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Abstract. Vanishing points (VPs) are crucial for inferring the three-dimensional structure of a scene and can be
exploited in various computer vision applications. Previous VP detection algorithms have been proven effective
but generally cannot guarantee a strong performance in both accuracy and computational time. We propose an
artificial bee colony algorithm called dynamic clustering artificial bee colony (DCABC) that accurately and effi-
ciently detects VPs in the image plane. The task is regarded as a dynamic line-clustering problem, and the line
clusters are initialized by their orientation information. Inspired by the foraging behavior of bees, DCABC selects
the clustering center and reclassifies the line segments based on a distance criterion until the terminating con-
dition is met. The optimal line clusters determine the estimated VP. The dissimilarity among solutions is mea-
sured by the Hamming distance between two binary vectors, which simplifies the new solution construction. The
performances of the proposed and existing algorithms are evaluated on the York Urban database. The results
verify the efficiency and accuracy of our proposed algorithm. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JEI.24.3.033024]
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1 Introduction
Vanishing point (VP) is defined as the convergence point of
projected parallel lines in an image plane.1 When a set of
parallel lines in three-dimensional (3-D) space is projected
onto a set of parallel or nonparallel lines in the two-dimen-
sional (2-D) plane, the VP lies at infinity or at some finite
distance, respectively. The VP is an invariant feature that pro-
vides important cues for inferring the 3-D structure of a real
scene. Therefore, it is widely relevant to robotic navigation,
visual measurement, camera calibration,2 3-D reconstruc-
tion, augmented reality, image understanding, and similar
fields. Naturally, VP detection has been an important topic
in the computer vision research community.

In this work, we propose a bioinspired scheme for
detecting VPs. Our solution directly detects all possible non-
orthogonal VPs in the image plane, without reliance on cam-
era calibration parameters. Our algorithm offers several
advantages over previous algorithms:

• The number of VPs need not be preconfigured. VP
detection is considered as a dynamic clustering of
line segments. The set of input segments is divided
into initial clusters or marked as outliers, depending
on prior information of their inclination angles.
Specifically, segments in an image corresponding to
a set of parallel lines in real space are clustered into
groups of similarly inclined angles.

• The algorithm is both accurate and efficient. The line-
clustering algorithm is solved by a dynamic clustering

artificial bee colony (DCABC) algorithm. The searching
scheme of the scout bee in the swarm can avoid local
optima trapping and guarantees accurate solutions. To
simplify the construction of new solutions and acceler-
ate convergence of the DCABC algorithm, we apply the
Hamming distance and introduce some heuristic rules.

This paper is organized as follows. Section 2 discusses
related works in VP detection and artificial bee colony
(ABC) algorithms. Section 3 states the VP detection problem
from a clustering theory perspective. Section 4 details our
proposed algorithm, and Sec. 5 presents and discusses the
experimental results. The paper concludes with Sec. 6.

2 Related Works

2.1 Vanishing Point Detection
Finding the VPs in 2-D perspective projections has received
much attention since Barnard’s methodology was proposed
in 1983.3 Each line group is often processed by the three ele-
ments of line extraction, line classification and VP estimation.

Many present studies focus on the second element. With
regard to the number of detected VPs, these algorithms aim
at estimating three estimate three orthogonal VPs,4,5 or any
present nonorthogonal VP.3,6,7 Based on their estimation
strategy, line classification algorithms are roughly divided
into two categories; algorithms that specify accumulator
spaces and those that perform the clustering directly on the
image plane.

In the former category, an open image plane is mapped
into a bounded accumulator space. These algorithms aim
for simple operation and do not discriminate between finite
and infinite VPs.3,4,8 Each cell in the space accumulates the
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lines that pass through its corresponding image point. Cells
that have accumulated the most lines will produce the can-
didate VPs. The performances of these algorithms are mainly
determined by the selected accumulator space.

