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Noise factor analysis for cDNA microarrays
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Abstract. A microarray-image model is used that takes into account
many factors, including spot morphology, signal strength, background
fluorescent noise, and shape and surface degradation. The model
yields synthetic images whose appearance and quality reflect that of
real microarray images. The model is used to link noise factors to the
fidelity of signal extraction with respect to a standard image-extraction
algorithm. Of particular interest is the identification of the noise fac-
tors and their interactions that significantly degrade the ability to ac-
curately detect the true gene-expression signal. This study uses statis-
tical criteria in conjunction with the simulation of various noise
conditions to better understand the noise influence on signal extrac-
tion for cDNA microarray images. It proposes a paradigm that is
implemented in software. It specifically considers certain kinds of
noise in the noise model and sets these at certain levels; however, one
can choose other types of noise or use different noise levels. In sum, it
develops a statistical package that can work in conjunction with the
existing image simulation toolbox. © 2004 Society of Photo-Optical Instrumen-
tation Engineers. [DOI: 10.1117/1.1755232]
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1 Introduction
The introduction of cDNA microarray technology1 allows
thousands of gene expression values to be measured simul
neously, thereby providing insight into the global gene-
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expression patterns of cells~tissues! being studied. The ap
proach is powerful for studying the myriad transcriptio
related pathways involved in cellular growth, differentiatio
and transformation.2–5 The quality of each gene-expressio
value detected from this measurement technology depend
tricately on the image-processing algorithm and interactio
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Balagurunathan et al.
Numerous image-processing tools have been proposed to e
tract signal intensity from the cDNA arrays. A method that
uses a statistical test to segment the hybridized region from
the background and the inner hole is used in our study.6 To
better quantify the extracted data, metrics have been intro
duced to better understand the data generation.7

Despite the extensive application of cDNA technology,
few studies have been devoted to examining the quality an
reliability of gene expression signals in terms of how close the
detected signals are to the true gene expression levels in
biological sense.8 Linking various noise conditions to the sig-
nal extraction has been the goal of most image-extraction a
gorithms, the purpose being to develop better algorithms
Most proposed imaging methods are based on intuitive evi
dence. This study employs a microarray-image model tha
takes into account many factors, including spot morphology
signal strength, background fluorescent noise, and shape a
surface degradation.9 The model yields synthetic images
whose appearance and quality reflect that of real microarra
images. Here we use the model to link noise factors to the
fidelity of signal extraction with respect to a standard image-
extraction algorithm.6,7 Of particular interest is the identifica-
tion of the noise factors and their interactions that signifi-
cantly degrade the ability to accurately detect the true gene
expression signal. This study uses statistical criteria in
conjunction with the simulation of various noise conditions to
better understand the influence of noise on signal extractio
for cDNA microarray images.

Although some principles of experimental design have
been proposed for microarray experiments, they have bee
focused primarily on optimizing the yield of information on
the biological tissue samples of interest relative to the refer
ence sample10–11 and on assessing within and between array
variability. In this study, we use factorial experiments to sys-
tematically identify factors and their interactions that signifi-
cantly affect the accuracy of detecting the expression signa
Because noise–factor interactions can affect the quality o
signal detection in unpredictable ways, a systematic examina
tion of these interactions is needed.

Two points need to be kept in mind regarding the statistica
analysis. First, it is generally true that signal detection algo
rithms can better recover the true signal for images with les
severe levels of noise. Thus, when we compare signal estim
tion for low noise with estimation for high noise, the actual
error of estimation should be less for low noise—and this will
be borne out. Our concern here, however, lies in a differen
direction. We want to examine the significance of different
levels of various kinds of noise on signal estimation. If there
is no significant effect on estimation error relative to different
levels of a particular type of noise, then reducing the noise in
the image to a lower level will not significantly affect signal
detection; however, if there is a significant effect, then it
would be worthwhile to try to reduce that type of noise.

A second point is that we are proposing a paradigm imple
mented in software, and not simply providing results. We
have chosen to consider certain kinds of noise in the nois
model and to set these at certain levels. One can choose oth
types of noise or use different noise levels. Clearly, bringing
the noise levels closer will reduce the significance of noise
effects, whereas moving them farther apart will increase the
significance. What we have done is to develop a statistica
664 Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4
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package to work in conjunction with the existing image sim
lation toolbox.

2 Image Simulation
This section describes the noise conditions used in the cur
study. A detailed description of image simulation is given
the original paper.9 Figure 1 shows the cDNA spot and mod
generation with various noise conditions. The addition
noise to the array is broadly divided into three levels: arra
level, block-level, and spot-level noise. Detailed distribution
descriptions of the various types of noise are given in
appendix. Throughout this section, when describing a type
noise, we refer to the appendix for specific distributional
formation. The reference uses the simulation number. Our
periments involve three noise settings:21, 0, and11, where
the increasing ordinal numbering corresponds to worst to le
noise~Table 1!.

The analysis of a detection algorithm begins with a grou
truth. Here that ground truth refers to a ‘‘true’’ expressio
intensity that must be estimated by the detection algorithm
microarray containingN gene expression spots with intensi
levels I k , for k51,...,N, is simulated by an exponential dis

Fig. 1 Microarray spot model.
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Table 1 Settings for noise parameters.

Index Noise Type
Level +1:

Good
Level 0:
Average

Level −1:
Bad

1 Sig./background
noise(SigBack)

3 2 1.5

2 Expresser or outlier
probability rate (OutL)

0.1 0.25 0.5

3 Spike noise (spike)
(Lspi ,mspi ,Wspi)

0.01,
(500,700),

(2,5)

0.015,
(700,1000),

(2,5)

0.06,
(900,1200), (6,10)

4 Snake noise (Snake)
(ksn ,Ls ,Wsn ,Nseg)

0.15,
(10,50),1,2

0.20,
(40,70),1,5

0.25, (50,90),2,12

5 Parabolic background with
deviation (ParaB) (gch1 ,
gch2)

1, (10, 12) 1, (15, 17) 1, (25, 27)

6 Spot radius: deviation
(Spot) (ss)

10 20 30

7 Inner hole (InnH)
(mh ,sh ,mv ,sv)

(4,7,5,8),(4,7,
5,8)

(10,20,5,10),(10,20,5,10) (35,45,10,20),(35,
45,10,20)

8 Foreground noise
(ForeN)
(am ,as)

(0, 0,4,7),
(0, 0,4,7)

(0,0,5,10),
(0,0,5,10)

(0,0,10,15),
(0,0,10,15)

9 Edge noise (EdgeN) (ded) 0.3 0.1 0.03

10 Chord noise (Chord)
(p0 ,p1 ,p2 ,p3 ,p4)

(0.9,0.07,
0.03)

(0.75,0.15,0.05,0.05) (0.2,0.35,0.20,
0.15,0.1)

11 Scratch noise (Scratch)
(ksc , Ls;U@Lsc1 ,Lsc2#, Wsc ,
Nsc)

2.5,(9,35),3,2 3.5,(15,45),5,4 4,(25,65),7,10

12 Signal deviation (sigSD)
(a)

0.15 0.25 0.35

13 Flat background with
deviation (FlatBack)
(gch1 ,gch2)

0, (10,12) 0, (15,17) 0, (25,27)
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tribution. Base intensities for the red and green channels,Rk

and Gk , respectively, are generated from two independen
normal distributions having a meanI k and standard deviation
aI k , wherea is a common coefficient of variation.

