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Abstract. Through-the-wall radar imaging (TWRI) is emerging as a
viable technology for providing high-quality imagery of enclosed struc-
tures. TWRI makes use of electromagnetic waves to penetrate
through building wall materials. Due to the “see” through ability,
TWRI has attracted much attention in the last decade and has
found a variety of important civilian and military applications. Signal
processing algorithms have been devised to allow proper imaging
and image recovery in the presence of high clutter, which is caused
by front walls and multipath due to reflections from internal walls.
Recently, research efforts have shifted toward effective and reliable
imaging under constraints on aperture size, frequency, and acquisi-
tion time. In this respect, scene reconstructions are being pursued
with reduced data volume and within the emerging compressive sens-
ing (CS) framework. We present a review of the CS-based scene
reconstruction techniques that address the unique challenges asso-
ciated with fast and efficient imaging in urban operations. Specifically,
we focus on ground-based imaging systems for indoor targets. We
discuss CS-based wall mitigation, multipath exploitation, and change
detection for imaging of stationary andmoving targets inside enclosed
structures. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduc-
tion of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JEI.22.3.030901]

1 Introduction
Through-the-wall radar imaging (TWRI) is an emerging
technology that addresses the desire to see inside buildings
using electromagnetic (EM) waves for various purposes,
including determining the building layout, discerning the
building intent and nature of activities, locating and tracking
the occupants, and even identifying and classifying inani-
mate objects of interest within the building. TWRI is highly
desirable for law enforcement, fire and rescue, and emer-
gency relief, and military operations.1–6

Applications primarily driving TWRI development can
be divided based on whether information on motions within
a structure or on imaging the structure and its stationary
contents is sought out. The need to detect motion is highly

desirable to discern about the building intent and in many
fire and hostage situations. Discrimination of movements
from background clutter can be achieved through change
detection (CD) or exploitation of Doppler.7–24 One-dimen-
sional (1-D) motion detection and localization systems
employ a single transmitter and receiver and can only pro-
vide range-to-motion, whereas two- and three-dimensional
(2-D and 3-D) multi-antenna systems can provide more
accurate localization of moving targets. The 3-D systems
have higher processing requirements compared with 2-D
systems. However, the third dimension provides height
information, which permits distinguishing people from
animals, such as household pets. This is important since
radar cross-section alone for behind-the-wall targets can be
unreliable.

Imaging of structural features and stationary targets
inside buildings requires at least 2-D and preferably 3-D
systems.25–43 Because of the lack of any type of motion,
these systems cannot rely on Doppler processing or CD
for target detection and separation. Synthetic aperture
radar (SAR) based approaches have been the most com-
monly used algorithms for this purpose. Most of the con-
ventional SAR techniques usually neglect propagation
distortions such as those encountered by signals passing
through walls.44 Distortions degrade the performance and
can lead to ambiguities in target and wall localizations.
Free-space assumptions no longer apply after the EM
waves propagate through the first wall. Without factoring
in propagation effects, such as attenuation, reflection,
refraction, diffraction, and dispersion, imaging of contents
within buildings will be severely distorted. As such, image
formation methods, array processing techniques, target
detection, and image sharpening paradigms must work in
concert and be reexamined in view of the nature and spec-
ificities of the underlying sensing problem.

In addition to exterior walls, the presence of multipath and
clutter can significantly contaminate the radar data leading to
reduced system capabilities for imaging of building interiors
and localization and tracking of targets behind walls. The
multiple reflections within the wall result in wall residuals
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along the range dimension. These wall reverberations can be
stronger than target reflections, leading to its masking and
undetectability, especially for weak targets close to the
wall.45 Multipath stemming from multiple reflections of
EM waves off the targets in conjunction with the walls
may result in the power being focused at pixels different
than those corresponding to the target. This gives rise to
ghosts, which can be confused with the real targets inside
buildings.46–49 Further, uncompensated refraction through
walls can lead to localization or focusing errors, causing off-
sets and blurring of imaged targets.26,39 SAR techniques and
tomographic algorithms, specifically tailored for TWRI, are
capable of making some of the adjustments for wave propa-
gation through solid materials.26–30,36–41,50–57 While such
approaches are well suited for shadowing, attenuation, and
refraction effects, they do not account for multipath as
well as strong reflections from the front wall.

The problems caused by the front wall reflections can be
successfully tackled through wall clutter mitigation tech-
niques. Several approaches have been devised, which can
be categorized into those based on estimating the wall
parameters and others incorporating either wall backscatter-
ing strength or invariance with antenna location.39,45,58–61 In
Refs. 39 and 58, a method to extract the dielectric constant
and thickness of the nonfrequency dependent wall from the
time-domain scattered field was presented. The time-domain
response of the wall was then analytically modeled and
removed from the data. In Ref. 45, a spatial filtering method
was applied to remove the DC component corresponding
with the constant-type radar return, typically associated
with the front wall. The third method, presented in
Refs. 59–61, was based not only on the wall scattering
invariance along the array but also on the fact that wall
reflections are relatively stronger than target reflections.
As a result, the wall subspace is usually captured in the most
dominant singular values when applying singular value
decomposition (SVD) to the measured data matrix. The
wall contribution can then be removed by orthogonal
subspace projection.

Several methods have also been devised for dealing with
multipath ghosts in order to provide proper representation
of the ground truth. Earlier work attempted to mitigate
the adverse effects stemming from multipath propagation.27

Subsequently, research has been conducted to utilize the
additional information carried by the multipath returns.
The work in Ref. 49 considered multipath exploitation in
TWRI, assuming prior knowledge of the building layout.
A scheme taking advantage of the additional energy residing
in the target ghosts was devised. An image was first formed,
the ghost locations for each target were calculated, and then
the ghosts were mapped back onto the corresponding target.
In this way, the image became ghost-free with increased
signal-to-clutter ratio (SCR).

More recently, the focus of the TWRI research has shifted
toward addressing constraints on cost and acquisition time in
order to achieve the ultimate objective of providing reliable
situational awareness through high-resolution imaging in a
fast and efficient manner. This goal is primarily challenged
due to use of wideband signals and large array apertures.
Most radar imaging systems acquire samples in frequency
(or time) and space and then apply compression to reduce
the amount of stored information. This approach has three

inherent inefficiencies. First, as the demands for high reso-
lution and more accurate information increase, so does
the number of data samples to be recorded, stored, and
subsequently processed. Second, there are significant data
redundancies not exploited by the traditional sampling
process. Third, it is wasteful to acquire and process data
samples that will be discarded later. Further, producing an
image of the indoor scene using few observations can be
logistically important, as some of the measurements in space
and frequency or time can be difficult, unavailable, or impos-
sible to attain.

Toward the objective of providing timely actionable intel-
ligence in urban environments, the emerging compressive
sensing (CS) techniques have been shown to yield reduced
cost and efficient sensing operations that allow super-reso-
lution imaging of sparse behind-the-wall scenes.10,62–76

Compressive sensing is an effective technique for scene
reconstruction from a relatively small number of data sam-
ples without compromising the imaging quality.77–89 In gen-
eral, the minimum number of data samples or sampling rate
that is required for scene image formation is governed by
the Nyquist theorem. However, when the scene is sparse,
CS provides very efficient sampling, thereby significantly
decreasing the required volume of data collected.

In this paper, we focus on CS for TWRI and present a
review of l1 norm reconstruction techniques that address
the unique challenges associated with fast and efficient im-
aging in urban operations. Sections 2–5 deal with imaging of
stationary scenes, whereas moving target localization is dis-
cussed in Sec. 6 and 7. More specifically, Sec. 2 deals with
CS based strategies for stepped-frequency based radar imag-
ing of sparse stationary scenes with reduced data volume in
spatial and frequency domains. Prior and complete removal
of clutter is assumed, which renders the scene sparse.
Section 3 presents CS solutions in the presence of front
wall clutter. Wall mitigation in conjunction with applica-
tion of CS is presented for the case when the same reduced
frequency set is used from all of the employed antennas.
Section 4 considers imaging of the building interior struc-
tures using a CS-based approach, which exploits prior
information of building construction practices to form an
appropriate sparse representation of the building interior
layout. Section 5 presents CS based multipath exploitation
technique to achieve good image reconstruction in rich mul-
tipath indoor environments from few spatial and frequency
measurements. Section 6 deals with joint localization of sta-
tionary and moving targets using CS based approaches, pro-
vided that the indoor scene is sparse in both stationary and
moving targets. Section 7 discusses a sparsity-based CD
approach to moving target indication for TWRI applications,
and deals with cases when the heavy clutter caused by strong
reflections from exterior and interior walls reduces the spar-
sity of the scene. Concluding remarks are provided in Sec. 8.
It is noted that for the sake of not overcomplicating the nota-
tion, some symbols are used to indicate different variables
over different sections of the paper. However, for those
cases, these variables are redefined to reflect the change.