In the latter category, the workspace is the actual image
plane.6,9 Line clustering is generally decided by computa-
tions, such as the distances among points and lines. Typical
computational methods are random sample consensus
(RANSAC) and its variants (such as multi-RANSAC and
J-Linkage).7,10–12 These methods iteratively select the mini-
mal sampling set of image features for computing a candi-
date VP, and retrieve the feature set consistent with that
minimal sampling set. Another traditional approach is the
EM approach,5,13 which alternates between expectation
and maximization steps (denoted as E and M steps, respec-
tively). The E step estimates the line clustering from the
given current or hypothesized VPs; the M step computes
the VPs using the data clusters estimated in the E step.

Although accumulator space–based algorithms require
the intrinsic camera parameters, clustering in the image plane
operates in an uncalibrated setting. However, RANSAC and
its variants do not guarantee an optimal solution, whereas the
success of the EM approach depends on the initially esti-
mated VPs. Our present study attempts to overcome the
inherent limitations of conventional image plane clustering
algorithms, and to detect possible nonorthogonal VPs.

2.2 Artificial Bee Colony
An ABC algorithm, proposed by Karaboga,14 simulates the
intelligent foraging behavior of honey bee swarms. Origi-
nally designed for solving multidimensional and multimodal
optimization problems, the ABC algorithm has since been
extended to other problems. For example, Akay and
Karaboga15 concluded that ABC efficiently solves integer
programming problems. The ABC variant DisABC, introduced
by Kashan et al.,16 was designed for binary optimization.

In the ABC algorithm, the possible solutions to the opti-
mization problem are represented as food sources; the nectar
amount in each food source indicates the quality (fitness) of
the potential solution. A swarm of bees investigates the opti-
mum solution.17–19 Each bee assumes one of the following
three roles:

• Scouts, who explore the search space to find new can-
didate solutions in case the swarm fails to further
exploit the current candidate solutions;

• Worker or employed bees, who exploit current candi-
date solutions;

• Onlooker bees, recruited by employed bees to further
exploit candidate solutions.

The ABC algorithm randomly creates a set of candidate
solutions, and each solution is assigned to one employed bee.
It then iteratively executes three important steps to find new
solutions.

In the first step, each employed bee searches for a new
solution within the neighborhood of its current solution.
Let Xi ¼ ðxi1; : : : ; xid; : : : ; xiDÞ be the position of the i’th
food source (the i’th solution to the problem), D be the
dimension of the problem, and fðXiÞ be the amount of nectar
(quality of the solution). The position of a new food source
(X 0

i ¼ ðx0
i1; : : : ; x

0
id; : : : ; x

0
iDÞ) is calculated as follows:

x
0
id ¼ xid þ φidðxid − xkdÞ; (1)

where φid is a randomly generated number in the interval
½−1;1� and k is a randomly generated index with i; k ∈
f1;2; : : : ; SNg and i ≠ k.

If the nectar amount fðX 0
i Þ is greater than fðXiÞ, the arti-

ficial bee memorizes X
0
i and shares her information with

onlooker bees. The position of the i’th food source becomes
X

0
i. If fðX 0

i Þ does not exceed fðXiÞ, the food source remains
at Xi.

In the second step, based on the information provided by
the employed bees, each onlooker bee probabilistically choo-
ses a candidate solution to further update. The probability is
decided by the roulette wheel rule

pi ¼
fitiP
SN
j¼1 fitj

; (2)

where fiti is the fitness value of the i’th solution, obtained as
follows:

fiti ¼
�

1
1þfðXiÞ fðXiÞ ≥ 0

1þ absðfðXiÞÞ fðXiÞ < 0:
(3)

In the third step, employed bees whose solutions never
improve after a predetermined number of trials (called the
limit) become scouts and their solutions are abandoned.
The scouts embark on random searches for new solutions.
The new random position chosen by the scout is calculated
as follows:

x 0
id ¼ xdmin þ randð0;1Þðxdmax − xdminÞ: (4)

In Eq. (4), xdmin and xdmax are the lower and upper bounds
of the food source position, respectively, in dimension d.

