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Abstract. We propose a color image segmentation approach based on rough set theory elements. Main con-
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1 Introduction
Color image segmentation has been a central problem in
computer vision and pattern recognition systems for many
years. Its importance relies on its use as a preanalysis step
for images in many applications such as object recognition,
tracking, scene understanding, and image retrieval, among
others. Segmentation refers to the process of partitioning a
digital image into multiple regions that are assumed to cor-
respond to significant objects in the scene. The partition con-
sists of assigning a working label to every pixel within an
image, in such a way that pixels with the same label share
a set of particular features1 and, in addition, are spatially
connected.

A considerable number of approaches address the prob-
lem of color image segmentation, and different authors have
focused their efforts to categorize all these techniques. Just to
mention a few, we can refer to the surveys by Fu and Mui,2

Pal and Pal,3 Cheng et al.,4 Lucchese and Mitra5 and the most
recent work by Vantaram and Saber.6 In general, the color
image segmentation approaches can be separated into three
groups: (1) spatially guided, (2) spatially blind, and (3) mis-
cellaneous,6 where the first two categories comprise most of
the methods.

On one hand, the main idea of the spatially guided meth-
ods is that pixels that are neighbors may have features in
common. The goal of such methods is to agglomerate adja-
cent pixels with, for example, split-and-merge7,8 and region-
growing9,10 strategies. Their main drawback is that, even
when the resulting regions in the segmentation are spatially

well connected and compact, there is no guarantee that the
segments are homogeneous in a specific feature space.
Moreover, sequential design (pixel-by-pixel agglomeration)
of these procedures often results in intensive computational
schemes with significant memory requirements. Among
these approaches, the quality of the segmentation is depen-
dent on the initial seeds selection and homogeneity criteria
used. On the other hand, we have the spatially blind algo-
rithms. These methods assume that the color on the surface
of an object is unvarying and, therefore, the object will be
represented as a cluster of points in a given color space.
Because of their simplicity and low computational cost, this
kind of method has been widely adopted in the development
of segmentation algorithms. Examples of these approaches
include clustering11–14 and histogram-based approxima-
tions.15,16 In comparison with the spatially guided techniques,
the spatially blind methods present some advantages. For
example, comparing with the region-growing approaches,
in the spatially blind techniques, there is no need to define
the number and placement of the initial seeds. The advantage
over the split-and-merge methods is that such methods
require a postprocessing refinement in order to accurately
capture the shape of the objects.

Among the spatially blind techniques, the histogram-
based methods offer some advantages over the clustering
approximations. An example of those advantages is that
in the histogram-based methods, there is no required a priori
information about the image like the number of classes or the
palette of colors to be used. In the histogram-based tech-
niques, the image histogram is obtained and the representa-
tive objects within the scene are identified as significant
peaks in the histogram. Depending on the number of peaks,
a set of thresholds is established and a multithreshold
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segmentation is carried out. The disadvantages of this
approximation include the sensitivity to noise and intensity
variations, the difficulty to identify significant peaks in the
histogram, and the fact that the regular histogram ignores the
spatial relationship between neighbor pixels.

In order to address the problems of the histogram-based
methods, Mohabey and Ray17 introduced the concept of
histon, based on the rough set theory.18 The histon is an
enhancement of the histogram, and it is a representation
that associates pixels which are similar in features and
may belong to one specific object in the image. The histon
has the advantage of associating pixels with similar colors
within a spatial neighborhood, resulting in a method which
is tolerant to small variations of colors and noises.
Additionally, the histon facilitates the selection of significant
peaks because they are heightened in comparison with the
peaks in a histogram. A further improvement to the histon is
the proposal by Mushrif and Ray,19 where both the histon
and the histogram are correlated into a representation
named as roughness index. In the Mushrif and Ray method
(from now on referred to as RBM, for roughness index-
based), the selection of peaks in the roughness index is
accomplished by following a succession of fixed criteria,
considering a peak as significant if it satisfies a minimum
height and distance from other peaks. It deserves attention,
in the fact that although those fixed criteria are easy to fol-
low, they might not be appropriate for different distributions
where the heights and number of peaks are variable. After the
thresholding process in the RBM, a region-merging step is
performed in order to avoid over-segmentation. This last step
is accomplished only in the feature space, ignoring the spa-
tial relationship between the different regions. Recently, the
roughness index-based method has been used for different
applications like image retrieval,20 detection of moving
objects,21 color text segmentation,22 and medical imaging.23