A particular gene~RNA! may be over/or underexpressed,
and this will show up in the red~test! channel. We refer to
such a gene as an expresser or outlier. These are found ra
domly in the model by selecting a gene from the entire mi-
croarray with a probabilitypoutlier to be an outlier. If genek is
selected, then a scaling factortk510bk is applied, wherebk

satisfies a beta distribution,bk;B(1.7,4.8), and where the6
sign is selected with equal probability. Based on the scaling
factor, the individual channel intensities are given byRk8
5RkAtk andGk85Gk /Atk.

The dyes commonly used for microarray experiments
show nonlinear response characteristics, and different dye
give different responses. This effect is modeled by the nonlin
ear function
Jo
n-

s

f ~x!5a3@a01x~12e2x/a1!a2#; a3.1.

R8 andG8 are transformed by the detection system respo
characteristic function defined byf R(x) or f G(x) to obtain
realistic fluorescent intensities. The resulting observed fl
rescent intensities,Rk95 f R(Rk8) andGk95 f G(Gk8) are the true
mean intensities across thek’th spot.

Normally distributed foreground noise of intensityI f is
added pixelwise on the spots~simulation 9 in the appendix!.
This foreground noise typically has zero mean. It results
spot intensitiesSR5Rk91I f 1 and SG5Gk91I f 2 . Figure 2
shows noise addition at various levels. In this figure, and in
subsequent figures illustrating noise, all other noise factors
set at the best level~less variant than11 level!.

Owing to laboratory dust that may stick on the arrays a
fluoresce on laser excitation to give high-intensity spikes,
high-intensity points caused by cDNA precipitation, spi
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 665
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Fig. 2 Foreground noise variation illustrated at three levels: +1, 0, −1.
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noise, at a preset rate,Lspi , is added randomly across the
entire slide area. Once a pixel is selected for spike noise, th
adjacent pixels have a higher probability of being affected
This is fixed by a random number chosen from a uniform rate
Wspi , which gives a count of pixels randomly chosen to be
influenced by this noise. The intensity,NS , of the spike noise
is governed by an exponential distribution with meanmspi .
Figure 3 shows spike noise added at different levels.

Physical handling of the array slides can result in scratch
noise~surface scratches!, which typically results in low inten-
sity levels. Scratch-noise intensity is parameterized as a ratio
ksc , giving the background-to-scratch noise intensity level.
Other parameters are the number of strips, strip thicknes
Wsc , and a random strip length,Lsc ~simulation 24 in the
appendix!. These scratches are placed at random positions o
the array and are inclined according to a~discrete! uniformly
random angle, uscP$0,45,90,135,180%. Figure 4 shows
scratch noise at different levels.

Fine dust particles on the slides can create snake nois
upon laser excitation. These snake-noise strips are typically o
higher intensity than the signal level. To simulate this noise
medical Optics d July/August 2004 d Vol. 9 No. 4
,

e
f

multidirectional snake noise has been generated consistin
some number,Nseg, of segments. Analogously to scratc
noise, the intensity is parameterized as a ratio,ksn , giving the
average signal-to-snake noise intensity level, the numbe
snakes, snake thicknessWsn , and a random length,Lsn ,
given as a multiple of the spot size. Figure 5 shows sn
noise at different levels.

The cDNA deposition spot is considered to be circul
with a random radiusS ~simulation 1 in the appendix!. The
mean of the radius is set according to the array density, an
variance relates to the consistency of spot size. The stan
deviation is a predetermined proportion,ks , of the mean. The
radius mean is set for every block, and randomized ove
small range within the array~simulation 12!. Depending on
the robot arm and printing ability of the pins, the intersp
distance,Gsp , may vary. Owing to the physical mechanics
the robot arm, the block size~pixel units! is fixed in most
cases. The interspot distance can be set to accommodate
size and random variations in spot radii. The spot variabi
at three levels is shown in Fig. 6.

Owing to the impact of the print tip on the glass surface,

Fig. 4 Scratch noise variation illustrated at three levels: +1, 0, −1 (left
to right).
Fig. 3 Spike noise variation illustrated at three levels +1, 0, −1 (left to
right).
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Fig. 5 Snake noise variation illustrated at three levels +1, 0, −1 (left to
right).
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possibly to the effect of surface tension during the drying
process, a significantly lesser amount of cDNA can be depos
ited near the spot center. An elliptical shape models this inne
hole with random horizontal and vertical axes,H and V
~simulation 3!. Interarray variability in the distributions ofH
andV is modeled by uniformly distributed meansmH andmV
~simulation 14!. The choice of the parameters governs the
hole shapes. The center position of a hole is allowed to drif
over a range~simulation 4!. The shape is unaffected by the
drift because the contact of the mechanical print tip to the
surface is unaffected. Figure 7 shows the noise at differen
levels.

The irregularity of RNA washout during slide preparation
is modeled by chord noise~chord removal!. The number,Nc ,
of chords to be removed for a spot is selected from a discret
distribution,$0,1,2,3,4%, where the elements of the distribution
occur with probabilitiesp0 , p1 , p2 , p3 , andp4 , respectively.
For images with very few pieces cut off, the zero-chord prob-
ability p0 is very high, and the three- and four-chord prob-
abilities are close to 0~possibly equal to 0!. To model inter-
array variability, the probabilities can be treated randomly.
This noise parameter is set once for every block that is not
spot level noise. Once the number of chords for a spot is
determined, the distance,L, of each chord center to the edge is
selected from a beta distribution, with interblock variability
for the beta distribution being uniformly modeled~simulation
5!. Finally, the chord locations are chosen uniformly ran-
domly according to an angleu between 0 and 2p. Figure 8
shows chord noise at different levels.