3 Problem Statement

3.1 Modeling the Problem of Vanishing Point
Detection Using Artificial Bee Colony

VP detection is a typical chicken-and-egg problem: if the line
clustering is known, then the VPs can be computed recipro-
cally; if the VPs are known, the line clustering can be
retrieved. Therefore, given a set of features describing the
linear structure in an image, VP estimation strategies typi-
cally proceed by clustering and estimation. The lines are
first classified into groups with common VPs. The approxi-
mate VP is then located from the line cluster. Like other algo-
rithms, our proposed algorithm alternately iterates the
clustering and estimation steps. Especially, the line classifi-
cation is modeled as an unsupervised clustering problem
solved by a novel ABC, and its optimal result is processed
by the estimation step.

One of the key issues in designing a successful algorithm
for VP detection is to suitably assign the line classification
solutions to the food sources in the ABC algorithm. In this
study, a food source is defined as a binary vector representing
a partition of the line set. Binary vector encoding proceeds as
follows. Based on some heuristic information, the set of line
segments in an image is initially partitioned into line clusters.
VPs computed by those line clusters are then collected into a
set. A food source is finally encoded as a binary vector
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whose dimensions are equal to the size of the VP set. Each
vector component, either 1 or 0, indicates whether the VP at
the corresponding set position is selected to repartition line
clusters through the latter optimal steps. As shown in Fig. 1,
200 line segments fξ1; ξ2; : : : ; ξ200g extracted from an
image are initially divided into seven subsets. A VP set
fv1; v2; : : : ; v7g is built from each subset producing one
VP. A binary vector f0;1; 1;0; 1;1; 1g is randomly generated
as a food source (solution) to indicate the selected VP set
fv2; v3; v5; v6; v7g. The set fξ1; ξ2; : : : ; ξ200g is then reparti-
tioned so that each line segment is associated with one VP of
the set fv2; v3; v5; v6; v7g or is marked as an outlier.

Another problem that arises when modeling VP detection
using the ABC algorithm is how to evaluate and update food
sources (solutions).17,18 In the present study, the fitness of a
solution is evaluated by validating the line cluster, thus deter-
mining whether the cluster is cohesive with low coupling. In
particular, a distance function is introduced to measure the
deviation between each VP and the corresponding line seg-
ment. Moreover, the solutions are updated by the three types
of bees (employed bees, onlooker bees, and scouts), as
described in Sec. 4.

3.2 A Priori Information of Line Segments
The angle of two line segments in an image plane, which
corresponds to the perspective view of two parallel lines
in an object plane, is related to the shooting angle and the

distances between the parallel lines and between the image
and the object plane. The shooting angle is usually presented
by the angle between the image and the object plane. More
specifically, the angle of two segments widens as the shoot-
ing angle becomes larger or as the parallel lines become more
separated, but decreases with an increasing distance of the
two planes. In practice, the distances between parallel lines
in a man-made environment are distributed within a certain
range, whereas the scene images have often been shot from a
general shooting angle at a medium-to-long distance.
Therefore, the angle between two arbitrary line segments,
corresponding to a family of parallel lines in 3-D space, is
constrained within a small interval. Furthermore, we know
a priori that parallel lines are often similarly inclined in
medium-to-long range scenes. For example, consider the
building image in Fig. 2(a). We first compute the inclination
angle of each line segment in the image; next, we construct a
histogram of the inclined angles [see Fig. 2(b)]. The inclined
angles of the line segments clearly concentrate within several
subintervals of the histogram.

3.3 Preliminary Processing of the Initial Cluster
The input to our algorithm is a set of line segments E, which
are obtained from the image (I) using a line segment detector
(LSD). Each line segment ξk ∈ E is represented by its two
endpoints expressed as homogenous coordinates ½p1k p2k �.
From the input matrix, we can derive other attributes of

Set of segments

Initial partition 

Set of vps

 Binary vector

New partition

Fig. 1 Example showing the encoding procedures of a solution vector.

Fig. 2 Example showing the features of line segments. (a) Image with detected line segments.
(b) Histogram of inclined angles of segments in the image.
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ξk such as the length (lenk) and inclined angle (θk). Among
the many line segments typically contained in E, very short
segments contribute little information for the VP detection.
Therefore, line segments shorter than 5% of the image height
are filtered from set E. Sequentially, outliers with anomalous
inclined angles are also removed. To initialize the proposed
algorithm, the set of remaining line segments is then parti-
tioned into several groups. The preprocessing of set E is
detailed in the Secs. 3.3.1 and 3.3.2.