Concerning the color features representation, it is known
that the performance of a color-based segmentation method
highly depends on the choice of the color space.24 Different
studies have tried to determine the best-suited color represen-
tation for a given segmentation approach.25–28 Some of them
have found that the so-called perceptual color spaces, e.g.,
CIELab and CIELuv, are the most appropriate when the
resemblance to the human visual system is desirable. The
main advantage of these color representations is that the
Euclidean distance between two points is approximately pro-
portional to the perceptual difference between the two colors
represented by those points. Such a desirable characteristic is
not fulfilled by the RGB color space. It is interesting to men-
tion that recently, for the roughness index approximation,
there have been studies in alternative color representations
like CIELuv29 and HSV.30

Although some problems related with the histogram-
based methods have been addressed by the RBM, a number
of issues are still observed. Considering those limitations, in
this article, we put forward a set of modifications in order
to improve the segmentation performance: (1) a different
threshold selection method, allowing an automatic adapta-
tion of the peak selection criteria for a given image, (2) an
adaptation of a region-merging process, which considers
both the features and the spatial relationships among the
resulting segments in the image. Furthermore, (3) an analysis
and comparison of the use of perceptual color spaces are

conducted in order to determine the more suited color rep-
resentation for this segmentation approach. Experiments on
an extensive database show that these improvements lead to
better segmentation results in comparison with the original
RBM and other state-of-the-art methods.

This article is organized as follows: in Sec. 2, preliminary
concepts of the rough set theory, the histon, and the
roughness index are presented. Section 3 describes the mod-
ifications and the adaptations carried out to improve the
roughness index-based. In Sec. 4, the experiments and results
are given, followed by concluding remarks in Sec. 5.

2 Rough Set Theory, the Histon, and the
Roughness Index

Rough set theory is one of the most recent approaches for
modeling imperfect knowledge. This theory was proposed
by Pawlak18 as an alternative to fuzzy sets and tolerance
theory. A rough set is a representation of a vague concept
using a pair of precise concepts called lower and upper
approximations. The lower approximation is a description of
the universe of objects that are known with certainty,
whereas the upper approximation is the description of the
objects that possibly belong to the set. From this concept
of a rough set and in the context of image segmentation
with histogram-based methods, Mohabey and Ray17 have
developed the idea of the histon which can be considered
as the upper approximation of a rough set.

In order to set the histon definition in the context of a
histogram-based segmentation method, let us first define
an image Iðm; n; CÞ with M × N pixels size, where m
and n are the image coordinates, m ∈ ½0;M − 1� and
n ∈ ½0; N − 1�. The parameter C ¼ fc1; c2; : : : ; cjg denotes
the space in which the image is represented, and ci is the
information channel used in such representation. Usually,
j ¼ 3 for color images, but it may take any positive
value. Let us also consider Li as the maximum number of
intensity values in the given channel ci. Therefore,
Iðm; n; ciÞ ∈ ½0; Li − 1� is the intensity value for the compo-
nent ci of the image at the coordinates ðm; nÞ.

The histogram of an image I is a well-known representa-
tion of the frequency distribution of all the intensities that
occur in the image. The histogram of a certain color channel
i is computed as in Eq. (1)

hiðgÞ ¼
XM−1

m¼0

XN−1

n¼0

δ½Iðm; n; ciÞ − g�; (1)

where δð·Þ is the Dirac impulse, and g is a given intensity
value 0 ≤ g ≤ Li − 1.

Assuming that the features on the surface of the objects
are unvarying, each object in the image may be identified as a
peak in the histogram. The association of pixels with inten-
sities related with such peaks leads to the segmentation of the
relevant objects in the scene. Unfortunately, such an
assumption is not always true and variations in the features
on the surface of the objects are commonly found, making
the identification of peaks a challenging task. Toward the sol-
ution of these uncertainties, the histon is a representation that
associates pixels that are similar in features and may belong
to one specific object in the image. Additionally, such asso-
ciation is not limited to similarity in features, but also
includes the relationship of pixels with their neighbors.
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Regarding the histon definition as the upper approxima-
tion of a rough set, we consider the similarity between a pixel
Iðm; n; ciÞ and its neighbors within a window W of P ×Q
pixels size. The similarity is computed as the Euclidean dis-
tance obtained using Eq. (2).

dðm; nÞ ¼
X
p;q∈W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ci∈C

½Iðm; n; ciÞ − Iðp; q; ciÞ�2
s

: (2)

The histon Hi, where i is a given color component in the
color space, is computed as in Eq. (3).