The progress reported in this paper is substantial and note-
worthy. However, many challenging scenarios and situations
remain unresolved using the current techniques and, as such,
further research and development are required. However,
with the advent of technology that brings about better

Journal of Electronic Imaging 030901-2 Jul–Sep 2013/Vol. 22(3)

Amin and Ahmad: Compressive sensing for through-the-wall radar imaging



hardware and improved system architectures, opportunities
for handling more complex building scenarios will definitely
increase.

2 CS Strategies in Frequency and Spatial Domains
for TWRI

In this section, we apply CS to through-the-wall imaging of
stationary scenes, assuming prior and complete removal of
the front wall clutter.62,63 For example, if the reference
scene is known, then background subtraction can be per-
formed for removal of wall clutter, thereby improving the
sparsity of the behind-the-wall stationary scene. We assume
stepped-frequency-based SAR operation. We first present the
through-the-wall signal model, followed by a description of
the sparsity-based scene reconstruction, highlighting the key
equations. It is noted that the problem formulation can be
modified in a straightforward manner for pulsed operation
and multistatic systems.

2.1 Through-the-Wall Signal Model
Consider a homogeneous wall of thickness d and dielectric
constant ε located along the x-axis, and the region to be
imaged located beyond the wall along the positive z-axis.
Assume that an N-element line array of transceivers is
located parallel to the wall at a standoff distance zoff , as
shown in Fig. 1. Let the n’th transceiver, located at
xn ¼ ðxn;−zoffÞ, illuminate the scene with a stepped-fre-
quency signal of M frequencies, which are equispaced
over the desired bandwidth ωM−1 − ω0,

ωm ¼ ω0 þmΔω; m ¼ 0; 1; : : : ;M − 1; (1)

where ω0 is the lowest frequency in the desired frequency
band and Δω is the frequency step size. The reflections
from any targets in the scene are measured only at the
same transceiver location. Assuming the scene contains P
point targets and the wall return has been completely
removed, the output of the n’th transceiver corresponding
to the m’th frequency is given by

yðm; nÞ ¼
XP−1
p¼0

σp expð−jωmτp;nÞ; (2)

where σp is the complex reflectivity of the p’th target, and
τp;n is the two-way traveling time between the n’th antenna
and the target. It is noted that the complex amplitude due to
free-space path loss, wall reflection/transmission coefficients
and wall losses, is assumed to be absorbed into the target
reflectivity. The propagation delay τp;n is given by27–28,40

τp;n ¼
2lnp;air;1

c
þ 2lnp;wall

υ
þ 2lnp;air;2

c
; (3)

where c is the speed of light in free-space, υ ¼ c∕
ffiffiffi
ε

p
is the

speed through the wall, and the variables lnp;air;1, lnp;wall, and
lnp;air;2 represent the traveling distances of the signal before,
through, and beyond the wall, respectively, from the n’th
transceiver to the p’th target.

An equivalent matrix-vector representation of the received
signals in Eq. (2) can be obtained as follows. Assume that the
region of interest is divided into a finite number of pixelsNx ×
Nz in cross-range and downrange, and the point targets
occupy no more than Pð≪ Nx × NzÞ pixels. Let rðk; lÞ,
k ¼ 0; 1; : : : ; Nx − 1, l ¼ 0; 1; : : : ; Nz − 1, be a weighted
indicator function, which takes the value σp if the p’th
point target exists at the ðk; lÞ’th pixel; otherwise, it is
zero. With the values rðk; lÞ lexicographically ordered into
a column vector r of length NxNz, the received signal corre-
sponding to the n’th antenna can be expressed in matrix-
vector form as

yn ¼ Ψnr; (4)

where Ψn is a matrix of dimensions M × NxNz, and its m’th
row is given by

½Ψn�m ¼ ½ e−jωmτ00;n · · · e−jωmτðNxNz−1Þ;n �: (5)

Considering the measurement vector corresponding to all N
antennas, defined as

y ¼ ½yT0yT1 · · · yTN−1�T; (6)

the relationship between y and r is given by

y ¼ Ψr; (7)

where

Ψ ¼ ½ΨT
0ΨT

1 · · · ΨT
N−1�T: (8)

The matrix Ψ is a linear mapping between the full data y and
the sparse vector r.

2.2 Sparsity-Based Data Acquisition and Scene
Reconstruction

The expression in Eq. (7) involves the full set of measure-
ments made at the N array locations using theM frequencies.
For a sparse scene, it is possible to recover r from a reduced
set of measurements. Consider y̆, which is a vector of length
Q1Q2ð≪ MNÞ consisting of elements chosen from y as
follows:

y̆ ¼ Φy ¼ ΦΨr; (9)

where Φ is a Q1Q2 ×MN matrix of the form,
Fig. 1 Geometry on transmit of the equivalent two-dimensional (2-D)
problem.
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Φ ¼ kronðϑ; IQ1
Þ · diagfφð0Þ;φð1Þ; : : : ;φðN−1Þg: (10)

In Eq. (10), kron denotes the Kronecker product, IQ1
is a

Q1 ×Q2 identity matrix, ϑ is a Q2 × N measurement matrix
constructed by randomly selecting Q2 rows of an N × N
identity matrix, and φðnÞ, n ¼ 0; 1; : : : ; N − 1, is a Q1 ×M
measurement matrix constructed by randomly selecting
Q1 rows of an M ×M identity matrix. We note that ϑ deter-
mines the reduced antenna locations, whereas φðnÞ deter-
mines the reduced set of frequencies corresponding to
the n’th antenna location. The number of measurements
Q1Q2 required to achieve successful CS reconstruction
highly depends on the coherence between Φ and Ψ. For
the problem at hand,Φ is the canonical basis andΨ is similar
to the Fourier basis, which have been shown to exhibit maxi-
mal incoherence.80 Given y̆, we can recover r by solving
the following equation (ideally, minimization of the l0
norm would provide the sparsest solution. Unfortunately,
it is NP-hard to solve the resulting minimization problem.
The l1 norm has been shown to serve as a good surrogate
for l0 norm.90 The l1 minimization problem is convex,
which can be solved in polynomial time):

r̂ ¼ arg min krkl1 subject to y̆ ≈ΦΨr: (11)

We note that the problem in Eq. (11) can be solved using
convex relaxation, greedy pursuit, or combinatorial algo-
rithms.91–96 In this section, we consider orthogonal matching
pursuit (OMP), which is known to provide a fast and easy to
implement solution. Moreover, OMP is better suited when
frequency measurements are used.95 It is noted that the num-
ber of iterations of the OMP is usually associated with the
level of sparsity of the scene. In practice, this piece of infor-
mation is often unavailable a priori, and the stopping con-
dition is heuristic. Underestimating the sparsity would result
in the image not being completely reconstructed (underfit-
ting), while overestimation would cause some of the noise
being treated as signal (overfitting). Use of cross-validation
(CV) has been also proposed to determine the stopping con-
dition for the greedy algorithms.97–99 Cross-validation is a
statistical technique that separates a data set into a training
set and a CV set. The training set is used to detect the optimal
stopping iteration. There is, however, a tradeoff between
allocating the measurements for reconstruction or CV.
More details can be found in Refs. 97 and 98.

2.3 Illustrative Results
A through-the-wall wideband SAR system was set up in the
Radar Imaging Lab at Villanova University. A 67-element
line array with an inter-element spacing of 0.0187 m, located
along the x-axis, was synthesized parallel to a 0.14-m-thick
solid concrete wall of length 3.05 m and at a standoff dis-
tance equal to 1.24 m. A stepped-frequency signal covering
the 1 to 3 GHz frequency band with a step size of 2.75 MHz
was employed. Thus, at each scan position, the radar collects
728 frequency measurements. A vertical metal dihedral was
used as the target and was placed at (0, 4.4) m on the other
side of the front wall. The size of each face of the dihedral is
0.39 × 0.28 m2. The back and the side walls of the room
were covered with RF absorbing material to reduce clutter.
The empty scene without the dihedral target present was also

measured to enable background subtraction for wall clutter
removal.

The region to be imaged is chosen to be 4.9 × 5.4 m2

centered at (0, 3.7) m and divided into 33 × 73 pixels,
respectively. For CS, 20% of the frequencies and 51% of
the array locations were used, which collectively represent
10.2% of the total data volume. Figure 2(a) and 2(c) depict
the images corresponding to the full dataset obtained with
back-projection and l1 norm reconstruction, respectively.
Figure 2(b) and 2(d) show the images corresponding to
the measured scene obtained with back-projection and l1
norm reconstruction, respectively, applied to the reduced
background subtracted dataset. In Fig. 2 and all subsequent
figures in this paper, we plot the image intensity with the
maximum intensity value in each image normalized to
0 dB. The true target position is indicated with a solid red
rectangle. We observe that, with the availability of the
empty scene measurements, background subtraction renders
the scene sparse, and thus a CS-based approach generates
an image using reduced data where the target can be easily
identified. On the other hand, back-projection applied to
reduced dataset results in performance degradation, indicated
by the presence of many artifacts in the corresponding
image. OMP was used to generate the CS images. For this
particular example, the number of OMP iterations was set
to five.