Owing to the manner in which liquid dries, the spots usu-
ally do not have smooth edges. Edge noise is simulated via
parameterized edge-noise algorithm adopted from digita
document processing. Edge noise is applied to the outer pe
rimeter of the spot~after chord removal!. Figure 9 shows the
noise at different levels.

Many factors contribute to the fluorescent background ob
served: autofluorescence from the glass surface or the surfa
Jo
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t

-

of the detection instrument, nonspecific binding of fluoresc
residues after hybridization, local contamination from posth
bridization slide handling, etc. Background noise is simula
by a normal distribution whose parameters are randomly c
sen to describe the process, and for multiple arrays, the in
array difference is modeled by a uniform distribution~simu-
lation 20!.

Rather than be constant across the entire microarray,
mean of the background noise may vary, owing to vario
scanning effects. It can take different shapes: parabolic, p
tive slope, or negative slope. In this case a functiong(x,y) is
first generated~parabolic, positive slope, or negative slope! to
form a background surface and normal noise is added t
pixelwise. Figure 10 shows parabolic background noise at
ferent levels.

The addition of various noise types makes the microar
highly peaked, with high pixel differences. This stark irreg
larity can be mitigated by smoothing the image with eithe
flat or pyramidal convolution kernel. Our simulation stud
uses a flat smoothing function.

Once a microarray image has been simulated, the sig
extraction toolbox Dearray uses statistical methods to s
ment the signal and the background pixels.6,7 Different levels
of significance can be set for this procedure. Once the sig
pixels are identified, a trimmed mean of their values gives
estimate of the signal mean. Background information is
tracted by taking pixel information from four corners of
given spot to estimate its mean. Actual signal expression
estimated by the difference between the two. If a spot’s
regularity in shape and signal~area of the spot, signal varia
tion, etc.! is reflected by a low-quality metric, then the sp
can be flagged. At the final step, a linear corrective norm
ization procedure is carried out to compensate for variation
the dye response. Ratio intensities are then computed. A l
rithmic scale applied to the ratios can be used to map the
to a desirable range.

Fig. 7 Inner hole noise variation illustrated at three levels: +1, 0, −1
(left to right).
Fig. 6 Spot radius deviation illustrated at three levels: +1, 0, −1 (left to
right).
Fig. 8 Chord noise variation illustrated at three levels: +1, 0, −1 (left
to right).
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 667
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Fig. 9 Spot edge variation illustrated at three levels: +1, 0, −1 (left to
right).
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3 Experimental Design and Statistical Data
Analysis
The array model has more than twenty parameterized nois
conditions. We consider thirteen commonly occurring noise
conditions for this study. These are grouped into four catego
ries, which then correspond to four experiments:~1! back-
ground noise,~2! shape noise,~3! surface noise, and~4! weak
signal. Each category has five conditions, with some of the
thirteen conditions occurring in more than one category. The
experiments are described in Table 2. In experiments 1A
through 4A, each factor can take on two levels, 0 or 1. In
experiments 1B through 4B, the factors take on the levels21
or 1. Assuming two levels for each noise factor, there are
thirty-two conditions for each category. For each condition, 8
replicate arrays are generated so there are 256 arrays per e
periment. Each array has 1600 spots in a 40340 matrix for-
mat. These numbers have been chosen to provide sufficie
replicates while not resulting in inordinate image-processing
time.

3.1 Experimental Conditions
The background–noise interaction involves noise that can a
ter the background and thereby influence signal extraction
Parabolic noise generates a concave background, and at d
ferent levels the backgrounds are expected to show more d
viation. A high signal-to-background noise ratio reduces the
gap between the average signal and background mean leve
Spike and snake noise create surface noise. Expresser va
ability simulates spots with expresser gene expressions.

Noise degradations related to spot shapes are grouped t
gether in the shape–noise interaction experiment. Noise re
lated to spot shapes is grouped together. These include sp
radius, inner-hole variation~from no hole to close to half the
spot size!, edge noise, and chord removal. To check the inter
action of these with foreground noise, the latter is included.

The third experiment, surface–noise interaction, combine
shape variation with surface noise, both snake and scratch.
668 Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4
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Table 2 Experiments.

Experiment 1: Background–Noise Interactions

Index Noise Type

1 Sig./background
noise(SigBack)

2 Expresser or outlier level (OutL)

3 Spike noise (Spike)
(Lspi , mspi;U@e,f#, Wspi;U@g,

h])

4 Snake noise (Snake)
(ksn ,Lsn;U@Lsn1 ,Lsn2#,Wsn ,Nseg)

5 Parabolic background with
deviation (ParaB) (gch1 ,gch2)

Experiment 2: Shape–Noise Interactions

Index Noise Type

1 Spot radius: deviation (Spot)
(ss)

2 Inner hole (InnH) (mh , sh , mv ,
sv)

3 Foreground noise (ForeN)
(am ,as)

4 Edge noise (EdgeN) (ded)

5 Chord noise (Chord)
(p0 ,p1 ,p2 ,p3 ,p4)

Experiment 3: Surface–Noise Interactions

Index Noise Type

1 Spot radius: deviation (Spot)
(ss)

2 Inner hole (InnH) (mh , sh , mv ,
sv)

3 Snake noise (Snake)
(ksn ,Lsn;U@Lsn1 ,Lsn2#,Wsn ,Nseg)

4 Scratch noise (Scratch)
(ksc ,Ls;U@Lsc1 ,Lsc2#,Wsc ,Nsc)

5 Chord noise (Chord)
(p0 ,p1 ,p2 ,p3 ,p4)

Experiment 4: Weak Signal–Noise

Index Noise Type

1 Signal standard deviation
(SigSD) (a)

2 Foreground noise (ForeN)
(am ,as)

3 Sig./background noise
(SigBack)

4 Flat background with
background deviation (FlatBack)

(gch1 ,gch2)

5 Spike noise (Spike)
(Lspi ,mspi;U@e,f#,Wspi;U@g,#)
Fig. 10 Variation in signal-to-background noise ratio (SigBack) and
parabolic background. SigBack is set at −1, while parabolic back-
ground is varied from +1, 0, −1, left to right.
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Table 3 Image-quality measurements for the experiments.