HiðgÞ ¼
XM−1

m¼0

XN−1

n¼0

½1þ Xðm; nÞ�δ½Iðm; n; ciÞ − g�; (3)

where δð·Þ is the Dirac impulse, g is the intensity value
0 ≤ g ≤ L − 1, and Xð·Þ is a matrix which records the pixels
that are similar to its neighbors. Xð·Þ is obtained as in Eq. (4).

Xðm; nÞ ¼
�
1; dðm; nÞ < Ex
0; otherwise

; (4)

where Ex is the distance threshold for a pixel to be consid-
ered similar to its neighborhood. In order to process the pix-
els at the boundaries of the image in the matrix X, pixel
values in the edge are mirrored outside the image instead
of using zero values. This operation enables us to properly
process the whole image under test.

From the above definitions, we can say that the histon, in
analogy to the histogram, registers the number of pixels that
are similar to its neighbors. For each pixel that is similar in
features to its neighbors, the corresponding bin in its inten-
sity channel ci is incremented twice. This double increment
in the histon results in the heightening of peaks, correspond-
ing to locally uniform intensities. The main advantage of
using the histon, instead of the regular histogram, is that
the histon is able to capture the local similarity, resulting
in a representation tolerant to small intensity variations
and furthermore, since the peaks are heightened, their detec-
tion is easier.

In the rough set theory, the lower and upper sets can be
correlated using the concept of roughness index.19 The
roughness index is a representation of the granularity or
accuracy of an approximation set. In our scope, the rough-
ness index is the relationship of the histogram and the histon
for each intensity level g. The roughness index is defined as
in Eq. (5).

ρiðgÞ ¼ 1 −
jhiðgÞj
jHiðgÞj

; (5)

where i is the corresponding color component, h is the histo-
gram,H is the histon, and j · j denotes the cardinality in each
intensity level g. The value of roughness is close to 1 when

the cardinality of the histon is large in comparison with the
cardinality of the histogram in a given intensity value. This
situation occurs when there is a high similarity in the features
on a given region. If there is a small similarity and high fea-
ture variability in the neighborhood, the roughness index
tend to be close to 0, because the histon and the histogram
have the same, or almost the same, cardinality. In a general
sense, the histon and the roughness index give a global dis-
tribution of the uniform and connected regions in the image,
and each peak represents each one of such regions.

From the roughness index array, a multithresholding
method is applied for achieving the final image segmenta-
tion. Thresholds in each channel are automatically localized
on the valleys between two significant peaks, which re-
present the meaningful objects in the scene. The final seg-
mentation is the union of the segments for each channel. In
this study, we use three color channels; however, it is worth
to remark that it is possible to expand this approach for
images that have more than three information channels.

3 Improving a Rough Set Theory-Based
Segmentation Approach

In this article, we propose to conduct a set of modifications to
the RBM.19 In the RBM method, the selection of thresholds
is carried out on the roughness index in each color compo-
nent of the RGB color space. The criteria used for the selec-
tion of the significant peaks and thresholds are based on two
nonadjustable rules that were empirically determined. The
first one designates a specific height, and the other specifies
a minimum distance between two peaks. The height of a sig-
nificant peak must be above 20% of the average value of the
roughness index for all the pixel intensities, and the distance
between two potential significant peaks has to be higher than
10 intensity units.

In order to diminish the over-segmentation, the RBM per-
forms a region-merging process where the fusion of two
regions takes into account only the color similarity in the
feature space, ignoring the spatial relation of the different
segments.

The proposed improvements in this article lead to the
segmentation approach illustrated in Fig. 1. From now on,
this method is referred to as PRM, for perceptual roughness
index-based method. In the beginning of the PRM, a color
space transformation is applied to the input image, pursuing
a representation closer to the human perception. Then, the
roughness index computation, a multithresholding method,
and an adaptive peak selection are performed. The main
improvement in this step is the adaptive peak selection,
where the criteria used for choosing the significant peaks
change in accordance with the image content. At the end, the
segmented image is obtained after a region-merging process,
which takes into account both feature similarity and spatial
relationships. Each block of Fig. 1 is described in the follow-
ing subsections.