3.3.1 Initialize the line clusters

Based on the priori information, the line segments are seg-
regated by their inclined angles.

The interval of the inclined angle of line segments, ½0; π�,
is first divided into several subintervals. The number and
scale of a subinterval, denoted as NA and α, respectively,
are determined from the real situation. Empirically, we set
NA to 36 and α to π∕36. Then based on their inclined angles,
the line segments are split into NA subsets called angular
domains, denoted as Aj (j ¼ 1;2; : : : ; NA). In this way,
line segments whose inclined angles occupy the same sub-
interval are collected into the same angular domain.

3.3.2 Initializing the solution vectors

The number of line segments in each angular domain Aj is
denoted NAj (j ¼ 1;2; : : : ; NA). Aj is marked as an invalid
angular domain if NAj equals 0 or 1. If NAj is 1, we check
whether the left and right neighborhoods of Aj are both
invalid angle domains. If true, the line segment is removed
from Aj; otherwise, it is removed from Aj and placed in the
neighborhood containing more line segments than the other
neighborhood.

We denote the number of valid angular domains asD, and
renumber each valid angular domain as ALd, where
d ¼ 1;2; : : : ; D. In each valid angular domain ALd ∀ d ¼
1;2; : : : ; D, an initial VP (vd) is determined as the cross-
product between the two lines (lm; ln) coincident with two
segments (ξm; ξn), which are randomly selected from ALd.
The VPs of all valid angular domains are collected into a
set V. Next, SN binary vectors with D dimensions corre-
sponding to the set V are randomly generated for defining
the initial positions of food sources in the ABC algorithm.
Each component of each binary vector indicates whether
the corresponding VP in V is selected as a reference point
in the line segment classification.

Note that the new positions of the scout bees are also ran-
domly generated by the above initialization procedure.

4 Artificial Bee Colony Algorithm for Vanishing
Point Detection

4.1 Notation
A novel ABC algorithm called DCABC is presented in this
section. For this purpose, we first define some essential
symbols:

lk is the line passing along segment ξk, represented in
homogeneous coordinate form.

D is the maximum number of line classifications, deter-
mined by the number of valid angular domains.

ALd is a valid angular domain indexed by d with
d ¼ 1;2; : : : ; D.

vd is a VP initialized by the dth valid angular
domain (ALd).

V ¼ fvd ∈ Rjd ¼ 1; : : : ; Dg is the set of D VPs, where
vd is a VP corresponding to ALd.

Cd is a line cluster of segments closer to vd than to any
other VP in V.

Xi ¼ ðxi1; : : : ; xid; : : : ; xiDÞ is a binary vector of food
source positions in the DCABC. If xid ¼ 1, the correspond-
ing vd in V has been selected as part of the solution proposed
by Xi. If xid ¼ 0, vd is excluded from the solution.

Xβ is the position of the best current food source.
Vi is a subset of VPs, represented by a position vector Xi,

such that Vi ¼ ðvdÞ ∀ d∶xid ¼ 1 with Vi ⊆ V.
Vr is the set of VPs in V that have not been selected byXβ,

such that Vr ¼ ðvdÞ ∀ d∶xβd ¼ 0 with Vr ⊆ V.
dðξk; vdÞ denotes the distance between the VP vd and the

line segment ξk.

4.2 Partition Strategy and Validity Index
Essentially, this paper regards the line classification step in
the VP detection as a clustering procedure. The clustering
process, which separates the objects into groups, is realized
by unsupervised or supervised learning. In unsupervised
clustering (also known as dynamic clustering), the number
of classes need not be specified in the training data. In super-
vised clustering, the number of classes must be predeter-
mined. Our algorithm belongs to the former category.