3 Effects of Walls on Compressive Sensing
Solutions

The application of CS for TWRI as presented in Sec. 2
assumed prior and complete removal of front wall EM
returns. Without this assumption, strong wall clutter, which
extends along the range dimension, reduces the sparsity
of the scene and, as such, impedes the application of
CS.71–73 Having access to the background scene is not always
possible in practical applications. In this section, we apply
joint CS and wall mitigation techniques using reduced data
measurements. In essence, we address wall clutter mitiga-
tions in the context of CS.

There are several approaches, which successfully mitigate
the front wall contribution to the received signal.39,45,58–61

These approaches were originally introduced to work on
the full data volume and did not account for reduced data
measurements especially randomly. We examine the perfor-
mance of the subspace projection wall mitigation technique60

in conjunction with sparse image reconstruction. Only a
small subset of measurements is employed for both wall clut-
ter reduction and image formation. We consider the case
where the same subset of frequencies is used for each
employed antenna. Wall clutter mitigation under use of dif-
ferent frequencies across the employed antennas is discussed
in Refs. 68 and 73. It is noted that, although not reported
in this paper, the spatial filtering based wall mitigation
scheme45 in conjunction with CS provides a similar perfor-
mance to the subspace projection scheme.73

3.1 Wall Clutter Mitigation
We first extend the through-the-wall signal model of Eq. (2)
to include the front wall return. Without the assumption of
prior wall return removal, the output of the n’th transceiver
corresponding to the m’th frequency for a scene of P point
targets is given by
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yðm;nÞ¼ σw expð−jωmτwÞþ
Xp−1
p¼0

σp expð−jωmτp;nÞ; (12)

where σw is the complex reflectivity of the wall, and τw is the
two-way traveling time of the signal from the n’th antenna to
the wall, and is given by

τw ¼ 2zoff
c

: (13)

It is noted that both the target and wall reflectivities in
Eq. (12) are assumed to be independent of frequency
and aspect angle. Many of the walls and indoor targets,
including humans, have dependency of their reflection
coefficients on frequency, which could also be a function
of angle and polarization. This dependency, if neglected,
could be a source of error. The latter, however, can be
tolerated for relatively limited aperture and bandwidth.
Further note that we assume a simple scene of P point
targets behind a front wall. The model can be extended
to incorporate returns from more complex scenes involving
multiple walls and room corners. These extensions are
discussed in later sections.

From Eq. (12), we note that τw does not vary with the
antenna location since the array is parallel to the wall.

Furthermore, as the wall is homogeneous and assumed to
be much larger than the beamwidth of the antenna, the
first term in Eq. (12) assumes the same value across the
array aperture. Unlike τw, the time delay τp;n, given by
Eq. (3), is different for each antenna location, since the signal
path from the antenna to the target is different from one
antenna to the other.

The signals received by the N antennas at the M frequen-
cies are arranged into an M × N matrix, Y,

Y ¼ ½y0 · · · yn · · · yN−1�; (14)

where yn is the M × 1 vector containing the stepped-
frequency signal received by the n’th antenna,

yn ¼ ½yð0; nÞ · · · yðm; nÞ; · · · yðM − 1; nÞ�T; (15)

with yðm; nÞ given by Eq. (12). The eigen-structure of the
imaged scene is obtained by performing the SVD of Y,

Y ¼ UΛVH; (16)

where H denotes the Hermitian transpose, U and V are uni-
tary matrices containing the left and right singular vectors,
respectively, and Λ is a diagonal matrix

Fig. 2 Imaging results after background subtraction. (a) Back-projection image using full data; (b) back-projection image using 10% data volume;
(c) CS reconstructed image using full data; (d) CS reconstructed image using 10% of the data.
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Λ ¼

0
BBBBBBB@

λ1 : : : 0

..

. . .
. ..

.

0 : : : λN
..
. . .

. ..
.

0 · · · 0

1
CCCCCCCA
; (17)

and λ1 ≥ λ2 ≥ : : : ≥ λN are the singular values. Without loss
of generality, the number of frequencies are assumed to
exceed the number of antenna locations, i.e., M > N. The
subspace projection method assumes that the wall returns
and the target reflections lie in different subspaces.
Therefore, the first K dominant singular vectors of the Y
matrix are used to construct the wall subspace,

Swall ¼
Xk
i¼1

uivHi : (18)

Methods for determining the dimensionality K of the wall
subspace have been reported in Refs. 59 and 60. The
subspace orthogonal to the wall subspace is

S⊥wall ¼ I − SwallSHwall; (19)

where I is the identity matrix. To mitigate the wall returns,
the data matrix Y is projected on the orthogonal subspace,60

Ỹ ¼ S⊥wallY: (20)

The resulting data matrix has little or no contribution from
the front wall.

3.2 Joint Wall Mitigation and CS
Subspace projection method for wall clutter reduction relies
on the fact that the wall reflections are strong and assume
very close values at the different antenna locations. When
the same set of frequencies is employed for all employed
antennas, the condition of spatial invariance of the wall
reflections is maintained.72,73 This permits direct application
of the subspace projection method as a preprocessing step to
the l1 norm based scene reconstruction of Eq. (11).

3.3 Illustrative Results
We consider the same experimental setup as in Sec. 2.3.
Figure 3(a) shows the result obtained with l1 norm
reconstruction using 10.2% of the raw data volume without
background subtraction. The number of OMP iterations was
set to 100. Comparing Fig. 3(a) and the corresponding back-
ground subtracted image of Fig. 2(d), it is evident that in the
absence of access to the background scene, the wall mitiga-
tion techniques must be applied, as a preprocessing step,
prior to CS in order to detect the targets behind the wall.

First, we consider the case when the same set of reduced
frequencies is used for a reduced set of antenna locations. We
employ only 10.2% of the data volume, i.e., 20% of the avail-
able frequencies and 51% of the antenna locations. The sub-
space projection method is applied to a Y matrix of reduced
dimension 146 × 34. The corresponding l1 norm recon-
structed image obtained with OMP is depicted in Fig. 3(b).
It is clear that, even when both spatial and frequency

observations are reduced, the joint application of wall clutter
mitigation and CS techniques successfully provides front
wall clutter suppression and unmasking of the target.

4 Designated Dictionary for Wall Detection
In this section, we address the problem of imaging building
interior structures using a reduced set of measurements. We
consider interior walls as targets of interest and attempt to
reveal the building interior layout based on CS techniques.
We note that construction practices suggest the exterior and
interior walls to be parallel or perpendicular to each other.
This enables sparse scene representations using a dictionary
of possible wall orientations and locations.76 Conventional
CS recovery algorithms can then be applied to reduced num-
ber of observations to recover the positions of various walls,
which is a primary goal in TWRI.

4.1 Signal Model Under Multiple Parallel Walls
Considering a monostatic stepped-frequency SAR system
with N antenna positions located parallel to the front
wall, as shown in Fig. 1, we extend the signal model in
Eq. (12) to include reflections from multiple parallel interior
walls, in addition to the returns from the front wall and the P
point targets. That is, the received signal at the n’th antenna
location corresponding to the m’th frequency can be
expressed as

Fig. 3 CS-based imaging result (a) using full data volume without
background subtraction; (b) using 10% data volume with the same
frequency set at each antenna.
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yðm; nÞ ¼ σw expð−jωmτwÞ þ
XP−1
p¼0

σp expð−jωmτp;nÞ

þ
XIw−1
i¼0

σwi
expð−jωmτwi

Þ; (21)

where Iw is the number of interior walls parallel to the array
axis, τwi

represents the two-way traveling time of the signal
from the n’th antenna to the i’th interior wall and σwi

is the
complex reflectivity of the i’th interior wall. Similar to the
front wall, the delays τwi

are independent of the variable n, as
evident in the subscripts.

Note that the above model contains contributions only
from interior walls parallel to the front wall and the antenna
array. This is because, due to the specular nature of the wall
reflections, a SAR system located parallel to the front wall
will only be able to receive direct returns from walls, which
are parallel to the front wall. The detection of perpendicular
walls is possible by concurrently detecting and locating the
canonical scattering mechanism of corner features created by
the junction of walls of a room or by having access to another
side of the building. Extension of the signal model to incor-
porate corner returns is reported in Ref. 76.