Quantitative Measures

Noise Levels for Experiment 1

Good (+1 Level) Average (0 Level) Bad (−1 Level)

E[SRIS.Dev] 1176.52 1178.82 1320.937
E[SRISNR] 111.269 66.143 17.921
E[SRIQ] 0.7333 0.7807 0.9775
E[SRIbkDev] 17.884 32.315 131.853
E[SGIS.Dev] 1181.09 1178.237 1328.67
E[SGISNR] 105.290 61.987 17.655
E[SGIQ] 0.7514 0.8017 0.9793
E[SGIbkDev] 19.134 34.613 134.66
E[uErroru] 0.0714 0.1402 0.2843
E[Pro.Area] 0.9622 0.9509 0.8491
E[Total-Q] 0.7131 0.7495 0.8744
E[CV] 0.0478 0.1108 0.1805

Quantitative Measures

Noise Levels for Experiment 2

Good (+1 Level) Average (0 Level) Bad (−1 Level)

E[SRIS.Dev] 970.14 727.107 569.103
E[SRISNR] 96.750 77.082 52.770
E[SRIQ] 0.9956 0.9894 0.9528
E[SRIbkDev] 16.83 16.415 16.158
E[SGIS.Dev] 971.78 733.498 575.78
E[SGISNR] 78.434 64.192 45.785
E[SGIQ] 0.9956 0.9894 0.9504
E[SGIbkDev] 21.079 19.90 18.767
E[uErroru] 0.1675 0.2473 0.5212
E[Pro.Area] 0.9405 0.8775 0.7606
E[Total-Q] 0.9627 0.9489 0.8989
E[CV] 0.0423 0.0423 0.0531

Quantitative Measures

Noise Levels for Experiment 3

Good (+1 Level) Average (0 Level) Bad (−1 Level)

E[SRIS.Dev] 987.017 747.165 576.904
E[SRISNR] 99.803 86.568 60.511
E[SRIQ] 0.9927 0.9878 0.9222
E[SRIbkDev] 17.205 18.097 20.328
E[SGIS.Dev] 989.46 746.12 584.234
E[SGISNR] 79.880 69.825 50.435
E[SGIQ] 0.9998 0.9880 0.9234
E[SGIbkDev] 21.470 21.65 22.925
E[uErroru] 0.1121 0.3274 0.4992
E[Pro.Area] 0.9350 0.8586 0.7343
E[Total-Q] 0.9904 0.9483 0.8744
E[CV] 0.0419 0.0417 0.0477

Quantitative Measures

Noise Levels for Experiment 4

Good (+1 Level) Average (0 Level) Bad (−1 Level)

E[SRIS.Dev] 1160.35 1125.47 1134.62
E[SRISNR] 48.610 23.032 8.772
E[SRIQ] 0.9905 0.9768 0.9568
E[SRIbkDev] 39.331 87.582 261.48
E[SGIS.Dev] 1160.29 1131.83 1140.364
E[SGISNR] 41.620 20.620 8.3094
E[SGIQ] 0.9906 0.9768 0.9569
E[SGIbkDev] 46.343 98.420 275.703
E[uErroru] 0.1474 0.4607 0.8199
E[Pro.Area] 0.9432 0.8993 0.83707
E[Total-Q] 0.9243 0.8355 0.61612
E[CV] 0.1209 0.1980 0.2493
Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 669
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Balagurunathan et al.
In the last experiment, weak signal–noise interaction in-
volves alterations in signal level, including foreground noise,
spike noise, background unevenness, and signal-to
background ratio. This grouping is good for analyzing the
effects of weak signals on the signal estimation process.

The quality of microarray images is typically assessed by a
trained microbiologist in the laboratory after image scanning
In this study, the noise-level parameters used for the differen
factor levels correspond to the kinds of noise distributions
seen in practice. As noted in the original simulation paper,9

the exact parameters will vary, depending on the technology
and the ones used in this paper correspond to general cond
tions observed over many years of application since the de
velopment of Dearray in 1997.6 Although metrics have been
proposed to quantify microarray quality,7 there is no direct
way to determine the effect of each noise level on the metrics
This is mostly attributed to the multivariate influence of the
various degradations on the estimated signal. While it is no
doubt true that individual statistical results obtained in this
paper may not apply for different noise distributions, the gen-
eral methodology will apply, and we believe that the conclu-
sions drawn here are indicative of what one might expect with
similar technology~for specific issues regarding parameters,
refer to the original paper!.

To quantify the relation between the factor levels~21,0,
11!, noise levels, and image quality, Table 3 provides mea
sures corresponding to the different experiments and facto
levels. All measures, except for the coefficient of variation,
are defined at the spot level, and therefore have been averag
across all spots over all replicates. The table includes th
means~expectations! of twelve measurements. There are four
measurements for the red channel:SRIS.Devis the standard
deviation of the signal intensity;SRISNRis the signal-to-noise
ratio, which is defined as the ratio of the mean signal intensity
to the local background standard deviation;SRIQuality is the
channel quality metric defined in Ref. 7, which is formed as a
minimum of four component qualities involving area, back-
ground, consistency, and saturation; andSRIBkDevis the stan-
dard deviation of the background intensity. There are four
analogous measures for the green channel:SGIS.Dev,
SGISNR, SGIQuality, andSGIBkDev. There are four common
measurements:uErroru is the absolute error for the signal es-
timation; Prop.Area is the proportional area relative to the
mask size;Total-Q is the total quality, which is based on the
intensity quality of both channels and the signal-to-noise ratio
of both channels, andCV is the coefficient of variation of the
intensity. In all experiments, the mean error,EuError u], of
the actual to estimated signal ratios increases as the degrad
tion increases.

While most of the measurements in Table 3 show straight
forward effects, there is an apparent anomaly in experiment 1
which treats background characteristics. The mean variatio
of the background(E@SRIbkDev#,E@SGIbkDev#) shows
an increase from11 to 21 level, along with the mean SNR
(E@SRISNR#,E@SGISNR#), which goes from good to bad.
Some decrease in the proportional area of the spots is als
seen. A paradox occurs with respect to total quality:
E@Total-Q# increases as the levels go from11 to 21. This
is due to the effect of the parabolic background on spots in th
central portion of the array. There the image gets a very low
670 Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4
-

t

,
i-
-

.

r

d

a-

,

o

background standard deviation, which improves the SNR,
therefore improvesE@Total-Q#.