Fig. 1 The general process of the proposed segmentation approach [perceptual roughness index-based
method (PRM)].
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3.1 Definition of the Color Spaces Under Analysis
and Color Space Transformations

A color space is an abstract representation that describes col-
ors as tuples of numbers, typically as three values or color
components.31 In the context of image segmentation, it is
known that the use of a given color representation has a
relevant impact on the performance of a segmentation
method.24 Different studies have been oriented to the deter-
mination of the best suited color representation for a given
segmentation approach25–28 and have concluded that the so-
called perceptual color spaces provide better results. In this
regard, and for our specific method, we explore the use of
different color spaces and their impacts in the performance
results. We have mainly explored the use of perceptual color
spaces CIELab and CIELuv, because it has been found that
they are the most appropriate when the resemblance to the
human visual system is desirable. In this section, we describe
the required transformations to carry an image from the RGB
color space to the perceptual spaces explored in this study.

Given that the perceptual color space transformations are
applied to the CIEXYZ space, the transformation of all the
images in RGB to the CIEXYZ space must be carried out.
The color representation CIE 1931 XYZ, best known as
CIEXYZ, is one of the first color spaces obtained from a
mathematical model of the human color perception. It was
developed by the Commission Internationale de l’Èclairage
(CIE) back in 1931.32 The transformation equation is pre-
sented in Eq. (6).2
4X
Y
Z

3
5 ¼

2
4 0.6069 0.1735 0.2004

0.2989 0.5866 0.1145

0.0000 0.0661 1.1162

3
5
2
4 r
g
b

3
5; (6)

where r, g, b ∈ ½0; 1�.
The CIE 1976 (L�, a�, b�) color space, better known as

CIELab, is a space derived from the CIEXYZ color space.
The main purpose of its development was to model a percep-
tually linear space. This means that the Euclidean distance
between two points in the space is proportional to the per-
ceptual difference of the colors they represent. The transfor-
mation equations to obtain the Lab components are defined
from Eq. (7)–(10).

fðtÞ ¼
�
t1∕3; t > α3

t∕ð3α2Þ þ 16∕116 t ≤ α3
(7)

L ¼ 116fðY∕YnÞ − 16 (8)

a ¼ 500½fðX∕XnÞ − fðY∕YnÞ� (9)

b ¼ 200½fðY∕YnÞ − fðZ∕ZnÞ�; (10)

where α ¼ 6∕29, and ðXn; Yn; ZnÞ is the reference white for
the scene in CIEXYZ. In this work, we have used the stan-
dard for a daylight illuminant D65, where Xn ¼ 95.05,
Yn ¼ 100, and Zn ¼ 108.88.

In the same manner as the CIELab color space, the
CIELuv was developed by the CIE in order to obtain a

perceptually linear space. The transformation equations to
take from the CIEXYZ space to the CIELuv space are
defined in Eqs. (11)–(15).

u 0 ¼ 4X
X þ 15Y þ 3Z

(11)

v 0 ¼ 9Y
X þ 15Y þ 3Z

(12)

L ¼ 116ðY∕YnÞ1∕3 − 16 (13)

u ¼ 13Lðu 0 − u 0
nÞ (14)

v ¼ 13Lðv 0 − v 0
nÞ; (15)

where Yn is the Y component of the reference white in
CIEXYZ, and u 0

n and v 0
n are the chromaticity coordinates

of the reference white. The inverse transformations of
these color spaces are not required because in our study,
there is no need to return to the RGB color representation.

In the context of image segmentation, it is known that the
use of a given color space has a relevant impact on the gen-
eral performance. Therefore, the first issue to address in our
methodology is to determine the most appropriate color
space to be used. Although the RGB space is the most
used in the literature, this representation is not useful to
mimic the higher level processes that allow the perception
of color of the human visual system.5 For this reason, we
prefer to review the benefits of the representation of the
color in terms of a perceptually uniform space. The adapta-
tion of the PRM procedure to use perceptual color spaces is
simple. Originally, the RBM approach uses the RGB color
space with Li ¼ 256 intensities in each channel i. Once the
whole image has been transformed to a given color space,
each component is fitted to the range of [0, 255] by adjusting
the dynamic range of the image.

3.2 Roughness Index-Based Segmentation
After the transformation and adjustment of the color repre-
sentation, the second issue to address is the peak/threshold
selection procedure for the roughness index in order to per-
form the multithreshold segmentation. Considering that the
selection criteria in RBM are fixed, there is no guarantee that
the best peaks are found for all types of images. Therefore,
the selection of the thresholds must be adaptive, in such a
way that different height and distance criteria are used for
different images.