4.2.1 Distance function

In the DCABC, the position vector (Xi) of a food source
chooses some VPs as clustering centroids from the set
(V). The algorithm then assigns each segment ξk to the clus-
ter Cd with the closest pseudocentroid vd, based on the dis-
tance function dðξk; vdÞ. We also specify a distance threshold
(TH) that assigns a segment to the outliers if the segment is
separated by more than TH from all selected VPs. Here, the
deviation between a line segment and a VP is measured by
the distance function. In a previous measurement method,20

the orientation error was considered as the workspace. Thus,
we define the distance [dðξk; vdÞ] between a VP (vd) and a
segment (ξk) as the absolute value of the sine of the angle
between a line (lk) coincident with the segment and another
line (l̂k) connecting (vd) to the center point of the segment
(ξk). Both lines are defined in homogeneous coordinates as
lk ¼ ðe1; e2; e3ÞT and l̂k ¼ ðê1; ê2; ê3ÞT . The homogeneous
coordinates of the two endpoints of ξk are recorded in p1k
and p2k, respectively, and lk, l̂k and dðξk; vpdÞ are computed
as follows:

lk ¼ p1k × p2k; (5)

l̂k ¼ vpd ×
1

2
ðp1 k þ p2 kÞ; (6)

dðξk; vpdÞ ¼
���� −e2ê1 þ e1ê2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e21 þ e22
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ê21 þ ê22
p

����: (7)

In the above definition of the distance function, we adopt
the absolute value because we are interested in the relative
deviation between the orientations of the two lines, not the
sign of this deviation. Moreover, the sine function is a
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suitable choice because sin θ approximately equals θ when
the deviation angle θ is small.

4.2.2 Line classification and evaluation

Based on the distance criterion, the set of line segments can
be partitioned into several clusters. The quality of the parti-
tioning can be sufficiently assessed by the compactness and
separation measures. High compactness indicates that line
segments in the same cluster share a high degree of similar-
ity, while high separation means that line segments occupy-
ing different clusters are very dissimilar. The validity index
of the clustering is given by

fi ¼
1

D

XD
d¼1

X
ξk∈Cd

dðξk; vpdÞ: (8)

Since our model seeks the optimal minimum, the solution
(Xi) is evaluated by the following equation:

fðXiÞ ¼
1

1þ fi
: (9)

4.3 Generating a New Partition
The ABC algorithm was initially designed for solving
numerical optimization problems, which are continuous
problems, and has proven successful at this task. How-
ever, the present line classification task is treated as a
dynamic clustering problem with binary optimization. To
adapt the basic ABC algorithm to dynamic clustering prob-
lems, we introduce two changes. First, as mentioned previ-
ously, the position (Xi) of a food source is represented as a
binary vector indicating the selected clustering centroids.
Second, when generating a new solution by Eq. (1), we sub-
stitute the “−” operator with a dissimilarity measure of the
binary vectors. This substitution is inspired from the
DisABC algorithm,16 but here we modify both the dissimi-
larity measure and solution reconstruction to ensure low
complexity and fast convergence.

Before progressing further, we introduce some new nota-
tions. Suppose that Xi ¼ ðxi1; xi2; : : : ; xiDÞ and Xj ¼
ðxj1; xj2; : : : ; xjDÞ are binary vectors with D dimensions. Let

HðXi;XjÞ ¼
XD
d¼1

jxid − xjdj; (10)

be the Hamming distance between Xi and Xj, and specify
the number of positions at which the corresponding bits
of the two vectors differ. The indices of these positions
are recorded in

SIndexðXi;XjÞ ¼ fdjxid ≠ xjdg: (11)

Reshaping Eq. (1) as X 0
i−Xi ¼ φiðXi−XkÞ and replacing

the “−” operator by the Hamming distance between the two
binary vectors, the new position is expressed as

HðX 0
i ;XiÞ ¼ round½φi · HðXi;XkÞ�; (12)

where the roundðÞ function rounds the input value to an inte-
ger, and φi is a random number distributed within the interval

[0,1]. We also define T ¼ round½φi · HðXi;XkÞ�, and assume
that T has been determined by Eq. (10).

In this work, we construct a new solution vector X 0
i that

equalizes HðX 0
i ;XiÞ and T. In other words, the new vector

X 0
i contains T bits whose values differ from those of the cor-

responding bits inXi. Therefore,X 0
i is obtained by flipping T

bits of Xi from 1 to 0, or from 0 to 1, employing problem-
dependent heuristics to instruct the bit selection. Let us recap
the problem of VPs detection.