3.2 Statistical Analysis of Data
For each set of experiments we used a2k factorial design,
with k55 experimental factors. Each factor consists of tw
levels.12,13 Since our primary objective is to determine ho
the experimental noise factors affect the accuracy of detec
gene expression, the appropriate basic response variable
sidered for analysis is the absolute difference between
detected~estimated! and the true expression ratio at each sp
Because the distribution of these measurements tends to
a long right tail, we therefore analyze the response variabl
the log-log scale for the analysis of variance model.12 More
precisely, a constant 1 has been added to a response b
taking the log transformation. The goal here is to reduce
potential dominating influence from extremely large r
sponses, yet not to dramatically increase the transformed
solute differences when the true expression ratios are clos
0, noting that log~0! goes to negative infinite. Here, taking
different transformation can be viewed as evaluating the
sponses at different scales. One advantage of considering
absolute difference rather than the original difference, bey
its being a meaningful measurement, is that the response
now all positive so that regardless of what monotone trans
mation is taken, the relative order among responses is k
Because of that, even though the outcomes are not tran
mation invariant among nonlinear monotone transformatio
they are less sensitive toward the choice of transformation
fact, we have conducted analyses using other concave tr
formations as well as rank-based methods, in which cases
conclusion of the analysis remains unchanged.

To further avoid the situation that outlying observatio
have a dominating influence on the estimated main or in
action effects, we adopt the following screening procedure
our analysis. First, data points with an estimated express
ratio larger than 30 are excluded from the analysis. Such h
ratio points are often excluded in practice. Second, we h
performed a regular least-squares estimation procedure12 and
produced studentized residuals12 for each observation. A data
point with an absolute studentized residual greater than
considered as an extreme outlying observation and is fur
excluded from the main analysis. The chance of having
absolute studentized residual greater than 4 is less than1024

~for normally distributed data!. The use of studentized residu
als gives us a statistically meaningful way to exclude poi
with very high estimated ratios without requiring a subjecti
cutoff point lower than 30. This two-part screening procedu
eliminates about 1% of the total observations in each exp
ment.

We fit an analysis-of-variance model with main effec
two-way, and three-way interactions to the remaining da
Results for the main effects and two-way interactions ba
on F-tests are obtained. We test the significance of the
main affects and all ten first-order interactions simultaneou
for each experiment. Thus, we have a total of 15 hypothe
tests per experiment. We use the Bonferonni adjustment12 to
control the family wise error rate~FWER! in multiple testing
~testing main and first-order interactions!. At a50.05 level,
this gives 0.0033 as the significance threshold for each
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Noise factor analysis for cDNA microarrays
Fig. 11 Box plots for absolute differences between the true and esti-
mated expression ratios in a log-log scale. For each experiment, only
the responses in the most extreme level (all −1 for Bs and all 0 for As)
are plotted. Each box contains the central 50% of the data. The solid
dot in the middle gives the location of the median. The top and bot-
tom whiskers reach the largest and smallest nonoutlying observations,
respectively, while the circles indicate the locations of outlying obser-
vations.
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Thus, the probability of erroneously rejecting any null hy-
pothesis is controlled at 0.05.

When there are two levels in each factor, as in all of our
experiments, we construct an equivalentt-test for each of the
Jo
15F-tests. By equivalence, we mean that thep value of an
F-test is the same as that of the corresponding two-si
t-test. Thet-test statistics with sign and thep values, when
significant, are reported. For each main effect, thet-test
statistic is the difference, standardized by its stand
error ~S.E.!, between the estimated effects of the two no
levels. Even though the S.E.s are not identical among
main effects, a consequence of using robust regression pr
dures, they are within 0.5% of each other. In other words,
size of thet-test statistic reflects the magnitude of chang
associated with the noise factor. All the main effectt-test
statistics are positive and this simply indicates that
presence of a high noise level creates more damage than
of a low noise level. For each two-way interaction, thet-test
statistic is the standardized difference between the estim
cell mean when both high noise factors are present and
cell mean predicted based on outcomes from individual no
factors, assuming no interaction. A positivet-test statistic
indicates a ‘‘synergistic’’ interaction; that is, the dama
caused by the presence of both noise factors is worse
the additive effect from individual noise factors. A negati
t-test statistic stands for an ‘‘antagonistic’’ interaction—
the opposite of ‘‘synergistic’’ interaction. Finally, through
out, the experimental unit is the individual spot in ea
array.
Table 4 Experiment 1: Background noise.

Source
Exp. 1B
All Levels

Exp. 1B
Low Levels

Exp. 1A
All Levels

Exp. 1A
Low Levels

Main Effects

SigBack 32.60(<0.0001) 15.65(<0.0001) 35.38(<0.0001) 21.81(<0.0001)

OutL 106.80(<0.0001) 42.32(<0.0001) 24.79(<0.0001) 4.02(<0.0001)

Spike 104.77(<0.0001) 94.09(<0.0001) 2.37 5.72(<0.0001)

Snake 3.17(0.0015) 2.99(0.0028) 0.10 0.69

ParaB 28.27(<0.0001) 13.85(<0.0001) 21.57(<0.0001) 11.40(<0.0001)

Interaction

SigBack*outL −2.10 −3.65(0.0003) 0.85 −0.95

SigBack*spike −17.25(<0.0001) −12.44(<0.0001) 2.81 3.38(0.0007)

SigBack*snake −0.37 0.22 −2.05 1.31

sigBack*paraB 11.20(<0.0001) 7.15(<0.0001) 4.22(<0.0001) 0.44

outL*spike 73.19(<0.0001) 42.35(<0.0001) 3.12(0.0018) 4.05(<0.0001)

outL*snake 0.66 0.40 −1.87 0.83

outL*paraB −6.57(<0.0001) −5.67(<0.0001) −0.10 −1.55

Spike*snake −1.92 −1.27 −0.26 1.73

Spike*paraB −11.61(<0.0001) −6.50(<0.0001) 1.77 −0.35

snake*paraB −2.29 −0.10 −1.47 0.35
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 671
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Fig. 12 Signal-to-background and parabolic noise at (+1,+1), (0,0),
(−1,−1) level, from left to right.
e

l

e

d
c

e
-

ing
to

s,
h

ne-
in

s a
ll
ult
nd

hat
all

e
w-
e-
l
t
to

ifi-
4 Experimental Results
As noted in the introduction, signal-detection algorithms can
recover the true signal more easily for images with less sever
levels of noise. Thus, when comparing experiments 1A to 4A
with experiments 1B to 4B, with the noise level 0~less se-
vere! and noise level21 ~more severe!, respectively, we ex-
pect that the true gene expression can be more accurate
estimated in experiments 1A to 4A. This means that for data
with more noise~21; experiments 1B to 4B! the difference
between the estimated and true expression ratio is greate
This is shown in Fig. 11, where, for all experiments, the dis-
tributions of these absolute differences at their most extrem
noise level~all 0, or all 21! in log-log scale are presented by
box plots. The top and bottom edges of each box correspon
to the upper and lower quartiles of the measurements, respe
tively. The solid dots in the middle give the locations of the
medians. Figure 11 clearly shows that the medians and upp
quartiles of 1B to 4B are larger than the corresponding medi
ans and upper quartiles of 1A to 4A.
672 Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4
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In this paper our interest goes beyond this general st
ment; it is to determine the kinds of noise reduction that s
nificantly affect signal estimates. For instance, in experim
1, concerning background noise, if there is a significant d
ference between levels21 and 1 for the parabolic backgroun
factor (p,0.0033), then lessening the curvature of the par
bolic background significantly improves estimation at lev
a50.05. We reach this conclusion because the response
the factorial experiment is the absolute difference between
estimated and actual signal values.

