1 May 2004 Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy
Author Affiliations +
J. of Biomedical Optics, 9(3), (2004). doi:10.1117/1.1695564
We develop a dual-modality device that combines the anatomical imaging capabilities of optical coherence tomography (OCT) with the functional capabilities of laser-induced fluorescence (LIF) spectroscopy. OCT provides cross-sectional images of tissue structure to a depth of up to 2 mm with approximately 10-μm resolution. LIF spectroscopy provides histochemical information in the form of emission spectra from a given tissue location. The OCT subsystem utilizes a superluminescent diode with a center wavelength of 1300 nm, whereas a helium cadmium laser provides the LIF excitation source at wavelengths of 325 and 442 nm. Preliminary data are obtained on eight postmortem aorta samples, each 10 mm in length. OCT images and LIF spectra give complementary information from normal and atherosclerotic portions of aorta wall. OCT images show structures such as intima, media, internal elastic lamina, and fibrotic regions. Emission spectra ratios of 520/490 (325-nm excitation) and 595/635 (442-nm excitation) could be used to identify normal and plaque regions with 97 and 91% correct classification rates, respectively. With miniaturization of the delivery probe and improvements in system speed, this dual-modality device could provide a valuable tool for identification and characterization of atherosclerotic plaques.
Jennifer Kehlet Barton, Francisco Guzman, Alexandre R. Tumlinson, "Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy," Journal of Biomedical Optics 9(3), (1 May 2004). http://dx.doi.org/10.1117/1.1695564

Optical coherence tomography

Laser induced fluorescence



Imaging spectroscopy

Tissue optics

Fluorescence spectroscopy

Back to Top