Instead of the point-target based sensing matrix described
in Eq. (7), where each antenna accumulates the contributions
of all the pixels, we use an alternate sensing matrix, proposed
in Ref. 68, to relate the scene vector, r, and the observation
vector, y. This matrix underlines the specular reflections
produced by the walls. Due to wall specular reflections,
and since the array is assumed parallel to the front wall
and, thus, parallel to interior walls, the rays collected at
the n’th antenna will be produced by portions of the walls
that are only in front of this antenna [see Fig. 4(a)]. The alter-
nate matrix, therefore, only considers the contributions of the
pixels that are located in front of each antenna. In so doing,
the returns of the walls located parallel to the array axis are
emphasized. As such, it is most suited to the specific building
structure imaging problem, wherein the signal returns are
mainly caused by EM reflections of exterior and interior
walls. The alternate linear model can be expressed as

y ¼ Ψ̄r; (22)

where

Ψ̄ ¼ ½ Ψ̄T
0 Ψ̄T

1 : : : Ψ̄T
N−1 �; (23)

with Ψ̄n defined as

½Ψ̄n�m¼½I½ð0;0Þ;n�e−jωmτð0;0Þ ::: I½ðNx−1;Nz−1Þ;n�e
−jωmτðNx−1;Nz−1Þ �:

(24)

In Eq. (24), τk;l is the two-way signal propagation time
associated with the downrange of the ðk; lÞ’th pixel, and
the function I½ðk;lÞ;n� works as an indicator function in the
following way:

I½ðk;lÞ;n�

¼
�
1; if the ðk; lÞ0thpixel is in front of the n 0 thantenna
0; otherwise

:

(25)

That is, if xk and xn represent the cross-range coordinates of
the ðk; lÞ’th pixel and the n’th antenna location, respectively,
and ∂x is the cross-range sampling step, then I½ðk;lÞ;n� ¼ 1
provided that xk − ∂x∕2 ≤ xn ≤ xk þ ∂x∕2 [see Fig. 4(b)].

4.2 Sparsifying Dictionary for Wall Detection
Since the number of parallel walls is typically much smaller
compared with the downrange extent of the building, the
decomposition of the image into parallel walls can be con-
sidered as sparse. Note that although other indoor targets,
such as furniture and humans, may be present, their projec-
tions onto the horizontal lines are expected to be negligible
compared to those of the walls.

In order to obtain a linear matrix-vector relation between
the scene and the horizontal projections, we define a sparsi-
fying matrix R composed of possible wall locations.
Specifically, each column of the dictionary R represents
an image containing a single wall of length lx pixels, located
at a specific cross-range and at a specific downrange in the
image. Consider the cross-range to be divided into Nc non-
overlapping blocks of lx pixels each [see Fig. 5(a)], and the
downrange division defined by the pixel grid. The number of
blocks Nc is determined by the value of lx, which is the mini-
mum expected wall length in the scene. Therefore, the
dimension of R is NxNz × NcNz,where the product NcNz
denotes the number of possible wall locations. Figure 5(b)
shows a simplified scheme of the sparsifying dictionary gen-
eration. The projection associated with each wall location is
given by

Fig. 4 (a) Specular reflections produced by walls; (b) indicator
function.
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gðbÞðlÞ ¼ 1

lx

X
k∈B½b�

rðk; lÞ; (26)

where B½b� indicates the b’th cross-range block and b ¼ 1; 2; : : : ; Nc. Defining

g ¼ ½ gð1Þð0Þ · · · gðNcÞð0Þ gð1Þð1Þ · · · gðNcÞð1Þ · · · gð1ÞðNz − 1Þ · · · gðNcÞðNz − 1Þ �; (27)

the linear system of equations relating the observed data y
and the sparse vector g is given by

y ¼ Ψ̄Rg: (28)

In practice and by the virtue of collecting signal reflec-
tions corresponding to the zero aspect angle, any interior
wall outside the synthetic array extent will not be visible
to the system. Finally, the CS image in this case is
obtained by first recovering the projection vector g
using l1 norm minimization with a reduced set of mea-
surements and then forming the product Rg.

It is noted that we are implicitly assuming that the extents
of the walls in the scene are integer multiples of the block of
lx pixels. In case this condition is not satisfied, the maximum
error in determining the wall extent will be at most equal to
the chosen block size. Note that incorporation of the corner

effects will help resolve this issue, since the localization of
corners will identify the wall extent.76

4.3 Illustrative Results
A through-the-wall SAR system was set up in the Radar
Imaging Lab, Villanova University. A stepped-frequency sig-
nal consisting of 335 frequencies covering the 1 to 2 GHz
frequency band was used for interrogating the scene. A
monostatic synthetic aperture array, consisting of 71-element
locations with an inter-element spacing of 2.2 cm, was
employed. The scene consisted of two parallel plywood
walls, each 2.25 cm thick, 1.83 m wide, and 2.43 m high.
Both walls were centered at 0 m in cross-range. The first
and the second walls were located at respective distances
of 3.25 and 5.1 m from the antenna baseline. Figure 6(a)
depicts the geometry of the experimental scene.

The region to be imaged is chosen to be
5.65ðcross-rangeÞ × 4.45 mðdown rangeÞ, centered at (0,
4.23) m, and is divided into 128 × 128 pixels. For the CS
approach, we use a uniform subset of only 84 frequencies
at each of the 18 uniformly spaced antenna locations,
which represent 6.4% of the full data volume. The CS recon-
structed image is shown in Fig. 6(b). We note that the
proposed algorithm was able to reconstruct both walls.
However, it can be observed in Fig. 6(b) that ghost walls
appear immediately behind each true wall position. These
ghosts are attributed to the dihedral-type reflections from
the wall-floor junctions.

5 CS and Multipath Exploitation
In this section, we consider the problem of multipath in view
of the requirements of fast data acquisition and reduced
measurements. Multipath ghosts may cast a sparse scene
as a populated scene, and at minimum will render the
scene less sparse, degrading the performance of CS-based
reconstruction. A CS method that directly incorporates
multipath exploitation into sparse signal reconstruction for
imaging of stationary scenes with a stepped-frequency
monostatic SAR is presented. Assuming prior knowledge
of the building layout, the propagation delays corresponding
to different multipath returns for each assumed target posi-
tion are calculated, and the multipath returns associated with
reflections from the same wall are grouped together and
represented by one measurement matrix. This allows CS
solutions to focus the returns on the true target positions
without ghosting. Although not considered in this section,
it is noted that the clutter due to front wall reverberations
can be mitigated by adapting a similar multipath formulation,
which maps back multiple reflections within the wall after
separating wall and target returns.100

Fig. 5 (a) Cross-range division into blocks of l x pixels; (b) Sparsifying
dictionary generation.
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5.1 Multipath Propagation Model
We refer to the signal that propagates from the antenna
through the front wall to the target and back to the antenna
as the direct target return. Multipath propagation corresponds
with indirect paths, which involve reflections at one or more
interior walls by which the signal may reach the target.
Multipath can also occur due to reflections from the floor
and ceiling and interactions among different targets. In con-
sidering wall reflections and assuming diffuse target scatter-
ing, there are two typical cases for multipath. In the first case,
the wave traverses a path that consists of two parts—one part
is the propagation path to the target and back to the receiver,
and the other part is a round trip path from the target to an
interior wall. As the signal weakens at each secondary wall
reflection, this case can usually be neglected. Furthermore,
except when the target is close to an interior wall, the cor-
responding propagation delay is high and, most likely, would
be equivalent to the direct-path delay of a target that lies out-
side the perimeter of the room being imaged. Thus, if nec-
essary, this type of multipath can be gated out. The second
case is a bistatic scattering scenario, where the signal propa-
gation on transmit and receive takes place along different
paths. This is the dominant case of multipath with one of
the paths being the direct propagation, to or from the target,

and the other involving a secondary reflection at an
interior wall.

Other higher-order multipath returns are possible as well.
Signals reaching the target can undergo multiple reflections
within the front wall. We refer to such signals as wall ringing
multipaths. Also the reflection at the interior wall can occur
at the outer wall-air interface. This will result, however, in
additional attenuation and, therefore, can be neglected. In
order to derive the multipath signal model, we assume
perfect knowledge of the front wall, i.e., location, thickness,
and dielectric constant, as well as the location of the
interior walls.

5.1.1 Interior wall multipath

Consider the antenna-target geometry illustrated in Fig. 7(a),
where the front wall has been ignored for simplicity. The
p’th target is located at xp ¼ ðxp; zpÞ, and the interior
wall is parallel to the z-axis and located at x ¼ xw.
Multipath propagation consists of the forward propagation
from the n’th antenna to the target along the path P 0 0 and
the return from the target via a reflection at the interior
wall along the path P 0. Assuming specular reflection at
the wall interface, we observe from Fig. 7(a) that reflecting
the return path about the interior wall yields an alternative
antenna-target geometry. We obtain a virtual target located
at x 0

p ¼ ð2xw − xp; zpÞ, and the delay associated with
path P 0 is the same as that of the path P̃ 0 from the virtual
target to the antenna. This correspondence simplifies the cal-
culation of the one-way propagation delay τðP 0

p;nÞ associated
with path P 0. It is noted that this principle can be used
for multipath via any interior wall.
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Fig. 6 (a) Scene geometry; (b) reconstructed image.
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Fig. 7 (a) Multipath propagation via reflection at an interior wall;
(b) wall ringing propagation with iw ¼ 1 internal bounces.
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From the position of the virtual target of an assumed
target location, we can calculate the propagation delay
along path P 0 as follows. Under the assumption of free
space propagation, the delay can be simply calculated as the
Euclidean distance from the virtual target to the receiver di-
vided by the propagation speed of the wave. In the TWRI
scenario, however, the wave has to pass through the front
wall on its way from the virtual target to the receiver. As
the front wall parameters are assumed to be known, the
delay can be readily calculated from geometric considera-
tions using Snell’s law.28