Let us consider experiment 1 in detail, the results be
given in Table 4. The four columns of the table correspond
experiment 1B for all signal levels, 1B for low signal level
1A for all signal levels, and 1A for low signal levels. For eac
experiment, data in the low signal level comprise the o
third of the original data points whose true signal values are
their lower tertile. We have considered low signal levels a
case in their own right~besides being included among a
signal levels! because signal detection is made more diffic
when a signal is low. The table is broken into main effects a
interactions. For experiment 1B~level 21 versus level 1! us-
ing all signals, all five effects are significant. This means t
reducing any of these effects can be helpful. They are also
significant for low signals. Note that all five factors in th
experiment directly affect pixel values, either raising or lo
ering them for the affected pixels, and the difference in d
grees between levels21 and 1 significantly affects signa
estimation. The magnitude of thet-test statistics suggests tha
the high outlier and spike noise levels are more damaging
the image than the others.

If we now consider experiment 1A~level 0 versus level 1!
for all signals, both spike and snake effects become insign
Fig. 13 Signal-to-background and spike noises at different levels.
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Table 5 Experiment 2: Shape noise.

Source
Exp. 2B
All Levels

Exp. 2B
Low Levels

Exp. 2A
All Levels

Exp. 2A
Low Levels

Main Effects

Spot 39.83(<0.0001) 24.19(<0.0001) 9.89(<0.0001) 5.32(<0.0001)

InnH 96.02(<0.0001) 54.21(<0.0001) 19.43(<0.0001) 11.78(<0.0001)

ForeN 71.22(<0.0001) 39.65(<0.0001) 21.31(<0.0001) 11.79(<0.0001)

EdgeN 2.41 0.77 3.91(<0.0001) 1.33

Chord 15.65(<0.0001) 8.27(<0.0001) 5.42(<0.0001) 2.21

Interaction

spotR* innH 26.31(<0.0001) 14.95(<0.0001) 3.99(<0.0001) 1.49

spotR* foreN −0.98 −0.41 1.82 0.71

spotR*edgeN 4.96(<0.0001) 3.36(0.0008) −0.10 −0.33

spotR*chord −6.52(<0.0001) −3.55(0.0004) −0.45 −0.10

innH* foreN 12.17(<0.0001) 7.60(<0.0001) −2.01 −0.70

innH*edgeN 0.70 0.41 3.00(0.0027) 2.82

innH*chord 9.01(<0.0001) 4.33(<0.0001) 4.26(<0.0001) 4.13(<0.0001)

foreN*edgeN 0.45 −0.30 −0.22 −1.15

foreN*chord 3.80(0.0001) 2.37 1.69 0.55

edgeN*chord −3.74(0.0002) −2.25 −0.41 −1.01
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cant. This means that, relative to snake or spike noise, sign
estimation is not significantly different at these two levels.
Looking at the fourth column, we see that spike noise is still
significant for level 0 versus level 1 for low signals. For these,
there is a significant difference in performance of the algo-
rithm relative to spike noise.

Interpretation of interactions can often be difficult, but in
some cases it can be revealing. For instance, confining ou
selves to the case of all signal levels, in experiment 1B we se
that there is interaction between the signal-to-backgroun
noise and the parabolic effect. This is not surprising becaus
the ratio is affected by the background. The interaction of the
outlier effect and spike noise is also reasonable since bot
produce extreme values on the microarray. The large positiv
t-test statistic suggests a strong ‘‘synergistic’’ interaction ef-
Jo
l

-

fect throughout all four scenarios. A similar type of interacti
is observed when both signal-to-background noise a
parabolic-background noise levels are high. Figures 12 and
illustrate the mixed visual effects between signal-t
background noise and parabolic-background noise and s
noise, respectively, with the underlying true spot-intensity d
tributions being the same in each part and with only the no
factors contributing to the differences.

For experiment 2~shape noise!, in Table 5 we see that fou
of the factors are significant for experiment 2B, for all signa
or just low signals. Among them, the strongest factors are
inner hole size and the foreground noise. The effect of fo
ground noise is similar to background noise in that it direc
affects pixel values. The effect of low spot radius, large inn
hole size, and excessive chord removal is to lessen the si
Fig. 14 Spot radius deviation and chord noise at (+1,+1), (0,0),
(−1,−1) levels, from left to right.
Fig. 15 Spot radius deviation and inner hole at (+1,+1), (0,0), (−1,−1)
levels, left to right.
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 673
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Fig. 16 Inner hole and chord noises at (+1,+1), (0,0), (−1,−1) levels,
left to right.
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area, thereby reducing the pixel area over which the signal i
to be estimated. Chord removal is not significant in experi-
ment 2A for low signals, which means that at level 0 there is
insufficient chord removal to significantly affect signal esti-
mation relative to level 1. The fact that edge noise is not
significant in experiment 2B indicates that the imaging algo-
rithm can deal equally well with spot detection at both levels
relative to handling edge noise.

There is an apparent anomaly with regard to edge noise i
experiment 2A: edge noise is significant relative to levels 0
and 1, but not with respect to levels21 and 1. This phenom-
enon is an ‘‘apparent’’ anomaly because one cannot compar
p values across different experiments with full confidence—
although we often do make such comparisons in a heuristi
mode. Recall that the denominator of theF-statistic contains a
674 Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4
variance estimator, and therefore a low variance will tend
make theF-statistic significant. Because the variance is ve
low in experiment 2A in contrast to experiment 2B, signi
cance in the former and lack of significance in the latter i
reasonable consequence and does not imply that the di
ence in damage between two levels in experiment 2B is
than that in 2A. The damage effect of edge noise starts
show in 2A when the effects of inner hole size and foregrou
noise are not as dominating as they are in 2B. In experim
2B, the effect of edge noise is still present in its significa
interaction with both spot radius and chord noise. Figure
shows the mixed visual effect between the spot radius
chord noise.