The corresponding block for the roughness index-based
segmentation is described in Fig. 2. First, the histogram hi,
the histonHi, and the roughness index ρi for each color com-
ponent i are computed. After that, in order to reduce the pres-
ence of noise, we filter the roughness index input vector
ρiðgÞ. Concerning this task, we have tested several linear
and nonlinear filters, like averaging filters and rank filters
with different window sizes. We have found that the linear
filter shown in Eq. (16) offers the best results.
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ρ 0
iðgÞ ¼

ρiðg− 2Þþ ρiðg− 1Þþ ρiðgÞþ ρiðgþ 1Þþ ρiðgþ 2Þ
5

:

(16)

After the reduction of possible spurious maxima, we esti-
mate the set of significant peaks adaptively for each image.
This is performed by computing the minimum height Th and
the minimum distance Td between two peaks that have to be
attained by a peak to be considered significant.

First, the set of all local maxima P ¼ fp1; p2; : : : ; pkg is
obtained from the filtered roughness index ρ 0, where a local
maximum pk is

pk ¼ fgjρ 0ðgÞ > ρ 0ðg − 1Þ ∧ ρ 0ðgÞ > ρ 0ðgþ 1Þg: (17)

After we have obtained the k local maxima, we compute
the mean μ and the standard deviation σ of their correspond-
ing heights [see Eqs. (18) and (19)].

μ ¼ 1

k

Xk
i¼0

ρ 0ðpiÞ; (18)

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk
i¼0

½ρ 0ðpiÞ − μ�2
vuut : (19)

The same procedure is followed for the distance discrimi-
nation. Two peaks that are above the height threshold Th,
which is quantified with Th ¼ μ − σ, must also have a dis-
tance to the next peak greater than a distance threshold Td. In
our method, the distance threshold is computed in the same
manner as the height threshold Th. The mean and the stan-
dard deviation of the corresponding distances are computed.
In the case that two peaks are above Th but their distance is
below Td, the higher peak is selected as significant. The final

set of threshold values are found on the minimum value
between two significant peaks.

3.3 Region Merging
A final point to consider is the region-merging procedure.
The region merging is a common tool used to reduce over-
segmentation issues. The merging step broadly consists of
fusing small regions with neighbor and bigger regions.
The fusion criteria may vary from method to method. In the
previously proposed RBM, the region merging is carried out
following the algorithm by Cheng et al.,16 where the fusion
of two regions takes into account only the color similarity in
the feature space, ignoring the spatial relationship of the dif-
ferent segments.

For the region-merging step in our PRM, we take into
account both the color similarity and the spatial relationship
between regions. The strategy of our method first identifies
the small regions whose number of pixels is less than a given
threshold. From the experiments, detailed in the next section,
we have found that a good minimum number of pixels in a
given region to be considered is as small as 0.2% of the
whole image size. Once we have identified all the small
regions, they are fused with the most appropriate neighbor
region. Such a region is one that minimizes the distance
between the color components of the segments and maxi-
mizes the number of connected pixels between those two
regions. Hence, a small region is merged with its neighbor
that is more similar in features and has more connected pix-
els. In case of conflict, the feature similarity is privileged.
The process is illustrated in Fig. 3.

4 Experiments and Results
In this section, we present experiments on natural scene
images in order to evaluate: (1) the more suited color repre-
sentation for our segmentation approach, PRM, and (2) the
performance of the PRM in comparison with other state-
of-the-art approaches. In these experiments, the Berkeley
Segmentation Data Set and Benchmarks 500 (BSDS500)33

Fig. 2 Internal steps of the roughness index-based method for segmentation.

Fig. 3 Initial regions (a) and the final segmentation map after the region-merging process (b) using the
two criteria of feature similarity and spatial connectivity.
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is used. This dataset is a well-known empirical basis for the
evaluation of segmentation algorithms. The advantage of this
dataset is that, for each image, a ground truth is available and
can be used to quantify the reliability of a given method.
Moreover, the diversity of content of this dataset, including
landscapes, animals, buildings, and portraits, makes it a chal-
lenge for any segmentation algorithm. The BDSDS500 is an
extension of the Berkeley Segmentation Data Set 300
(BSDS300).34 The BSDS300 consists of 200 training and
100 test images, whereas the BSDS500 proposes the 300
images of BSDS300 for training and adds 200 new images
for testing.