5.1.2 Wall ringing multipath

The effect of wall ringing on the target image can be delin-
eated through Fig. 7(b), which depicts the wall and the inci-
dent, reflected, and refracted waves. The distance between
the target and the array element in cross-range direction,
Δx, can be expressed as

Δx ¼ ðΔz − dÞ tan θair þ dð1þ 2iwÞ tan θwall; (29)

where Δz is the distance between target and array element in
downrange direction, and θair and θwall are the angles in the
air and in the wall medium, respectively. The integer iw
denotes the number of internal reflections within the wall.
The case iw =0 describes the direct path as derived in
Ref. 28. From Snell’s law,

sin θair
sin θwall

¼ ffiffiffi
ε

p
: (30)

Equations (29) and (30) form a nonlinear system of equa-
tions that can be solved numerically for the unknown angles,
e.g., using the Newton method. Having the solution for the
incidence and refraction angles, we can express the one-way
propagation delay associated with the wall ringing multipath
as101

τ ¼ ðΔz − dÞ
c cos θair

þ
ffiffiffi
ε

p
dð1þ 2iwÞ

c cos θwall
: (31)

5.2 Received Signal Model
Having described the two principal multipath mechanisms in
TWRI, namely the interior wall and wall ringing types of
multipath, we are now in a position to develop a multipath
model for the received signal. We assume that the front wall
returns have been suppressed and the measured data contains
only the target returns. The case with the wall returns present
in the measurements is discussed in Ref. 100.

Each path P from the transmitter to a target and back to
receiver can be divided into two parts, P 0 and P 0 0; where P 0 0
denotes the partial path from the transmitter to the scattering
target and P 0 is the return path back to the receiver. For each
target-transceiver combination, there exist a number of
partial paths due to the interior wall and wall ringing multi-
path phenomena. Let P 0

i1
, i1 ¼ 0; 1; : : : ; R1 − 1, and P 0 0

i2
,

i2 ¼ 0; 1; : : : ; R2 − 1, denote the feasible partial paths.
Any combination of P 0

i1
and P 0 0

i2
results in a round-trip

path Pi, i ¼ 0; 1; : : : ; R − 1. We can establish a function
that maps the index i of the round-trip path to a pair of indi-
ces of the partial paths, i ↦ ði1; i2Þ. Hence we can determine

the maximum number R ≤ R1R2 of possible paths for each
target-transceiver pair. Note that, in practice, R ≪ R1R2, as
some round-trip paths may be equal due to symmetry while
some others could be strongly attenuated and thereby can be
neglected. We follow the convention that P0 refers to the
direct round-trip path.

The round-trip delay of the signal along path Pi, consist-
ing of the partial parts P 0

i1
and P 0 0

i2
,can be calculated as

τðiÞp;n ¼ τði1Þp;n þ τði2Þp;n : (32)

We also associate a complex amplitude wðiÞ
p for each possible

path corresponding to the p’th target, with the direct path,
which is typically the strongest in TWRI, having wð0Þ

p ¼ 1.
Without loss of generality, we assume the same number of

propagation paths for each target. The unavailability of a
path for a particular target is reflected by a corresponding
path amplitude of zero. The received signal at the n’th
antenna due to the m’th frequency can, therefore, be
expressed as

yðm; nÞ ¼
XR−1
i¼0

XP−1
p¼0

wðiÞ
p σðiÞp expð−jωmτ

ðiÞ
p;nÞ: (33)

As the bistatic radar cross-section (RCS) of a target could be
different from its monostatic RCS, the target reflectivity is
considered to be dependent on the propagation path. For con-
venience, the path amplitude wðiÞ

p in Eq. (33) can be absorbed
into the target reflectivity σðiÞp , leading to

yðm; nÞ ¼
XR−1
i¼0

XP−1
p¼0

σðiÞp expð−jωmτ
ðiÞ
p;nÞ: (34)

Note that Eq. (34) is a generalization of the non-multipath
propagation model in Eq. (2). If the number of propagation
paths is set to 1, then the two models are equivalent.

The matrix-vector form for the received signal under
multipath propagation is given by

y ¼ Ψð0Þrð0Þ þ Ψð1Þrð1Þ þ : : : þΨðR−1ÞrðR−1Þ; (35)

where

rðiÞ ¼ ½ rðiÞ00 : : : rðiÞNxNz−1
�T

½ΨðiÞ�sq ¼ expð−jωmτ
ðiÞ
q;nÞ; m ¼ smodM; n ¼ bs∕Mc

s ¼ 0; 1; : : : ;MN − 1; q ¼ 0; 1; : : : ; NxNz − 1:

(36)

The term rðiÞq , q ¼ 0; 1; : : : ; NxNz − 1, takes the value σðiÞp
if the p’th point target exists at the q’th pixel; otherwise,
it is zero. Finally, the reduced measurement vector y̆
can be obtained from Eq. (35) as y̆ ¼ Φy, where the Q1Q2 ×
MN matrix Φ is defined in Eq. (10).

5.3 Sparse Scene Reconstruction with Multipath
Exploitation

Within the CS framework, we aim at undoing the ghosts, i.e.,
inverting the multipath measurement model and achieving a
reconstruction, wherein only the true targets remain.
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In practice, any prior knowledge about the exact relation-
ship between the various subimages rðiÞ of the sparse scene is
either limited or nonexistent. However, we know with cer-
tainty that the sub-images rð0Þ; rð1Þ; : : : rðR−1Þ describe the
same underlying scene. That is, the support of the R images
is the same, or at least approximately the same. The common
structure property of the sparse scene suggests the applica-
tion of a group sparse reconstruction.

All unknown vectors in Eq. (35) can be stacked to form a
tall vector of length NxNzR

~r ¼ ½ rð0ÞT rð1ÞT · · · rðR−1ÞT �T . (37)

The reduced measurement vector y̆ can then be expressed as

y̆ ¼ B~r; (38)

where B ¼ bΦΨð0Þ ΦΨð1Þ · · · ΦΨðR−1Þ c has dimen-
sions Q1Q2 × NxNzR.

We proceed to reconstruct the images ~r from y̆ under
measurement model in Eq. (38). It has been shown that a
group sparse reconstruction can be obtained by a mixed
l1 − l2 norm regularization.102–105 Thus we solve

~̂r ¼ arg min
~r

1

2
ky̆ − B~rk þ αk~rk2;1; (39)

where α is the so-called regularization parameter and

k~rk2;1 ¼
XNxNz−1

q¼0

k½rð0Þq ; rð1Þq ; : : : ; rðR−1Þq �Tk2

¼
XNxNz−1

q¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR−1
i¼0

rðiÞq rðiÞ
�

q

vuut (40)

is the mixed l1 − l2 norm. As defined in Eq. (40), the
mixed l1 − l2 norm behaves like an l1 norm on the
vector k½rð0Þq ; rð1Þq ; · · · ; rðR−1Þq �Tk2 q ¼ 0; 1; · · · ; NxNz − 1,
and therefore induces group sparsity. In other words,
each k½rð0Þq ; rð1Þq ; · · · ; rðR−1Þq �Tk2, and equivalently each

½rð0Þq ; rð1Þq ; · · · ; rðR−1Þq �T , are encouraged to be set to zero.
On the other hand, within the groups, the l2 norm does
not promote sparsity.106 The convex optimization problem
in Eq. (39) can be solved using SparSA,102 YALL
group,103 or other available schemes.105,107

Once a solution ~̂r is obtained, the subimages can be
noncoherently combined to form an overall image with
an improved signal-to-noise-and-clutter ratio (SCNR), with
the elements of the composite image r̂GS defined as

½r̂GS�q ¼ k½rð0Þq ; rð1Þq ; : : : ; rðR−1Þq �Tk2;
q ¼ 0; : : : ; NxNz − 1:

(41)

5.4 Illustrative Results
An experiment was conducted in a semi-controlled environ-
ment at the Radar Imaging Lab, Villanova University. A sin-
gle aluminum pipe (61 cm long, 7.6 cm diameter) was placed
upright on a 1.2-m-high foam pedestal at 3.67 m downrange

and 0.31 m cross-range, as shown in Fig. 8. A 77-element
uniform linear monostatic array with an inter-element
spacing of 1.9 cm was used for imaging. The origin of
the coordinate system is chosen to be at the center of the
array. The 0.2-m-thick concrete front wall was located par-
allel to the array at 2.44 m downrange. The left sidewall was
at a cross-range of −1.83 m, whereas the back wall was at
6.37 m downrange (see Fig. 8). Also there was a protruding
corner on the right at 3.4 m cross-range and 4.57 m down-
range. A stepped-frequency signal, consisting of 801 equally
spaced frequency steps covering the 1 to 3 GHz band was
employed. The left and right side walls were covered with
RF absorbing material, but the protruding right corner and
the back wall were left uncovered.

We consider background-subtracted data to focus only on
target multipath. Figure 9(a) depicts the backprojection
image using all available data. Apparently, only the multi-
path ghosts due to the back wall, and the protruding corner
in the back right are visible. Hence we only consider these
two multipath propagation cases for the group sparse CS
scheme. We use 25% of the array elements and 50% of
the frequencies. The corresponding CS reconstruction is
shown in Fig. 9(b). The multipath ghosts have been clearly
suppressed.

