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Abstract. Hyperspectral imaging (HSI) based sensing devices were utilized to develop nondestructive, rapid,
and low cost analytical strategies finalized to detect and characterize materials constituting demolition waste. In
detail, HSI was applied for quality control of high-grade recycled aggregates obtained from end-of-life concrete.
The described HSI quality control approach is based on the utilization of a platform working in the near-infrared
range (1000–1700 nm). The acquired hyperspectral images were analyzed by applying different chemometric
methods: principal component analysis for data exploration and partial least-square-discriminant analysis to
build classification models. Results showed that it is possible to recognize the recycled aggregates from different
contaminants (e.g., brick, gypsum, plastic, wood, foam, and so on), allowing the quality control of the recycled
flow stream. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.24.4
.043003]
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1 Introduction
Demolition waste (DW) recycling is an interesting option
to reduce the exploitation of the natural resources and the
environmental impacts (CO2 emissions) associated with
the construction sector.1 Indeed, the improvement of the
environmental world condition depends on adopting recy-
cling strategies finalized to the production of marketable
clean aggregates. Aggregates can be considered “clean”
when pollutants (such as brick, glass, paper, cardboard, plas-
tic, wood, gypsum, and so on), usually present in a DW
stream, are absent or under the limits required by the market.
In order to set up effective sorting and/or a quality control
system, material characterization is a crucial step and end-
of-life (EOL) concrete identification is important to make
DW conversion into useful secondary raw materials easier.
In this perspective, the development of strategies for auto-
matic recognition of recovered products and the possibility
to utilize efficient, reliable, and low cost sensing technolo-
gies that are able to perform detection/control actions during
all recycling steps, are very important.

Exploring the possibility to classify a DW stream by opti-
cal sensors in order to recognize concrete aggregates and
unwanted polluting materials is the main aim of this
study. The developed recognition/classification method is
based on the utilization of hyperspectral imaging (HSI) sens-
ing devices working in the near-infrared (NIR) range (1000–
1700 nm). The HSI system is composed of an integrated
hardware and software architecture able to digitally capture
and handle spectra, as they proceed along a predefined align-
ment on a surface sample that is properly energized.2,3

HSI is a type of multivariate imaging. A typical multivari-
ate image is an image of I rows and J columns measured for
K variables. The variables can beK wavelengths.4 Therefore,

data collected through a hyperspectral sensor generate a
three-dimensional (3-D) dataset, the “hypercube,” character-
ized by two spatial dimensions and one spectral dimension.
The wavelength bands in hyperspectral images are typically
in an equally spaced sequence; as a consequence, a full spec-
trum is obtained for each pixel. Each pixel in a hyperspectral
image can be analyzed when the system is given spectral
information about samples. According to the different inves-
tigated wavelengths and the spectral sensitivity of the device,
several physical–chemical features, linked to their spectral
attributes, can be collected. The HSI approach can, thus re-
present a powerful solution for characterization, classifica-
tion, and quality control of different materials in several
applications fields. For these reasons, NIR-HSI has rapidly
emerged and has quickly grown in recent years, including in
the solid waste sectors: glass recycling,5 automotive shredder
residue characterization (i.e., fluff),6 bottom ashes resulting
from municipal solid waste incinerators,7 compost products
quality control,8,9 different polymers identification,10–13 con-
struction and DW recycling,14,15 and so on.

2 Materials and Methods

2.1 Analyzed Demolition Waste Samples
Investigated samples came from the demolition of two towers
located in Groningen (The Netherlands).16 The samples are
composed of concrete aggregates obtained by ADR process-
ing carried out at TUDelft (Delft, The Netherlands) and
selected typologies of unwanted contaminants: brick, foam,
wood, plastic, and gypsum (Fig. 1).

The sample set was utilized to perform both a preliminary
test and a second experimental test. The preliminary test was
performed with the specific aim to find the best classification
strategy for aggregate recognition, whereas the second
experimental test was carried out in order to identify and
classify each typology of material, which are aggregates
and the single different pollutants.

*Address all correspondence to: Silvia Serranti, E-mail: silvia.serranti@
uniroma1.it

Journal of Electronic Imaging 043003-1 Jul∕Aug 2015 • Vol. 24(4)

Journal of Electronic Imaging 24(4), 043003 (Jul∕Aug 2015)

http://dx.doi.org/10.1117/1.JEI.24.4.043003
http://dx.doi.org/10.1117/1.JEI.24.4.043003
http://dx.doi.org/10.1117/1.JEI.24.4.043003
http://dx.doi.org/10.1117/1.JEI.24.4.043003
http://dx.doi.org/10.1117/1.JEI.24.4.043003
http://dx.doi.org/10.1117/1.JEI.24.4.043003
mailto:silvia.serranti@uniroma1.it
mailto:silvia.serranti@uniroma1.it
mailto:silvia.serranti@uniroma1.it
mailto:silvia.serranti@uniroma1.it


The same images were thus analyzed for both tests: for
each kind of material, some particles were selected and
acquired. HIS-based classifications were performed adopting
three different acquisition procedures, as described in the
following:

1. A training set was generated to be utilized for the
subsequent classification stage. In detail, a set of 16
particles clearly identified as brick (2 particles), aggre-
gates (3 particles), wood (1 particle), gypsum (3 par-
ticles), foam (3 particles), and plastic (4 particles)
was used in order to build the classification model.