Regarding interaction in experiment 2B, the three d
tinctly geometric factors~spot radius, inner hole, and chor
noise! interact significantly for both the overall signal an
low-signal cases. This is reasonable because each affect
area over which signal estimation takes place. Interactio
greatly reduced in experiment 2A, particularly for low signa
where only interaction between the inner hole and chord
moval is strongly significant. Figures 15 and 16 show t
mixed visual effects of the inner hole with spot radius a
chord noise, respectively.

Whereas experiment 2 mixes shape effects with fo
ground noise and edge noise, experiment 3 mixes them
scratch and snake noise. Table 6 shows a fair amount of
sistency between the two experiments with regard to the th
Table 6 Experiment 3: Shape-surface noise.

Source
Exp. 3B
All Levels

Exp. 3B
Low Levels

Exp. 3A
All Levels

Exp. 3A
Low Levels

Main Effects

Spot 32.80(<0.0001) 20.70(<0.0001) 6.40(<0.0001) 4.10(<0.0001)

InnH 103.75(<0.0001) 22.13(<0.0001) 15.87(<0.0001) 8.94(<0.0001)

Snake 0.68 1.81 0.17 0.20

Scratch 1.26 5.50(<0.0001) 0.37 0.69

Chord 20.68(<0.0001) 13.55(<0.0001) 1.65 0.40

Interaction

spotR* innH 23.47(<0.0001) 14.44(<0.0001) −0.14 −0.71

spotR*snake −6.46(<0.0001) −4.05(<0.0001) −2.86 −1.31

spotR*scratch −3.04(0.0023) 0.57 −0.17 −1.09

spotR*chord 16.56(<0.0001) 8.71(<0.0001) 2.61 0.81

innH*snake −3.06(0.0022) −1.51 0.00 −0.44

innH*scratch −1.79 1.87 0.10 −0.79

innH*chord 14.60(<0.0001) 7.70(<0.0001) 0.17 −2.38

snake*scratch −3.49(0.0005) −2.12 −5.49(<0.0001) −4.24(<0.0001)

snake*chord 8.84(<0.0001) 5.53(<0.0001) 0.92 0.00

scratch*chord 1.66 0.84 2.78 2.04
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Table 7 Experiment 4: Weak-signal noise.

Source
Exp. 4B
All Levels

Exp. 4B
Low Levels

Exp. 4A
All Levels

Exp. 4A
Low Levels

Main Effects

SigSD 77.19(<0.0001) 20.87(<0.0001) 20.21(<0.0001) 0.35

ForeN 7.85(<0.0001) 3.52(0.0004) 5.58(<0.0001) 2.16

SigBack 55.55(<0.0001) 25.82(<0.0001) 46.33(<0.0001) 26.34(<0.0001)

FlatBack 67.22(<0.0001) 30.82(<0.0001) 42.74(<0.0001) 24.38(<0.0001)

Spike 74.96(<0.0001) 68.49(<0.0001) 3.01(0.0025) 2.84

Interaction

sigSD* foreN −1.41 −3.48(0.0005) −0.22 1.04

sigSD*sigBack −4.86(<0.0001) −4.43(<0.0001) 0.22 0.00

sigSD*flatBack −5.44(<0.0001) −5.42(<0.0001) −2.80 −4.13(<0.0001)

sigSD*spike 44.79(<0.0001) 24.89(<0.0001) 0.30 −1.00

foreN*sigBack −0.42 0.82 2.86 2.19

foreN*flatBack 0.17 0.49 −0.77 −3.72(0.0002)

foreN*spike −2.29 −0.81 0.57 1.09

sigBack*flatBack 21.72(<0.0001) 11.84(<0.0001) 3.23(0.0012) 1.59

sigBack*spike −17.92(<0.0001) −16.97(<0.0001) 1.69 2.33

flatBack*spike −21.68(<0.0001) −17.62(<0.0001) −2.49 −2.10
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geometric factors relative to both main effects and interaction
One notable change is that the interaction between spot radiu
and chord removal changes from being ‘‘antagonistic’’ in ex-
periment 2 to being ‘‘synergistic’’ in experiment 3. Even
though the order of estimated cell means in the four noise
level combinations remains the same in both experiments, i
experiment 3 the estimated cell mean when both noise facto
are present is much higher than in the other three; conse
quently, a significant ‘‘synergistic’’ interaction is observed.
For the most part, snake and scratch noise show no significa
main effects. The exception is scratch noise for low signals in
experiment 3B. This is quite plausible because scratch nois
causes a strip of low values, thereby reducing an already low
signal. Note also the interaction of snake and scratch noise i
three of the four experiments.

Experiment 4 concerns signal conditions, in particular, sig-
nal deviation, signal-to-background ratio, and foreground
noise. These conditions are bound to affect signal estimation
and the main-effects part of Table 7 demonstrates this. Th
only exception is for low-signal values when comparing lev-
els 0 and 1 in experiment 4A. Since signal deviation is tied to
the signal mean, a low signal diminishes this deviation and
signal deviation is not significant for low signal values. Figure
17 shows the mixed visual effects between signal-to-
background and spike noise. As has been common through
out, overall interaction between the factors is much less rela
tive to levels 0 and 1 than with respect to levels21 and 1.
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5 Conclusion
Factorial analysis has been applied to simulated microa
images to study the effects and interaction of noise type
different noise levels. This type of analysis provides a gene
paradigm for investigating the effects of noise within a co
prehensive simulation environment, thereby providing a t
by which one can quantitatively determine which kinds
noise should be mitigated in microarray technology. For
stance, from the analysis described in this paper, it can
concluded that elimination of the inner hole and the stabi
ing of spot radius will have a strongly beneficial effect o
signal estimation. Additional information can be foun
online.14

Fig. 17 Signal-to-background and spike noise variation at (+1,+1),
(0,0), (−1,−1) levels, left to right.
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 675
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Appendix
Parameter settings for the microarray simulation. The notationN(a,b) denotes the normal distribution with meana and variance
b; U@a,b# is the uniform distribution on the interval@a,b#; U$a,b,c,...% is the uniform distribution on the indicated set of value
B(a,b) is the beta distribution with parametersa andb; andexp(a) is the exponential distribution with meana.