6 CS-Based Change Detection for Moving Target
Localization

In this section, we consider sparsity-driven CD for human
motion indication in TWRI applications. CD can be used
in lieu of Doppler processing, wherein motion detection is
accomplished by subtraction of data frames acquired over
successive probing of the scene. In so doing, CD mitigates
the heavy clutter that is caused by strong reflections from
exterior and interior walls and also removes stationary
objects present in the enclosed structure, thereby rendering
a densely populated scene sparse.7,9,10 As a result, it becomes
possible to exploit CS techniques for achieving reduction in
the data volume. We assume a multistatic imaging system
with physical transmit and receive apertures and a wideband
transmit pulse. We establish an appropriate CD model for

Fig. 8 Scene layout.
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translational motion that permits formulation of linear mod-
eling with sensing matrices, so as to apply CS for scene
reconstruction. Other types of human motions involving
sudden short movements of the limbs, head, and/or torso
are discussed in Ref. 70.

6.1 Signal Model
Consider wideband radar operation with M transmitters and
N receivers. A sequential multiplexing of the transmitters
with simultaneous reception at multiple receivers is assumed.
As such, a signal model can be developed based on single
active transmitters. We note that the timing interval for
each data frame is assumed to be a fraction of a second
so that the moving target appears stationary during each
data collection interval.

Let sTðtÞ be the wideband baseband signal used for
interrogating the scene. For the case of a single point target
with reflectivity σp, located at xp ¼ ðxp; zpÞ behind a wall,
the pulse emitted by the m’th transmitter with phase center
at xtm ¼ ðxtm;−zoffÞ is received at the n’th receiver with
phase center at xrn ¼ ðxrn;−zoffÞ in the form

ymnðtÞ ¼ amnðtÞ þ bmnðtÞ;
amnðtÞ ¼ σpsTðt − τp;mnÞ expð−jωcτp;mnÞ; (42)

where ωc is the carrier frequency, τp;mn is the propagation
delay for the signal to travel between the m’th transmitter,
the target at xp, and the n’th receiver, and bmnðtÞ repre-
sents the contribution of the stationary background at
the n’th receiver with the m’th transmitter active. The
delay τp;mn consists of the components corresponding to
traveling distances before, through, and after the wall,
similar to Eq. (3).

In its simplest form, CD is achieved by coherent subtrac-
tion of the data corresponding to two data frames, which may
be consecutive or separated by one or more data frames. This
subtraction operation is performed for each range bin. CD
results in the set of difference signals,

δymnðtÞ ¼ yðLþ1Þ
mn ðtÞ − yð1ÞmnðtÞ ¼ aðLþ1Þ

mn ðtÞ − að1ÞmnðtÞ; (43)

where L denotes the number of frames between the two time
acquisitions. The component of the radar return from the sta-
tionary background is the same over the two time intervals
and is thus removed from the difference signal. Using
Eqs. (42) and (43), the ðm; nÞ’th difference signal can be
expressed as

δymnðtÞ ¼ σpsTðt − τðLþ1Þ
p;mn Þ expð−jωcτ

ðLþ1Þ
p;mn Þ

− σpsTðt − τð1Þp;mnÞ expð−jωcτ
ð1Þ
p;mnÞ; (44)

where τð1Þp;mn and τðLþ1Þ
p;mn are the respective two-way propaga-

tion delays for the signal to travel between the m’th trans-
mitter, the target, and the n’th receiver, during the first
and the second data acquisitions, respectively.

6.2 Sparsity-Driven Change Detection under
Translational Motion

Consider the difference signal in Eq. (44) for the case where
the target is undergoing translational motion. Two noncon-
secutive data frames with relatively long time difference are
used, i.e., L ≫ 1 (Ref. 108). In this case, the target will
change its range gate position during the time elapsed
between the two data acquisitions. As seen from Eq. (44),
the moving target will present itself as two targets, one cor-
responding to the target position during the first time inter-
val, and the other corresponding to the target location during
the second data frame. It is noted that the imaged target at the
reference position corresponding to the first data frame can-
not be suppressed for the coherent CD approach. On the
other hand, the noncoherent CD approach that deals with
differences of image magnitudes corresponding to the two
data frames, allows suppression of the reference image
through a zero-thresholding operation.23 However, as the
noncoherent approach requires the scene reconstruction to
be performed prior to CD, it is not a feasible option for spar-
sity-based imaging, which relies on coherent CD to render
the scene sparse. Therefore, we rewrite Eq. (44) as

δymnðtÞ ¼
X2
i¼1

σ̃isTðt − τi;mnÞ expð−jωcτi;mnÞ; (45)

(a) (b)

Fig. 9 (a) Back-projection image with full data volume; (b) group sparse reconstruction with 25% of the antenna elements and 50% of the
frequencies.
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with

σ̃i ¼
�

σp i¼ 1

−σp i¼ 2
and τi;mn ¼

�
τðLþ1Þ
p;mn i¼ 1

τð1Þp;mn i¼ 2
: (46)

If we sample the difference signal δymnðtÞ at times ftkgK−1
k¼0 to

obtain the K × 1 vector Δymn and form the concatenated
NxNz × 1 scene reflectivity vector r, then using the devel-
oped signal model in Eq. (45), we obtain the linear system
of equations

Δymn ¼ Ψmnr: (47)

The q’th column of Ψmn consists of the received signal cor-
responding to a target at pixel xq and the k’th element of the
q’th column can be written as70,83

½Ψmn�k;q ¼
sTðtk − τq;mnÞ expð−jωcτq;mnÞ

ksq;mnk2
;

k ¼ 0; 1; : : : ; K − 1; q ¼ 0; 1; : : : ; NxNz − 1;

(48)

where τq;mn is the two-way signal traveling time from the
m’th transmitter to the q’th pixel and back to the n’th
receiver. Note that the k’th element of the vector sq;mn
is sTðtk − τq;mnÞ, which implies that the denominator in
the R.H.S. of Eq. (48) is the energy in the time signal.
Therefore, each column of Ψmn has unit norm. Further
note that if there is a target at the q’th pixel, the value of
the q’th element of r should be σ̃q; otherwise, it is zero.

The CD model described in Eqs. (47) and (48) permits the
scene reconstruction within the CS framework. We measure
a Jð≪ KÞ dimensional vector of elements randomly chosen
from Δymn. The new measurements can be expressed as

Δy̆mn ¼ φmnΔymn ¼ φmnΨmnr; (49)

where φmn is a J × K measurement matrix. Several types of
measurement matrices have been reported in the litera-
ture83,86,109 and the references therein. To name a few, a
measurement matrix whose elements are drawn from a
Gaussian distribution, a measurement matrix having random
�1 entries with probability of 0.5, or a random matrix whose
entries can be constructed by randomly selecting rows of a
K × K identity matrix. It was shown in Ref. 83 that the meas-
urement matrix with random �1 elements requires the least
amount of compressive measurements for the same radar im-
aging performance, and permits a relatively straight forward
data acquisition implementation. Therefore, we choose to
use such a measurement matrix in image reconstructions.

Given Δy̆mn for m ¼ 0, 1; : : : ;M − 1, n ¼ 0,
1; : : : ; N − 1, we can recover r by solving the following
equation:

r̂ ¼ arg min
r
krkl1 subject to ΦΨr ≈ Δy̆; (50)

where

Ψ ¼ ½ΨT
00ΨT

01: : :ΨT
ðM−1ÞðN−1Þ�T;

Φ ¼ diagðφ00;φ01; : : : ;φðM−1ÞðN−1ÞÞ
Δy̆ ¼ ½Δy̆T00Δy̆T01: : :Δy̆TðM−1ÞðN−1Þ�T: (51)

Equations (50) and (51) represent one strategy that can be
adopted for sparsity-based CD approach, wherein a reduced
number of time samples are chosen randomly for all the
transmitter-receiver pairs constituting the array apertures.
The above two equations can also be extended so that the
reduction in data measurements includes both spatial and
time samples. The latter strategy is not considered in this
section.

6.3 Illustrative Results
A through-the-wall wideband pulsed radar system was used
for data collection in the Radar Imaging Lab at Villanova
University. The system uses a 0.7 ns Gaussian pulse for
scene interrogation. The pulse is up-converted to 3 GHz
for transmission and down-converted to baseband through
in-phase and quadrature demodulation on reception. The sys-
tem operational bandwidth from 1.5 to 4.5 GHz provides a
range resolution of 5 cm. The peak transmit power is
25 dBm. Transmission is through a single horn antenna,
which is mounted on a tripod. An eight-element line array
with an inter-element spacing of 0.06 m, is used as the
receiver and is placed to the right of the transmit antenna.
The center-to-center separation between the transmitter
and the leftmost receive antenna is 0.28 m, as shown in
Fig. 10. A 3.65 × 2.6 m2 wall segment was constructed uti-
lizing 1-cm-thick cement board on a 2-x-4 wood stud frame.
The transmit antenna and the receive array were at a standoff
distance of 1.19 m from the wall. The system refresh rate
is 100 Hz.