For a quantitative evaluation of our segmentation method,
three widely used metrics are adopted: the Probabilistic
Rand-Index (PRI),35 the Global Consistency Error (GCE),34

and the Boundary Displacement Error (BDE).36 These three
metrics evaluate the segmentation result from different per-
spectives. The BDE measures the average displacement error
between the boundary pixels of the segmented image and the
closest boundary pixels in the ground-truth segmentations.
The GCE evaluates the segments as sets of pixels, and it mea-
sures the inconsistencies between the resulting sets in the
segmented outcome and in the ground truth. An interesting
feature of the GCE is that it is tolerant to refinement in the
segmentation. This means that if one segmentation is a sub-
set or a refinement of another segmentation, the GCE value
tends to be zero. The PRI counts the number of pairs of pix-
els whose labels are consistent in both the ground truth and
the segmented outcome. This measure is considered the most
important in our evaluation because, as pointed out by Yang
et al.,37 there is a good correlation between the PRI and the
human perception through the hand-labeled segmentations.
The PRI measure appears in the range [0, 1], where a result-
ing value closer to 1 is desirable. For the BDE and GCE,
values closer to 0 are better. In order to compute these mea-
sures, we have used the MATLAB source code, made pub-
licly available by Yang et al.37

4.1 Performance Evaluation in Different Color
Spaces

Before presenting the comparison in different color spaces,
let us remark that the rough set-based segmentation methods
depend on two parameters ðW;ExÞ, the size of the window
W and the expanse Ex, which is the similarity tolerance
among colors. Hence, it is important to estimate the best
parameters to be used for each evaluated color space and
to determine which one is the best representation for our
approach.

In the RBM that uses the RGB color space, the best cou-
ple of parameters proposed by the authors is (3, 100). In con-
trast, as the perceptual color spaces have different shapes in
comparison with the RGB color space, we must estimate the
more suitable parameters for them. The evaluation of the best
combination of parameters is carried out using the 300 train-
ing images taken from the BSDS500 and are quantitatively
assessed with the PRI, BDE, and GCE measures. We
have exhaustively searched for the best window size W in
the set f3; 5; 7; 9; 11g and the expanse Ex in the set
f50;100;150; : : : ; 400g. We have found that the best param-
eters for the RGB space using our method are (5, 150). In the
case of the CIELab space, the best set is (7, 150). Using the
CIELuv color space, the best parameters found are (5, 300).

The quantitative comparison of the use of different color
representations in the PRM was carried out. The correspond-
ing PRMRGB, PRMLab, and PRMLuv are implementations of
our PRM in RGB, CIELab, and CIELuv color spaces, respec-
tively. Each implementation uses the best parameter set for the
corresponding color space. The average PRI, GCE, and BDE
results for each color space with the 300 training images are
detailed in Table 1, where the best result for each measure is
highlighted with bold typeface. In this table, the higher PRI
average is achieved by PRMLab with a value of 0.760. The use
of the CIELuv space is slightly behind 0.752, and the lower
average value is achieved by the PRM in RGBwith a value of
0.737. In Table 1, the standard deviation and the number of
images with a PRI value higher than 0.7 are also presented.
The value of 0.7 is taken, because it is empirically considered
that images that obtain that PRI value, or above it, are good
segmentations. In the same manner, the best results are
obtained with the PRMLab, with the lowest standard deviation
and the higher number of images with PRI scores above 0.7.
For the GCE and BDE averages, the best results are achieved
by PRMLuv with 0.203 and 11.42, respectively. The PRMLab
is slightly behind with 0.212 and 11.59 in average, for the
same error measures.

In order to explore the impact on the performance with a
different set of images than the training set and to compare

Table 1 Average performance and comparison in three color spaces
using the 300 training images in the BSDS500.

PRMRGB PRMLuv PRMLab

PRI 0.737 0.752 0.760

Standard deviation PRI 0.133 0.133 0.126

PRI > 0.7 (# images) 210 219 226

GCE 0.245 0.203 0.213

BDE 11.74 11.42 11.59

Note: The best performance for each measure is shown in bold.

Fig. 4 Comparison of the Probabilistic Rand-Index (PRI) results of our
approach in the three color spaces RGB, CIELab, and CIELuv. A
higher PRI value is desirable.
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the results, we have tested the PRM on the 200 test images in
the BSDS500. In Figs. 4, 5, and 6, the plots corresponding to
the PRI, GCE, and BDE measures are provided for each test
image. The PRI values are plotted in increasing order,
whereas for the GCE and BDE, the values are plotted in
decreasing order. Hence, a given index in the horizontal
axis may not represent the same image across the algorithms.
In this way, we can evaluate the quality tendencies of each
method and compare them. As we can see from these figures,
the curves related to the use of perceptual color spaces are
consistently better than the curve representing the RGB
space. However, it is observed that both PRMLab and
PRMLuv curves are very close and from a visual inspection,
it is hard to determine which space is the most appropriate for
our method. In this case, the quantitative results enable us to
do a much clearer distinction between the performance of
PRMLab and PRMLuv. The corresponding average results
for the 200 test images are detailed in Table 2. It is likely
to be noticed that the best performance for each quantitative
measure is achieved by the PRMLuv, which means that the
use of CIELuv color space in our method is the most suitable
and provides more stability. The PRI value is 0.768 with a
low standard deviation of 0.120, and 150 images with a
PRI result above 0.7. In relation with the error measures