2. A validation set composed of the same particles
utilized for training was then created to perform val-
idation/classification: the classification model was
preliminarily validated by applying it to the same

particles, but with a different topological assessment
in the acquired image.

3. The classification model was then applied to an exter-
nal image dataset containing aggregate and contami-
nant materials different from those already acquired.

A simplified scheme showing the adopted procedure is
reported in Fig. 2.

In the preliminary test, a two class model was built in
order to recognize aggregates to recycle from contaminants,
whereas in the second experimental test, a six class model
was implemented in order to classify the aggregates and
all the different classes of contaminants in each image.

The preliminary test was performed as a simplified case
study in order to understand material spectral behavior and
to explore the possibility to recognize contaminants and

Fig. 1 Aggregates and contaminants utilized to perform recognition/classification procedures finalized to
fully identify both (a) aggregates and the different polluting materials: (b) gypsum, (c) foam, (d) wood,
(e) plastic, and (f) brick.

Fig. 2 Pictorial example of the procedure utilized to perform contaminants and aggregates recognition/
classification: (a) image used for training, (b) same particles as presented in the training image, topo-
logically rearranged and utilized for model validation, (c) new image constituted by different particles of
the same contaminant and aggregate products.
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aggregates. The second experimental test was realized as a
more complex case, where each object in a sample set, rep-
resentative of a typical DW stream treated in a recycling
plant, was fully identified. This second strategy can be
adopted in order to monitor the efficiency of the previous
separation systems.

In Table 1, a synthetic explanation of the applied pro-
cedure is shown.

2.2 Hyperspectral Imaging Equipment
HSI acquisitions and analyses were carried out at the labo-
ratory for particles and particulate solids characterization
of Department of Chemical Engineering, Materials, and
Environment (Sapienza –University of Rome) in Latina,
Italy. The acquisition platform utilized to acquire the spectra
of the DW samples was designed by DV srl (Padova, Italy) as
a system able to simulate the behavior of a material flow-
stream in a real industrial plant.

In Fig. 3, the HSI based station used to acquire NIR
images is shown. The detection architecture is constituted
by a conveyor belt (width ¼ 26 cm and length ¼ 160 cm)
with adjustable speed, an NIR Spectral Camera (Specim,
Finland) equipped with an ImSpector N17E imaging
spectrograph working in the NIR spectral field (1000–
1700 nm) coupled with a Te-cooled InGaAs photodiode
array sensor (320 × 240 pixels). The energizing source con-
sists of an anodized aluminum cylinder with additional alu-
minum coating inside. It creates the right illumination on the
sample to avoid specular reflections or dark areas. Five hal-
ogen lamps produce an intense and continuous spectrum sig-
nal from 380 to 2500 nm, especially in IR range which is
adequate for spectral sensor sensitivity. The spectral sam-
pling/pixel was 2.6 nm. The device works as a push-
broom type line scan camera and acquires contiguous spec-
tral information for each pixel in the line. Acquisitions
are controlled by a PC unit equipped with a specialized
acquisition/preprocessing software: Spectral Scanner v.2.3,
allowing the management of different units, to perform
acquisition, to collect spectra, and to perform preliminary
spectra analysis.

2.3 Data Acquisition
Hyperspectral images were acquired in the 880–1720 nm
wavelength range, with a spectral resolution of 7 nm, for

a total of 121 wavelengths. The spectrometer was coupled
to a 15 mm lens. The images were acquired by scanning
the investigated samples line by line: their width was 320
pixels, while the number of frames was variable according
to the sample size.

Before the acquisition phase, system calibration was car-
ried out by recording an image for black and another for
white. The black image (B) was acquired to remove the effect
of the dark current of the camera sensor, turning off the light
source and covering the camera lens with its cap. The white
reference image (W) was acquired adopting a standard white
ceramic tile under the same conditions as the raw image.
Image correction was performed by adopting the following
equation:

I ¼ ½I0 − B�∕½W − B�; (1)

where I is the corrected hyperspectral image in a unit of rel-
ative reflectance (%). I0 is the original hyperspectral image,
B is the black reference image (∼0%), and W is the white
reference image (∼99.9%). All the corrected images were
then used to perform the HIS based analysis.

