1 January 2008 Channel-separable halftone independent methods for color drift correction
Author Affiliations +
Abstract
Color printer calibration is the process of deriving correction functions for device signals (e.g., CMYK), so that the device can be maintained with a fixed known characteristic color response. Since the colorimetric response of the printer can be a strong function of the halftone, the calibration process must be repeated for every halftone supported by the printer. The effort involved in the calibration process thus increases linearly with the number of halftoning methods. In the past few years, it has become common for high-end digital color printers to be equipped with a large number of halftones, thus making the calibration process onerous. We propose a halftone independent method for correcting color (CMY or CMYK) printer drift. Our corrections are derived by measuring a small umber of halftone independent fundamental binary patterns based on the 2×2 binary printer model by Wang et al. Hence, the required measurements do not increase as more halftoning methods are added. First, we derive a halftone correction factor (HCF) that xploits the knowledge of the relationship between the true printer response and the 2×2-model predicted response for a given halftoning scheme. Therefore, the true color drift can be accurately predicted from halftone-independent measurements and corrected correspondingly. Further, we develop extensions of our proposed color correction framework to the case when the measurements of our fundamental binary patches are acquired by a common desktop scanner. Finally, we exploit the application of the HCF to correct color drift across different media (papers) and for halftoneindependent spatial nonuniformity correction.
© (2008) Society of Photo-Optical Instrumentation Engineers (SPIE)
Vishal Monga, Vishal Monga, Shen-Ge Wang, Shen-Ge Wang, Raja Bala, Raja Bala, } "Channel-separable halftone independent methods for color drift correction," Journal of Electronic Imaging 17(1), 013003 (1 January 2008). https://doi.org/10.1117/1.2898128 . Submission:
JOURNAL ARTICLE
14 PAGES


SHARE
Back to Top