GCE and BDE, the PRMLuv is the one that attains the mini-
mum error values.

Qualitative examples of the segmentation results using
PRM are shown in Fig. 7. In each row, the original image
and the corresponding outcome for each color space are vis-
ually compared. The original image is shown in the first row,
while the resultant segmentation of the PRM using the RGB
space is shown in the second row. The corresponding seg-
mentations of the PRMLuv and PRMLab are shown in the
third and fourth rows, respectively. From this qualitative
comparison, we can observe that the resulting segmentations
of the perceptual spaces outperform the results using the
RGB color representation. It can be seen that, in these exam-
ples, the outputs from the PRMRGB show a clear over-seg-
mentation, and the PRMLuv and PRMLab succeed in
associating regions with similar colors.

4.2 Performance Comparison with Other Methods
After the study of the PRM in different color spaces, a com-
parison of our approach in the CIELuv color space PRMLuv
against other rough set theory-based segmentation methods
is conducted. The comparison is carried out with the rough-
ness index-based technique (RBM)19 and the roughness
approach through smoothing local difference (referred to
as RSLD).29 The RSLD method is of special interest,
since it is a roughness index-based performed on the percep-
tual color space CIELuv. The results for the normalized cuts
method (NCuts)38 and the mean shift segmentation
approach11 are also included. The NCuts and mean shift
methods are considered in this comparison because of
their influence as widely used methods in image segmenta-
tion tasks. Besides, they are considered as de facto standard
references for evaluation purposes. It is important to mention
that the outcomes of the RBM and the RSLD methods were
obtained with our implementation of the algorithms
described by the authors. The outcomes from the NCuts
and mean shift methods were obtained with publicly avail-
able code.

The average PRI, GCE, and BDE results for all methods,
using the 300 images for training from BSDS500, are dis-
played in Table 3. From this table, we can see that the higher
average value of 0.752 is achieved by PRMLuv, followed by
the RBM with an average of 0.743. The lowest PRIaverage is
obtained with the RSLD method with 0.620. In this table,
again, our method obtains more images with PRI values

Fig. 5 Comparison of the Global Consistency Error (GCE) results of
our approach in the three color spaces RGB, CIELab, and CIELuv. A
low GCE value is desirable.

Fig. 6 Comparison of the Boundary Displacement Error (BDE) results
of our approach in the three color spaces RGB, CIELab, and CIELuv.
A low BDE value is desirable.

Table 2 Average performance and comparison in three color spaces
using the 200 test images in the BSDS500.

PRMRGB PRMLuv PRMLab

PRI 0.738 0.768 0.754

Standard deviation PRI 0.142 0.120 0.132

PRI > 0.7 (# images) 137 150 143

GCE 0.229 0.205 0.219

BDE 12.50 10.72 10.87

Note: The best performance for each measure is shown in bold.
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higher than 0.7. In this case, the approximation with the low-
est standard deviation is the NCuts method with 0.119.
However, our approximation is the second more precise
method with a standard deviation of 0.133. In the case of
GCE and BDE measures, the minor error values are attained
by the PRMLuv.

The corresponding results for the 200 test images in the
BSDS500 were also obtained and compared. In Figs. 8, 9,
and 10, the PRI, GCE, and BDE values, respectively, are

plotted. We can observe from Fig. 8 that the PRMLuv and
mean shift corresponding results are very close on the top
of the curves. It is interesting to notice that the NCuts
curve in this figure records higher PRI values than the
mean shift, RBM, and RSLD methods for the first 40 images
and keeps its superiority over the RSLD method until image

Fig. 7 Qualitative comparison of three samples (first row) out of 500 images from the BSDS500 in the
different color spaces under analysis (RGB in the second row and CIELuv and CIELab on the third and
fourth rows, respectively).

Table 3 Average performance and comparison with other methods
using the 300 training images in the BSDS500.

