1 July 2007 New benchmark for image segmentation evaluation
Author Affiliations +
J. of Electronic Imaging, 16(3), 033011 (2007). doi:10.1117/1.2762250
Image segmentation and its performance evaluation are very difficult but important problems in computer vision. A major challenge in segmentation evaluation comes from the fundamental conflict between generality and objectivity: For general-purpose segmentation, the ground truth and segmentation accuracy may not be well defined, while embedding the evaluation in a specific application, the evaluation results may not be extensible to other applications. We present a new benchmark to evaluate five different image segmentation methods according to their capability to separate a perceptually salient structure from the background with a relatively small number of segments. This way, we not only find a large variety of images that satisfy the requirement of good generality, but also construct ground-truth segmentations to achieve good objectivity. We also present a special strategy to address two important issues underlying this benchmark: (1) most image-segmentation methods are not developed to directly extract a single salient structure; (2) many real images have multiple salient structures. We apply this benchmark to evaluate and compare the performance of several state-of-the-art image segmentation methods, including the normalized-cut method, the watershed method, the efficient graph-based method, the mean-shift method, and the ratio-cut method.
Feng Ge, Song Wang, Tiecheng Liu, "New benchmark for image segmentation evaluation," Journal of Electronic Imaging 16(3), 033011 (1 July 2007). http://dx.doi.org/10.1117/1.2762250

Image segmentation


Image processing algorithms and systems

Gaussian filters

Algorithm development

Computer vision technology

Machine vision


The software development for IR-simulation test system
Proceedings of SPIE (January 10 2005)
Shape analysis for image retrieval
Proceedings of SPIE (April 01 1994)
Multi hop path tracing of mobile robot with multi range...
Proceedings of SPIE (February 26 2010)

Back to Top