1 October 2001 Fuzzy framework for unsupervised video content characterization and shot classification
Author Affiliations +
J. of Electronic Imaging, 10(4), (2001). doi:10.1117/1.1406946
Abstract
In this paper we present a fuzzy framework for domaindependent analysis of video sequences. Fuzzy clustering and cluster validation methods are first employed to determine the number of distinct shot patterns and construct a reference model for a program or video domain of interest, using an appropriate training set. This model is subsequently utilized to assign new input data to the available classes by a fuzzy minimum-distance classifier. Additional domain-specific information can be introduced after classification to further enhance the annotations associated with every shot. The main advantage of the approach is that it builds a model for the input video automatically from training data, and thus eliminates the need for extensive user supervision. The fuzzy representation method improves the interpretability of the results, and reduces the number of erroneous classifications, since the continuous class affiliations of each input sample provide a confidence measure for the final assignments. The proposed approach presents a computationally efficient, unsupervised method for building browsable semantic descriptions of video sequences. Specifically, the algorithm can be used to generate various components of an MPEG-7-compliant description.
Ahmet Mufit Ferman, A. Murat Tekalp, "Fuzzy framework for unsupervised video content characterization and shot classification," Journal of Electronic Imaging 10(4), (1 October 2001). http://dx.doi.org/10.1117/1.1406946
JOURNAL ARTICLE
13 PAGES


SHARE
KEYWORDS
Video

Fuzzy logic

Data modeling

Semantic video

Cameras

Visualization

Prototyping

Back to Top