PRMLuv RBM RSLD Mean shift NCuts

PRI 0.752 0.743 0.620 0.653 0.722

Standard
deviation PRI

0.133 0.135 0.176 0.204 0.119

PRI > 0.7
(# images)

219 180 114 141 200

GCE 0.203 0.302 0.230 0.270 0.298

BDE 11.42 15.75 15.18 11.98 14.05

Note: The best performance for each measure is shown in bold.

Fig. 8 Comparison of the PRI results of our method PRMLuv with
other rough set-based methods (RBM and RSLD) and reference
methods (NCuts and mean shift) using the 200 test images from
the BSDS500. A high PRI value is desirable.
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90. Nevertheless, since the NCuts corresponding curve
grows slowly, it drops below the rest of the algorithms from
there on. The reason of this trend is that most of the resultant
segmentations using NCuts attain a PRI value lower than 0.8
and that they tend to be very close to the mean of 0.722.

In the case of Fig. 9, the curvewith the lowest values is the
one representing the mean shift approach and the curve with
the highest errors is the NCuts one. It is difficult to make a
visual separation of methods in Fig. 10, since the PRMLuv,
RBM, RSLD, and mean shift curves are very close. The cor-
responding curve of the NCuts for the BDE measure is the
only one that stands out from the rest of the curves, having
the highest error values.

The averages of the quantitative measures for each
method using the specific test set of images from the
BSDS500 are shown in Table 4. For this set of 200 images,
the higher PRI is achieved by the PRMLuv with an average of
0.768, a standard deviation of 0.120, and 150 of the 200
images with a PRI value higher than 0.7. The second best is
the mean shift method with a PRI average of 0.759 with a
standard deviation of 0.148 and 137 images with a PRI value
above 0.7. The lowest errors measured with the GCE and

BDE are reached by the mean shift with 0.18 and the
PRMLuv with 10.72, respectively. In both cases, the largest
errors are obtained by the NCuts. These errors occur
because in the original method, the color image is processed
using only the lightness component, hence ignoring the chro-
matic information.

These results of the PRMLuv indicates that this method
has the best segmentation performance with high consistency
and low error. In general, it is observed that the use of the
proposed significant peaks selection, jointly with the merg-
ing strategy and the use of perceptual color spaces, improves
the segmentation results with respect to the original proposal
RBM. Moreover, the presented modifications allow better
results in comparison with other classic segmentation meth-
ods in terms of the PRI measure.

5 Conclusion
In this article, a set of modifications was proposed in order to
improve a rough set theory-based segmentation method. This
methodology takes advantage of the integration of spatial
information about the pixels and the association of similar col-
ors. The spatial information is added in two places: (1) within
the histon representation, through the similarity computation
of neighbor pixels, and (2) in the region-merging process, in
which not only the similarity in the feature space is taken into
account, but also the connectivity between two segments is
considered. The proposed improvements are basically
three. First, the use of perceptually uniform color spaces
instead of the RGB color representation. From a quantitative
evaluation, we have found that the CIELuv color space is the
most suited representation for our specific segmentation
method; meanwhile the CIELab space has a performance
only slightly inferior. The use of a perceptual color represen-
tation allows our system to improve performance in the asso-
ciation of similar colors. The second improvement is an
adaptive selection of the most suitable thresholds for a
given image. The third one is the use of a region-merging
process, which includes constraints about both spatial relation
and color similarity, reducing over-segmentation problems.
Experiments on an extensive database show that these mod-
ifications result in a method with better outcomes, outper-
forming other rough set theory–based approaches and
classic reference segmentation algorithms.

Fig. 9 Comparison of the GCE results of the PRMLuv with RBM and
RSLD and the referencemethods NCuts and mean shift using the 200
test images from the BSDS500. A low GCE value is desirable.

Fig. 10 Comparison of the BDE results of the PRMLuv with RBM and
RSLD and the referencemethods NCuts and mean shift using the 200
test images from the BSDS500. A low BDE value is desirable.

Table 4 Average performance and comparison with other methods
using the 200 test images in the BSDS500.

PRMLuv RBM RSLD Mean shift NCuts

PRI 0.768 0.734 0.707 0.759 0.708

Standard
deviation PRI

0.120 0.147 0.154 0.148 0.098

PRI > 0.7
(# images)

150 138 117 137 137

GCE 0.205 0.224 0.217 0.180 0.317

BDE 10.72 12.61 13.88 11.02 14.01

Note: The best performance for each measure is shown in bold.
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