In the experiment, a person walked away from the wall in
an empty room (the back and the side walls were covered
with RF absorbing material) along a straight line path.
The path is located 0.5 m to the right of the center of the
scene, as shown in Fig. 10. The data collection started
with the target at position 1 and ended after the target reached
position 3, with the target pausing at each position along the
trajectory for a second. Consider the data frames correspond-
ing to the target at positions 2 and 3. Each frame consists of
20 pulses, which are coherently integrated to improve the
signal-to-noise ratio. The imaging region (target space) is
chosen to be 3 × 3 m2, centered at (0.5 m, 4 m), and divided
into 61 × 61 grid points in cross-range and downrange,
resulting in 3721 unknowns. The space-time response
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Fig. 10 Scene layout for the target undergoing translational motion.
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of the target space consists of 8 × 1536 space-time measure-
ments. For sparsity-based CD, only 5% of the 1536 time
samples are randomly selected at each of the eight receive
antenna locations, resulting in 8 × 77 space-time measured
data. Figure 11 depicts the corresponding result. We observe
that, as the human changed its range gate position during the
time elapsed between the two acquisitions, it presents itself
as two targets in the image, and is correctly localized at both
of its positions.

7 CS General Formulation for Stationary and
Moving Targets

As seen in the previous sections, the presence of the front
wall renders the target detection problem very difficult
and challenging and has an adverse effect on the
scene reconstruction performance when employing CS.
Different strategies have been devised for suppression of
the wall clutter to enable target detection behind walls.
Change detection enables detection and localization of
moving targets. Clutter cancellation filtering provides
another option.87,110 However, along with the wall clutter,
both of these methods also suppress the returns from the
stationary targets of interest in the scene, and as such,
allow subsequent application of CS to recover only the
moving targets. Wall clutter mitigation methods can be
applied to remove the wall and enable joint detection of
stationary and moving targets. However, these methods
assume monostatic operation with the array located parallel
to the front wall and exploit the strength and invariance of
the wall return across the array under such a deployment for
mitigating the wall return. As such, they may not perform as
well under other situations.

For multistatic imaging radar systems using ultra-wide-
band (UWB) pulses, an alternate option is to employ time
gating, in lieu of the aforementioned clutter cancellation
methods. The compact temporal support of the signal renders
time gating a viable option for suppressing the wall returns.
This enhances the SCR and maintains the sparsity of the
scene, thereby permitting the application of CS techniques

for simultaneous localization of stationary and moving tar-
gets with few observations.74

7.1 Signal Model
Consider the scene layout depicted in Fig. 12. Note that
although the M-element transmit and N-element receive
arrays are assumed to be parallel to the front wall for nota-
tional simplicity, this is not a requirement. Let Tr be the pulse
repetition interval. Consider a coherent processing interval of
I pulses per transmitter and a single point target moving
slowly away from the origin with constant horizontal and
vertical velocity components ðvxp; vzpÞ, as depicted in
Fig. 12. Let the target position be xp ¼ ðxp; zpÞ at time
t ¼ 0. Assume that the timing interval for sequencing
through the transmitters is short enough so that the target
appears stationary during each data collection interval of
length ITr. This implies that the target position correspond-
ing to the i’th pulse is given by

xpðiÞ ¼ ðxp þ vxpiITr; zp þ vzpiITrÞ: (52)

The baseband target return measured by the n’th receiver
corresponding to the i’th pulse emitted by the m’th transmit-
ter is given by74

ypmniðtÞ ¼ σpsT ½t − iITr −mTr

− τp;mnðiÞ� exp½−jωcτp;mnðiÞ�; (53)

where τp;mnðiÞ is the propagation delay for the i’th pulse to
travel from the m’th transmitter to the target at xpðiÞ, and
back to the n’th receiver. In the presence of P point targets,
the received signal component corresponding to the targets
will be a superposition of the individual target returns in (53)
with p ¼ 0; 1; : : : ; P − 1. Interactions between the targets
and multipath returns are ignored in this model. Note that
any stationary targets behind the wall are included in this
model and would correspond to the motion parameter pair
ðvxp; vzpÞ ¼ ð0; 0Þ. Further note that the slowly moving tar-
gets are assumed to remain within the same range cell over
the coherent processing interval.

On the other hand, as the wall is a specular reflector,
the baseband wall return received at the n’th receiver

Fig. 11 Sparsity-based CD image using 5% of the data volume. Fig. 12 Geometry on transmit and receive.
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corresponding to the i’th pulse emitted by the m’th transmit-
ter can be expressed as

ywallmniðtÞ ¼ σwsT ½t − iITr −mTr − τw;mnÞ�
× expð−jωcτw;mnÞ þ Bwall

mniðtÞ; (54)

where τw;mn is the propagation delay from the m’th trans-
mitter to the wall and back to the n’th receiver, and
Bwall
mniðtÞ represents the wall reverberations of decaying ampli-

tudes resulting from multiple reflections within the wall (see
Fig. 13). The propagation delay τw;mn is given by111

τw;mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxtm − xw;mnÞ2 þ z2off

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxrn − xw;mnÞ2 þ z2off

q
c

;

(55)

where

xw;mn ¼
xtm þ xrn

2
; (56)

is the point of reflection on the wall corresponding to the
m’th transmitter and the n’th receiver, as shown in
Fig. 13. Note that, as the wall is stationary, the delay
τw;mn does not vary from one pulse to the next. Therefore
the expression in Eq. (54) assumes the same value for
i ¼ 0; 1; : : : ; I − 1.

Combining Eqs. (53) and (54), the total baseband signal
received by the n’th receiver, corresponding to the i’th pulse
with the m’th transmitter active, is given by

y 0
mniðtÞ ¼ ywallmniðtÞ þ

XP−1
p¼0

ypmniðtÞ: (57)

By gating out the wall return in the time domain, we
gain access to the sparse behind-the-wall scene of a few
stationary and moving targets of interest. Therefore the
time-gated received signal contains only contributions
from the P targets behind the wall as well as any residuals
of the wall not removed or fully mitigated by gating.
In this section, we assume that wall clutter is effectively
suppressed by gating. Therefore, using Eq. (57), we
obtain

ymniðtÞ ¼
XP−1
p¼0

ypmniðtÞ: (58)

7.2 Linear Model Formulation and CS
Reconstruction

With the observed scene divided into Nx × Nz pixels in
cross-range and downrange, consider Nvx and Nvz discrete
values of the expected horizontal and vertical velocities,
respectively. Therefore an image with Nx × Nz pixels in
cross-range and downrange is associated with each consid-
ered horizontal and vertical velocity pair, resulting in a four-
dimensional (4-D) target space. Note that the considered
velocities contain the (0, 0) velocity pair to include stationary
targets.

Sampling the received signal ymniðtÞ at times ftkgK−1k¼0 , we
obtain aK × 1 vector ymni. For the l’th velocity pair ðvxl; vzlÞ,
we vectorize the corresponding cross-range versus down-
range image into an NxNz × 1 scene reflectivity vector
rðvxl; vzlÞ. The vector rðvxl; vzlÞ is a weighted indicator vec-
tor defining the scene reflectivity corresponding to the l’th
considered velocity pair, i.e., if there is a target at the spatial
grid point (x, z) with motion parameters ðvxl; vzlÞ, then the
value of the corresponding element of rðvxl; vzlÞ should be
nonzero; otherwise, it is zero.

Using the developed signal model in Eqs. (53) and (58),
we obtain the linear system of equations

ymni ¼ Ψmniðvxl; vzlÞrðvxl; vzlÞ;
l ¼ 0; 1; : : : ; NvxNvz − 1;

(59)

where the matrix Ψmniðvxl; vzlÞ is of dimension K × NxNz.
The q’th column of Ψmniðvxl; vzlÞ consists of the received
signal corresponding to a target at pixel xq with motion
parameters ðvxl; vzlÞ, and the i’th element of the q’th column
can be written as

Fig. 13 Wall reverberations.

Fig. 14 The configuration of the experiment.
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½Ψmniðvxl; vzlÞ�k;q ¼ sT ½tk − iITr −mTr − τq;mnðiÞ�
× exp½−jωcτq;mnðiÞ�;

q ¼ 0; 1; : : : ; NxNz − 1 (60)

where τq;mnðiÞ is the two-way signal traveling time, corre-
sponding to ðvxl; vzlÞ, from the m’th transmitter to the
q’th spatial grid point and back to the n’th receiver for
the i’th pulse.

