emission spectra for 900 nm TPLSM excited GFP and
fluorescein. The scale bar in (A) represents 20 mm for (A) and 10 mm for (B).
316 Journal of Biomedical Optics d July 2001 d Vol. 6 No. 3
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Resolution of multiple green fluorescent protein . . .
proaches. Recently we have been unable to distinguish fou
distinct emission spectra using linear unmixing algorithms to
analyze the collected data sets@Figure 4~A!#. The CFP, GFP,
and YFP proteins were localized within the cell nucleus while
the DiI labeled the membrane components of the cytoplasm
The DiI was much brighter than any of the GFPs and it leaked
into the nucleus to spectrally mix with the nuclear GFP probe
Despite the brightness disparity and overlap, we were able t
cleanly separate the four fluorophores, as Figure 4~A! shows.
Submicron resolution of the individual spectra is feasible
@Figure 4~B! and data not shown#. To better demonstrate the
limits of our approach, we have also tested the capability to
spectrally distinguish fluorescein and GFP, whose emissio
spectra nearly overlap and are indistinguishable using conven
tional filters. The peak emissions of GFP and fluorescein ar
supported by only 7 nm. As shown in Figure 4~B!, the linear
unmixing algorithm applied to LCTF collected data is capable
of cleanly separating nuclear localized GFP from the cyto-
plasm localized fluorescein. This performance in a challeng
ing setting permits a new set of opportunities, since it sug
gests that color variants of GFP and dyes that were previous
thought to be too spectrally similar to be distinguished can
now be used within cells to multiply and uniquely label vari-
ous structures.

3.4 Determing the Least Number of Data Points
Required to Distinguish Fluorophores
A natural question that follows from these analyses is wha
instrument bandwidths and how many data points are nece
sary to separate closely spaced fluorophores such as GFP a
YFP. GFP and YFP have similar spectral shapes and are on
15 nm apart in emission maxima@Figure 1~C!#. To this end,
we modeled different instrument response functions with the
data collected from GFP and YFP expressing cells. To creat
wider wavelength bins, the spectral data were convolved with
LCTF bandwidths from 10 to 30 nm, keeping a sampling grid
of 5 nm, and then classified as before. Classification of the
spatially segregated data was surprising robust with regard t
the filter bandwidths from 10 to 20 nm, but classification be-
gan to breakdown for 25–30 nm bandwidths~data not
shown!. An alternate experimental approach would be to use a
LCTF with a different spectral shape that allows a larger
bandwidth with reduced spectral crosstalk between dat
points. For example, a rectangular band pass tunable filte
~top hat! would allow more light to pass with less contamina-
tion from outside the band pass since it does not sample th
spectra in the wings as does the Gaussian line shape of th
LCTF. An advantage of a larger bandwidth is that the re-
corded signal per channel increases~noise decreases! as the
sampling window is made larger.

We also analyzed the data to determine the minimum
dataset needed to classify the images. We performed a ste
wise linear discriminant analysis of the data of Figure 2 to
find the minimum number of measurement variables, in ou
case the number of spectral channels, required to parse th
data into a fixed number of disjoint classes. We used the Wilk
lambda criterion to select variables to be included or exclude
from the analysis, namely the used ratio of the generalize
within-class variance to the generalized total variance.13 An F
test with respect to the ratio of the Wilks statistic for the
r
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-

-
d

y

r

s

-

e

proposed new set of variables to the Wilks statistic for t
current set of variables is used to decide on whether to ad
new variable to the set or delete a variable from the set. T
test is performed iteratively on the data until there is no o
servable change in the F statistics.

For the imaging spectrometer data used in our exp
ments, application of this algorithm resulted in a minimum
16 noncontiguous spectral channels for robust assignmen
image pixels to their correct spectral class. The results sh
that we can obtain classified images with 16 bands that
equivalent to those resulting for using the full 32-ba
dataset. For CFP, GFP, and YFP, the optimum bands w
475, 485, and 495–560 nm. Note that this analysis app
only the spatially segregated probes; the minimum datase
classification may not be the minimum one for spectra
mixed pixels that need to be unmixed. These findings w
help us determine the least number of data points requisit
categorize desired fluorophores in order to speed faster
acquisition and lessen storage requirements—both vital c
siderations for time lapse videomicroscopy.