Level Simulation Parameter Descriptions Distribution

Spot 1. Spot size S: Spot radius with (ms ,ss
2) S;N(ms ,ss

2)

2. Spot drift dx , dy : Drifting level dx , dy;U(da ,db)
da , db : Percentage of spot radius
PD : Drift activation probability Dx5dx3S3U@21,1#

Dy5dy3S3U@21,1#

Dx , Dy : Relative drifting
(X18 ,Y18): Drifted center coordinates HX185X1Dx

Y185Y1Dy
H X285X181U@21,1#

Y285Y181U@21,1#

(X28 ,Y28): Second channel,
where (X ,Y) are predefined spot
center coordinates

3. Inner hole size H, V: Horizontal and vertical

axis of the inner elliptical hole

H;N(mH ,sH)
V;N(mV ,sV)

4. Inner hole drift XC , YC : Ideal spot center XR5XC1dcxR

XR , YR : First channel coordinates YR5YC1dcyR

XG , YG : Second channel coordinates XG5XC1dcxG

where
dcxG , dcyG , dcxR , dcyR : drift level set
at the block level

YG5YC1dcyG

5. Chord
removal

PNc
: Chord removal probability

$pk : probability of k chords to

be removed from a target spot%

PNc
5$p0 ,p1 ,p2 ,p3 ,p4%, where

p01p11p21p31p451
Nc;$0,1,2,3,4%

L: Chord length L;B(aL ,bL)
u: Chord position u;U(0,2p)

6. Spot intensity b: Mean intensity for the
assumed cell system

Ik;exp(b)

Rk , Gk : k’th spot ~fixed! signal

intensities for both channels

Rk;N(Ik ,s I)
Gk;N(Ik ,s I)

a: Coefficient of variation of
signal intensity in the system

s I5a3Ik

7. Expresser
or
outlier’s
intensity

poutlier : Outlier activation
probability
bk : Outlier control level
tk : Targeted outlier expression
ratio, with equal probability of 6 sign
Rk8 , Gk8 : k’ th outlier signal

intensities for both channels

Equal probability at 0.05 to 0.10
bk;B(1.7,4.8)

tk5106bk

Rk85Rk3Atk

Gk85Gk /Atk

8. Channel
conditioning

Rk9 , Gk9 : Prenormalized signal
intensity of the spots on
red, green channels

Rk95f1(Rk8)
Gk95f2(Gk8)

a0 , a1 , a2 , and a3 , parameters for
response characteristic function

f(x)5@a01x(12e2x/a1)a2#a3 ;
where a3.1

9. Spot signal variation—
foreground noise

SRk , SGk : Pixelwise (x ,y) signal
intensity

SRk(x ,y);Rk91N(mRk9
,sR

2 )

SGk(x ,y);Gk91N(mGk9
,sG

2 )
676 Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4
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as : Within-spot signal coefficient
of variation HmRk9

5Rk93am1
; am1

;U@fa1
,fb1

#

mGk9
5Gk93am2

; am2
;U@fa2

,fb2
#

HsR5Rk93as1
; as1

;U@fc1
,fd1

#

sG5Gk93as2
; as2

;U@fc2
,fd2

#

10. Edge
enhancement

Wed : Level of enhancement,
parameter (me) set for the block

Wed;N(me,1)

Ne : Number of pixels enhanced

11. Edge noise Apply edge noise at the set level
(ded)

Block 12. Radius
parameters

ms , ks : mean and radius deviation
factor

mr;U(sa ,sb)
ss;ks3ms

sa , sb : bounds of radius, set by
block size and interspot gap

13. Chord
parameters

Nc : Chord rate picked with equal
probability

NcPU$0,1,2,3,4% having weights
$p0 ,p1 ,p2 ,p3 ,p4%

aL , bL : Chord distributional
parameters

aL;U(aa ,ba), bL;U(ab ,bb)

14. Inner hole
parameters

mH , mV , sH , sV : Parameters for
inner elliptical hole

mH;U(La ,Lb)3mR ,
mV;U(La ,Lb)3mR

mR : Mean spot radius in the block sH5a13mR , sV5a23mR

a1;U(Pa ,Pb), a1;U(Pa ,Pb)

15. Drift
parameters

dcxG , dcyG , dcxR , dcyR : drift level
i, j: Percentage of the spot radius

dc;U@ i ,j#
dcxG5dc3U@21,1# , dcyG5dc3U@21,1#

dcxR5dcxG1U@21,1# , dcyR5dcyG1

U@21,1#

16. Enhancement la , lb : Range of intensity ratio. Set
mean level of enhancement for a
block

me;U(la ,lb)

Array 17. Physical
dimensions

Bw , Bh : Block size—width, height
(distance between first spot
centers of any two blocks)

Typical setting for an 8-block, 2-row
array (in pixels):

Ml , Mr , Mt , Mb : Margin settings
(left, right, top, bottom)

Bh , Bw5900
Ml , Mr , Mt , Mb5100

Npin , N row : Number of pins in an
array, printed equally across
N row number of rows
NSw , NSh : Number of spots
along the width (NSw) and
height (NSh) of the block

18. Signal-to-
noise ratio

SNR: Signal-to-noise level is set
for an array

19. Interspot
distance

Gsp : Interspot distance, set for an
array

20. Background IbIch1 , IbIch2 : Background intensity,
with parameters set for an array

IbIch1;N(mb ,sb1

2 )

IbIch2;N(mb ,sb2

2 )
g: Background level g;U@a ,b#

Parameter settings:
-Flat fluorescent background mb5g ,
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-Functional background g(x ,y):
choice of parabolic, positive
or negative slant surface function

mb5g3g(x ,y),
with
sb1

5(kb1
mb), sb2

5(kb2
mb)

21. Spike noise Lspi : Level of spike noise (set in
terms of percentage of total pixels)
Ns : Intensity of the spike noise Ns;exp(mspi),
mspi : Noise rate mspi;U@e ,f#
Wspi : Width of the noise cluster Wspi;U@g ,h#

22. Edge noise ded : Set the controlling parameter ded set as a percentage of maximum
intensity value

23. Snake noise Nseg : Number of snake tails in an
image

Nseg , ksn , Lsn , Wsn

Isn : Intensity of the noise tail Isn;N(msn ,ssn),
ksn : Average signal-to-snake
noise intensity level

msn5(Ik /ksn), ssn5ksn3msn

Lsn : Length of the segment
expressed as multiples of
average spot size

Lsn;U@Lsn1 ,Lsn2#

Wsn : Width of the snake noise tail

24. Scratch noise Nsc : Number of scratch tails in an
image

Nsc , ksc , Wsc , u

Isc : Intensity of the scratch noise Isc;N(msc ,ssc)
ksc : Average background-to-
scratch noise intensity level

msc5(mb /ksc), ssc5ksc3msc

Lsc : Length of the segment in
units of average size of the spots
Wsc : Width of the scratch noise
u: Scratch noise inclination

Lsc;U@Lsc1 ,Lsc2#

uPU$0,45,90,135,180% deg
-
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