As previously mentioned, a position vector Xi indicates
the VPs selected from the set V, which partition the line seg-
ments into line clusters. Obviously, the more line segments in
a line cluster, the better the VP estimation. Therefore, the
number of line segments in each line cluster can be utilized
as a heuristic for generating new solutions.

A component xid of a solution vector Xi¼ðxi1;xi2; : : : ;xiDÞ
corresponds to a line cluster Cid, and the number of line seg-
ments in Cid is denoted NLid. Therefore, if component xid is
0, Cid will be an empty set and NLid will also be 0. We
collect the current solution Xi and its neighbor Xk into an
index set SI ¼ SIndexðXi;XkÞ, and create two additional
sets NLSi and NLSk that record the number of line segments
in the line clusters indexed by the elements in SI.
Specifically, for each index d in SI, if xid equals 1, NLid
is added to the set NLSi; otherwise, NLkd is added to the
set NLSk.

The new solution vector X 0
i can be simply constructed

from the obtained T, NLSi, and NLSk. The candidate solu-
tion X 0

i is initialized with a copy of Xi and is computed in
three steps: (1) select the bit within X 0

i for which the number
of line segments of the corresponding cluster is minimized in
NLSi and switch it from 1 to 0; (2) select the bit withinX 0

i for
which the number of line segments of the corresponding
cluster is minimized in NLSk and switch it from 0 to 1;
(3) delete the minimal value of NLSi and the maximal
value of NLSk. These three steps are repeated until T bits
are flipped.

4.4 Estimating a Vanishing Point for Segment
Clustering

Once the line segments have been grouped into line clusters
based on their estimated VPs, we refine the related VP loca-
tions for each line cluster Cd. To this end, we compute the
point in the image plane that minimizes the sum of the dis-
tances to the lines sharing a common VP. Using the defini-
tion of the distance between a VP and a line segment
[Eq. (7)], we estimate the VP v̂d of line cluster Cd as

v̂d ¼ argmin
p

X
ξk∈Cd

dðξk; pÞ: (13)

In practice, Eq. (13) is solved by a least-squares
algorithm.

4.5 Description of the Dynamic Clustering Artificial
Bee Colony Algorithm

Based on the above analysis, the DCABC algorithm flow is
presented in Fig. 3. The main steps of the algorithm include
the following stages.

1. The initial solutions are determined and the parameters
of the DCABC algorithm are initialized (Initiation
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phase, Fig. 4). The line clusters are initially con-
structed based on the similarity of the line segments’
inclined angles. The valid angular domains are then
chosen from the initial clusters. For each valid angular
domain, a VP can be computed as the cross-product
between the two lines selected randomly from the
angular domain. The next step is to randomly produce
binary vectors which represent the initial solutions
(see Sec. 3). These initial solutions are evaluated
using Eq. (9). Finally, other DCABC parameters are
empirically set, such as the colony size, the value of
“limit,” the line clustering termination condition
(Criterion 1), and the VP detection termination condi-
tion (Criterion 2).

2. Employed bees search new solutions within the adja-
cent space (Fig. 5). Eq. (1) is transformed to Eq. (12)
in order to adapt to the binary searching problem,
where the Hamming distance is introduced in Eq. (10)
to construct new solutions. The fitness value of the
new solution is computed from Eq. (9). If the fitness
of the new solution is improved, then an employed bee
would replace the old solution in its memory with the
new solution.

3. The probability of pi is calculated using Eqs. (2)
and (3).

4. Onlooker bees select food sources depending on pi
values. Then they produce new solutions with Eq. (12),
and they update the solutions using the greedy selec-
tion approach.

5. Abandoned solutions are identified and replaced with
new randomly generated solutions by the scout bee.

6. Stages 2 to 6 are repeated until the maximum number
of cycles is reached (Criterion 1).

7. The VP set is reconstructed according to the optimal
solution. VPs that are not selected are reinitialized
using the method described in stage 1 (Fig. 6).
Then all current solutions are reevaluated by Eq. (9).

Begin 

Calculate probabilities for 
onlookers

Initialization phase

Employed bee phase

Estimate VPs based on the 
optimal solution

Onlooker bee phase

Is there an 
abandoned sol. ?