Stacking the received signal samples corresponding to I
pulses from allMN transmitting and receiving element pairs,
we obtain the MNIK × 1 measurement vector y as

y ¼ Ψðvxl; vzlÞrðvxl; vzlÞ;
l ¼ 0; 1; : : : ; ðNvxNvz − 1Þ;

(61)

where

Ψðvxl; vzlÞ ¼ ½ΨT
000ðvxl; vzlÞ; : : : ;ΨT

ðM−1ÞðN−1ÞðI−1Þðvxl; vzlÞ�T:
(62)

Finally, forming the MNIK × NxNzNvxNvz matrix Ψ as

Ψ ¼ ½Ψðvx0; vz0Þ; : : : ;ΨðvxðNvxNvz−1Þ; vzðNvxNvz−1ÞÞ�; (63)

we obtain the linear matrix equation

y ¼ Ψr̂; (64)

with r̂ being the concatenation of target reflectivity vec-
tors corresponding to every possible considered velocity
combination.
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Fig. 15 Imaging result for both stationary and moving targets without time gating: (a) CS reconstructed image σð0; 0Þ; (b) CS reconstructed image
σð0;−0.7Þ; (c) CS reconstructed image σð0;−1.4Þ.
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The model described in Eq. (64) permits the scene
reconstruction within the CS framework. We measure a J <
MNIK dimensional vector of elements randomly chosen
from y. The reduced set of measurements can be expressed
as

y̆ ¼ ΦΨr̂; (65)

where Φ is a J ×MNIK measurement matrix. For measure-
ment reduction simultaneously along the spatial, slow time,
and fast time dimensions, the specific structure of the matrix
Φ is given by

Φ ¼ kronðΦ1; IJ1J2N1
Þ · kronðΦ2; IJ1J2MÞ · kronðΦ3; IJ1MNÞ

· diagfΦð0Þ
4 ;Φð1Þ

4 ; : : : ;ΦðMNI−1Þ
4 g; (66)

where Ið·Þ is an identity matrix with the subscript indicating
its dimensions, and M1; N1; J1, and J2 denote the reduced

number of transmit elements, receive elements, pulses,
and fast time samples, respectively, with the total number
of reduced measurements J ¼ M1N1J1J2. The matrix Φ1

is an M1 ×M matrix, Φ2 is an N1 × N matrix, Φ3 is a J2 ×
I matrix, and each of the Φ4 matrices is a J1 × K matrix for
determining the reduced number of transmitting elements,
receiving elements, pulses and fast time samples, respec-
tively. Each of the three matrices Φ1, Φ2, and Φ3 consists
of randomly selected rows of an identity matrix. These
choices of reduced matrix dimensions amount to selection
of subsets of existing available degrees of freedom offered
by the fully deployed imaging system. Any other matrix
structure does not yield to any hardware simplicity or saving
in acquisition time. On the other hand, three different
choices, discussed in Sec. 6.2, are available for compressive
acquisition of each pulse in fast time.

Given the reduced measurement vector y̆ in Eq. (65), we
can recover r̂ by solving the following equation,
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Fig. 16 Imaging result for both stationary and moving targets after time gating: (a) CS reconstructed image σð0;0Þ; (b) CS reconstructed image
σð0;−0.7Þ; (c) CS reconstructed image σð0;−1.4Þ.
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^̂r ¼ arg min
r̂

kr̂kl1 subject toΦΨr̂ ≈ y̆. (67)

We note that the reconstructed vector can be rearranged into
NvxNvz matrices of dimensions Nx × Nz in order to depict
the estimated target reflectivity for different vertical and hori-
zontal velocity combinations. Note that (1) stationary targets
will be localized for the (0,0) velocity pair, and (2) two
targets located at the same spatial location but moving
with different velocities will be distinguished and their
corresponding reflectivity and motion parameters will be
estimated.

7.3 Illustrative Results
A real data collection experiment was conducted in the
Radar Imaging Laboratory, Villanova University. The sys-
tem and signal parameters are the same as described in
Sec. 6.3. The origin of the coordinate system was chosen
to be at the center of the receive array. The scene behind
the wall consisted of one stationary target and one moving
target, as shown in Fig. 14. A metal sphere of 0.3 m diam-
eter, placed on a 1-m-high Styrofoam pedestal, was used
as the stationary target. The pedestal was located 1.25 m
behind the wall, centered at (0.49 m, 2.45 m). A person
walked toward the front wall at a speed of 0.7 m∕s approx-
imately along a straight line path, which is located 0.2 m
to the right of the transmitter. The back and the right side
wall in the region behind the front wall were covered with
RF absorbing material, whereas the 8-in.-thick concrete
side-wall on the left and the floor were uncovered. A
coherent processing interval of 15 pulses was selected.

The image region is chosen to be 4 × 6 m2, centered at
(−0.31 m, 3 m), and divided into 41 × 36 pixels in cross-
range and downrange. As the human moves directly toward
the radar, we only consider varying vertical velocity from
−1.4 to 0 m∕s, with a step size of 0.7 m∕s, resulting in three
velocity pixels. The space-slow time-fast time response of
the scene consists of 8 × 15 × 2872 measurements. First,
we reconstruct the scene without time gating the wall
response. Only 33.3% of the 15 pulses and 13.9% of the
fast-time samples are randomly selected for each of the
eight receive elements, resulting in 8 × 5 × 400 space-
slow time-fast time measured data. This is equivalent to
4.6% of the total data volume. Figure 15 depicts the CS
based result, corresponding to the three velocity bins,
obtained with the number of OMP iterations set to 50.
We observe from Fig. 15(a) and 15(b) that both the station-
ary sphere and the moving person cannot be localized. The
reason behind this failure is twofold: (1) the front wall is a
strong extended target, and as such most of the degrees of
freedom of the reconstruction process are used up for the
wall, and (2) the low SCR, due to the much weaker returns
from the moving and stationary targets compared to the
front wall reflections, causes the targets to be not recon-
structed with the residual degrees of freedom of the OMP.
These results confirm that the performance of the sparse
reconstruction scheme is hindered by the presence of the
front wall.

After removal of the front wall return from the received
signals through time gating, the space-slow time-fast time
data includes 8 × 15 × 2048 measurements. For CS, we used
all eight receivers, randomly selected five pulses (33.3%

of 15) and chose 400 Gaussian random measurements
(19.5% of 2048) in fast time, which amounts to using
6.5% of the total data volume. The number of OMP iterations
was set to 4. Figure 16(a)–16(c) shows the respective images
corresponding to the 0, −0.7, and −1.4 m∕s velocities. It is
apparent that with the wall gated out, both the stationary and
moving targets have been correctly localized even with the
reduced set of measurements.

8 Conclusion
In this paper, we presented a review of important approaches
for sparse behind-the-wall scene reconstruction using CS.
These approaches address the unique challenges associated
with fast and efficient imaging in urban operations. First,
considering stepped-frequency SAR operation, we presented
a linear matrix modeling formulation, which enabled appli-
cation of sparsity-based reconstruction of a scene of station-
ary targets using a significantly reduced data volume. Access
to background scene without the targets of interest was
assumed to render the scene sparse upon coherent subtrac-
tion. Subsequent sparse reconstruction using a much reduced
data volume was shown to successfully detect and accurately
localize the targets.

Second, assuming no prior access to a background scene,
we examined the performance of joint mitigation of the wall
backscattering and sparse scene reconstruction in TWRI
applications. We focused on subspace projections approach,
which is a leading method for combating wall clutter. Using
real data collected with a stepped-frequency radar, we
demonstrated that the subspace projection method main-
tains proper performance when acting on reduced data
measurements.

Third, a sparsity-based approach for imaging of interior
building structure was presented. The technique made use
of the prior information about building construction practices
of interior walls to both devise an appropriate linear model and
design a sparsifying dictionary based on the expected wall
alignment relative to the radar’s scan direction. The scheme
was shown to provide reliable determination of building lay-
outs, while achieving substantial reduction in data volume.

Fourth, we described a group sparse reconstruction
method to exploit the rich indoor multipath environment
for improved target detection under efficient data collection.
A ray-tracing approach was used to derive a multipath
model, considering reflections not only due to targets inter-
actions with interior walls, but also the multipath propaga-
tion resulting from ringing within the front wall. Using
stepped-frequency radar data, it was shown that this tech-
nique successfully reconstructed the ground truth without
multipath ghosts and also increased the SCR at the true target
locations.

Fifth, we detected and localized moving humans behind
walls and inside enclosed structures using an approach that
combines sparsity-driven radar imaging and change detec-
tion. Removal of stationary background via CD resulted
in a sparse scene of moving targets, whereby CS schemes
could exploit full benefits of sparsity-driven imaging. An
appropriate CD linear model was developed that allowed
scene reconstruction within the CS framework. Using pulsed
radar operation, it was demonstrated that a sizable reduction
in the data volume is provided by CS without degradation in
system performance.
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Finally, we presented a CS-based technique for joint
localization of stationary and moving targets in TWRI appli-
cations. The front wall returns were suppressed through time
gating, which was made possible by the short temporal sup-
port characteristic of the UWB transmit waveform. The SCR
enhancement as a result of time gating permitted the appli-
cation of CS techniques for scene reconstruction with few
observations. We established an appropriate signal model
that enabled formulation of linear modeling with sensing
matrices for reconstruction of the downrange-cross-range-
velocity space. Results based on real data experiments dem-
onstrated that joint localization of stationary and moving
targets can be achieved via sparse regularization using a
reduced set of measurements without any degradation in
system performance.
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