3.5 Comparison to Other Approaches
Previous reports of using multiple dichroic filters to separ
the excitation and emission wavelengths of different co
variants have shown the power of multicolor imaging.16–19

The broadening and blueshifting of the excitation spectra
TPLSM, as well as the difficulties of rapidly shifting the ex
citation wavelength to optimally excite different forms, com
plicate the previously published fixed filter approaches.16–18

Computational approaches to correct spectral bleedthro
work well with relatively well separated labels, but fail t
give robust results with many labels. Similarly, such a
proaches have difficulties in cases in which probe intensi
are dramatically mismatched~as in our experiments in which
the CFP and YFP signals were weaker than that of GFP
well as the experiments which used exogenous DiI!. These
techniques also require at least as many filters as pro
therefore, the equipment needed for any system with m
probes begins to resemble imaging spectroscopy. Addit
ally, the spectrally mixed pixels obtained using multip
probescannot be unmixed by spectrally broad filters; the
require the spectral data such as those obtained in these
periments.

The computational approach to spectral overlap with di
roics uses fairly well separated fluorophores and relies on
fact the red, green, and blue filters for a color camera
rather broad. As a result, one can measure how much of D
blue, for example, is detected by the red and green color c
ponents and construct a deconvolution matrix. We applied
method to our data, using as the data the three slices take
the emission peaks, 490, 515, and 530 nm, measured the
lap matrix, and applied it to the data. When the individu
‘‘corrected’’ wavelength slices were examined, the compa
son with the data classified with the entire image cube w
rather poor; i.e., the correction did not isolate each fluo
phore into a single band, due to the narrow emission p
spacing. Since so much of the EFP, GFP, and YFP spe
overlap, this approach does not create a usable overlap m
~for example, half of the CFP signal intensity lies above 5
nm, the peak of the GFP emission!.
Journal of Biomedical Optics d July 2001 d Vol. 6 No. 3 317
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Lansford, Bearman, and Fraser
Recent reports of fluorescent lifetime imaging microscopy
~FLIM !19 offer the potential to separate CFP, GFP, and YFP
probes, although still with some spectral cross talk. However
FLIM should show increased error rates in settings where th
environment of the dye alters the lifetime, in which dyes are
mixed within individual pixels, or in which the intensities of
the dye signals are not well matched. While the combination
of FLIM with imaging spectroscopy might resolve these chal-
lenges, the approaches used here offer robust performan
without the challenge of lifetime imaging.

There is one significant limitation to the approach outlined
here that should be mentioned. The spectra were obtaine
band sequentially, requiring multiple scans of each image
plane to sample the full spectrum of each pixel. Not only is
this data collection slow~it takes 5–14 min to collect a data
set!, it also increases the exposure of the specimen to th
exciting light. Photobleaching is a problem with many of the
fluorescent dyes that we tested, but not much of a problem
with the GFP color variants. However, the confirmed ability to
clearly separate out so many distinct emission spectra val
dates our experimental approach. Both the rate of data collec
tion and the degree of potential photobleaching will be im-
proved by an instrumental design in which the spectrum is
obtained by an array of parallel detectors.

By combining imaging spectroscopy and TPLSM, we were
able to concurrently image and distinguish four closely ad-
joined emission spectrums representing three color variants o
GFP and the vital dye DiI. In addition, the demonstrated abil-
ity to identify fluorescent species whose spectra differ by only
7 nm ~GFP and fluorescein! now allows a larger number of
fluorescent probes to be coincidentally followed. The capabil
ity to simultaneously image multiple distinctly colored pro-
teins offers obvious advantages, ranging from uniquely fol-
lowing distinct populations of cells by their expression of a
particular, to uniquely following an intracellular component
tagged with one fluorescent protein even when outnumbere
by components tagged with another color. The aforemen
tioned approaches provide a significant step to realizing th
dream of dynamically and multispectrally viewing embryo-
genesis by three-dimensional, time-lapse videomicroscopy
thereby providing an imminent means by which to decipher
the multifaceted combinations and interactions that simulta
neously occur during the complex signaling cascades and ce
lular responses that underlie biological processes.
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