Scout bee phase

Are the stopping 
criterion1 satisfied?

Reconstruct  VP set

Are the stopping 
criterion 2 satisfied?

Finish

N

        Y  

N

N

        Y  

        Y  

Fig. 3 Dynamic clustering artificial bee colony (DCABC) algorithm
flowchart.

Begin initialization phase

Construct initial line clusters 
based on a priori information 

Construct valid angular domains

Initialize VP set

Produce and evaluate initial 
solutions

Initialize other parameters of 
ABC algorithm

Finish initialization phase

Fig. 4 Subflowchart of initialization for the DCABC algorithm.

Begin employed bee phase
(or onlooker bee phase)

Produce new solution for each 
employed bee (or onlooker bee)

Evaluate the new solution

Is it better than 
the old one ?

Remember  the new solution and 
remove the old solution

Maintain the old solution

Finish employed bee phase
(or onlooker bee phase)

        Y  

N

Fig. 5 Subflowchart of the searching procedure for an employed (or
onlooker) bee.
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8. Stages 2 to 8 are repeated until the maximum number
of cycles is reached (Criterion 2).

9. VPs selected by the optimal solution are re-estimated
by Eq. (13) based on the corresponding line clusters.

In Stage 1, certain parameters have to be preset for the
DCABC algorithm. Generally, onlooker bees form 50% of
the colony, employed bees form 50%, and the number of
scout bees is, at most, one for each cycle. Here, the number
of onlooker bees is selected to be equal to the number of
employed bees so that the algorithm has fewer controlling
parameters. According to previous research,21 as the colony
size increases, the algorithm produces better results.
However, after a sufficient colony size is achieved, any fur-
ther size increase does not improve the algorithm perfor-
mance significantly. Here, the colony size is empirically
set to 30 at Stage 1. The control parameter “limit” determines
the “scout bee” production (see Sec. 2.2). The “limit” value
is inversely proportional to the scout production frequency;
an increase in the number of scouts encourages exploration,
whereas increasing the onlookers on one food source encour-
ages its exploitation. A “limit” value of 60 is considered
appropriate in the present study, representing a quarter of
the product of the colony size with the dimensions of the
problem. Criteria 1 and 2 determine the termination condi-
tions for the two cycles, where both are based on the maxi-
mum number of iterations, and two variables (t1,t2) serve as
the counters. Here, the upper limits of t1 and t2 are empiri-
cally set to 3 and 35, respectively.

5 Experiments
Experiments were conducted on the York Urban database
provided by Denis et al.22 This database holds 102 indoor
or outdoor images in man-made environments and also pro-
vides the camera intrinsic parameters and the VPs computed

with hand-detected segments. For each image in the York
Urban database, we compiled two distinct line sets. The
first line set (Lineset1) was compiled from the database hold-
ing the labeled ground-truth lines with few outliers. The sec-
ond line set (Lineset2) was extracted from the image by a
LSD,23 and includes many lines corresponding to non-
Manhattan directions. For example, Fig. 7(a) shows an
image stored in the York Urban database, and Figs. 7(b)
and 7(c) show the Lineset1 and Lineset2 extracted from
this image, respectively. Both line sets of each image
were processed by the following algorithms. All experiments
were implemented in MATLAB®, running on a Core i7 920
Intel CPU.

DCABC: DCABC is used for VP detection.
GS: GS, proposed by Barnard (1983),3 assumes a

Gaussian sphere as the accumulator space.
RANSAC: the algorithm proposed by Pflugfelder

(2008),11 using RANSAC algorithm to cluster lines.
JL: The JL algorithm, proposed by Tardif (2009),7 clus-

ters lines by a J-Linkage algorithm.
EM: The EM algorithm is a more recent line clustering

algorithm proposed by Nieto (2011).13

The algorithms were evaluated by two performance
indicators. The first indicator is the accuracy of the estimated
focal length using the VPs. As is well known, two orthogonal
VPs v and v⊥ satisfy

vTωv⊥ ¼ 0; (14)

whereω is the image of the absolute conic given byK−TK−1,
and K is the matrix of intrinsic camera parameters provided
by the York Urban database.

From the estimated set of VPs, we selected a triplet of VPs
(vo1, vo2, vo3) that minimized the sum of squares of the
constraint: ðvTo1ωvo2Þ2 þ ðvTo1ωvo3Þ2 þ ðvTo2ωvo3Þ2. We then
estimated the focal length and compared it with that provided
in the York Urban database. Specially, each term of the above
constraint was set to 0, and three focal lengths were sepa-
rately solved by Eq. (14). The estimated focal lengths, cal-
culated as the mean of the three focal lengths, are presented
in Fig. 8. Figures 8(a) and 8(b) show the cumulative histo-
grams of the focal length errors in Lineset1 and Lineset2,
respectively, for each image in the database.

In this test, the five evaluated algorithms demonstrated
comparable accuracy performance, although DCABC was
slightly more accurate than its four competitors [Fig. 8(a)].
The focal length error of DCABC was less than 78 pixels for

Begin reconstruct VP set

Reinitialize VPs which is not 
selected by the optimal solution

Reevaluate all solutions 

Finish reconstruct VP set

Fig. 6 Subflowchart for reconstructing vanishing point (VP) set.

Fig. 7 Example of a line set: (a) image from the York Urban database, (b) Lineset1 of the database
image, and (c) Lineset2 of the image detected by the line segment detector algorithm.
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90 out of 102 images in the database, and below 150 pixels
for all images.

The accuracies of all algorithms, but especially that of
EM, decreased when processing Lineset2. Overall, the
results were similar to those of the ground-truth lines
(Lineset1). Again, DCABC performed slightly better than
the other algorithms [see Fig. 8(b)].

The second performance indicator is the computational
time of detecting the VP. In this evaluation, we measured
the time spent on line clustering and VP estimation, and
excluded the line segment detection and selection of the
three orthogonal VPs.

Figure 9 presents the minimal, average, and maximum
computational times required to process both line sets. We
observe that EM and DCABC are the fastest and second-fast-
est of the tested algorithms, respectively. The JL and GS
algorithms calculate Oðn2Þ intersections, which is time-
intensive when n is large. However, in DCABC and
RANSAC, only a small fraction of the intersections are cal-
culated from a few randomly chosen lines. In the EM algo-
rithm, lines are directly clustered with no intersection

calculations. Consequently, the EM and DCABC algorithms
are time-economical. The mean computation time of
DCABC was only 0.023 s for Lineset1 [Fig. 9(a)] and
0.058 s for Lineset2 [Fig. 9(b)].

In summary, the five tested algorithms detected the VP
with similar accuracy in the lower-noise case. The accuracy
of all algorithms declined when some outliers were added.
The decline was especially noticed in the EM algorithm.
However, EM is the most efficient of the five algorithms,
with DCABC a close second. Clearly, our proposed algo-
rithm achieves a good balance between accuracy and
efficiency.

6 Conclusions
Given a set of lines extracted from uncalibrated images, we
proposed a means of directly detecting all possible nonor-
thogonal VPs in the image plane. Treating the task as a
dynamic problem of clustering line segments, we partitioned
the line clusters by our proposed DCABC algorithm.
Initially, the line segments were clustered based on the
similarity of their orientations. The clustering was then

Fig. 8 Cumulative histograms of the focal length errors in the York Urban database images. A point ðx; yÞ
represents the fraction y of the images in the database with focal length error below x . (a) Focal length
error in Lineset1 and (b) focal length error in Lineset2.

Fig. 9 Computational time of detecting the VPs in the York Urban database images. Algorithms were
programmed in MATLAB®. (a) Time of processing Lineset1 and (b) time of processing Lineset2.
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refined by DCABC using optimization technology in binary
space. Finally, a VP was estimated in each of the optimized
line clusters. In DCABC, the set of candidate VPs was
encoded as a binary vector whose elements indicated the
selection status of the corresponding VP. To simplify the
new solution construction and accelerate the algorithm con-
vergence, we computed the Hamming distance between two
binary vectors and adopted the number of segments in each
cluster. Our approach provides a promising bioinspired sol-
ution for practical VP detection.
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