3 Spectral Data Analysis
Spectral data were analyzed using the PLS_Toolbox (Version
7.8, Eigenvector Research, Inc., Wenatchee, Washington)
running under MATLAB® (Version 7.5, The Mathworks,

Table 1 Synthetic recap of the applied strategies used to perform contaminants and aggregates recognition/classification.

Experimental setup Aim
PLSDA

classification model Applied algorithms

Preliminary test

Two classes were set on the training image:
contaminants and aggregates. Other two
acquisitions were then used as validation
images.

This preliminary test was performed in order to
recognize aggregates from contaminants, and
not to classify every class of contaminants

Two-classes model SNV normalization
and mean center

Second experimental test

The same images used for the preliminary set
were used in order to build a six classes model:
foam, brick, gypsum, wood, plastic, and
aggregates were thus recognized/classified.

The second experimental test was realized as a
real case, being representative of a typical DW
stream treated in a recycling plant with the
specific aim to identify and classify each material

Six classes model Detrend, SNV
normalization and
mean center

Fig. 3 The hyperspectral imaging (HSI) based station used to acquire
near-infrared (NIR) images.
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Inc., Natick, Massachusetts) environment. A preliminary
application of the preprocessing procedure was carried out
in order to highlight differences between spectra correspond-
ing to the different classes of material. Then principal com-
ponents analysis (PCA) was applied in order to explore the
data, to define classes and to evaluate the best algorithms
for further classification models’ development, setup, and
implementation. The chosen method for classification and
validation was the partial least-squares-discriminant analysis
(PLS-DA).

3.1 Preprocessing Step
The background noise was eliminated by a preliminary
reduction of the investigated wavelengths. At the beginning
and at the end of the frequency field, wavelengths were cut,
reducing spectral variables from 121 to 93: the correspond-
ing new investigated wavelength interval was from 1006 to
1650 nm. The choice of wavelengths to be excluded was car-
ried out after different experimental tests that showed what
spectral variables give the noisiest signal. After this pro-
cedure, the background of each image was removed. Then
data were preprocessed to highlight sample spectral
differences and to reduce the impact of possible external
sources of variability, allowing a more accurate interpretation
of the classification model results.

Different preprocessing algorithms were applied: mean
centering (MC), detrend and standard normal variate
(SNV). MC is one of the most common preprocessing meth-
ods: it calculates the mean of each column and subtracts this
from the column. It is useful to remove constant background
contributions which usually are not interesting for the data
variance interpretation.17

The detrend algorithm was applied to remove constant,
linear or curved offsets. SNV is a weighted normalization
and it was utilized to solve scaling, or gain effects, due to
path length effects, scattering effects, source or detector var-
iations, or other general instrumental sensitivity effects.18

3.2 Exploratory Data Methods: Principal Component
Analysis

After preprocessing, an exploratory data analysis based on
PCA was carried out.19 PCA projects the samples into a
low dimensional subspace whose axes are the principal com-
ponents (PCs) pointing in the direction of maximum data

variance in order to compress the data. PCA allows one
to highlight the presence of trends or clusters among sam-
ples: according to the distribution of the samples on the
PC space, it is possible to understand similarities and
differences in their chemical/spectral behavior. Samples’
grouping is an index belonging to the same class of materials
that are characterized by similar spectral signatures.

3.3 Classification Method: Partial Least-Squares-
Discriminant Analysis

PLS-DA is a linear classification method that combines the
properties of partial least-squares regression with the dis-
crimination power of a classification technique. PLS regres-
sion algorithm is the basis of PLS-DA: it looks for latent
variables with a maximum covariance with the Y-variables.

Fig. 4 Different classes of demolition waste (DW) materials. (a) Acquired hyperspectral image and
(b) regions of interest (ROIs) selection for contaminant and aggregate classes.

Fig. 5 (a) Raw spectra and (b) preprocessed spectra after the appli-
cation of standard normal variate (SNV) and mean centering functions
of aggregates and contaminants.
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In PLS-DA, the relevant sources of data variability are mod-
eled by latent variables (LVs), which are linear combinations
of the original variables: it allows graphical visualization and
the understanding of the relations by LV scores and loadings.
Scores represent the coordinates of a sample in the LVs’
hyperspace, while loadings are the coefficients of variables

in the linear combinations and they can be interpreted as the
influence of each variable on each LV.20 It is necessary to
evaluate the optimal dimension of the LVs’ subspace in
order to perform the best classification model as possible.

PLS-DA is a supervised classification method;21 there-
fore, it requires a prior knowledge of the data: a discriminant

Fig. 6 Different combinations of P1-PC3-PC5 score plots showing the two classes of materials after the
application of SNV and mean center preprocessing: (a) PC1 versus PC5, (b) PC1 versus PC3, (c) PC3
versus PC5 and (d) PC1 versus PC3 versus PC5.

Fig. 7 (a) Acquired and (b) preprocessed spectra, resulting from Detrend, SNV, and mean center nor-
malization algorithms application of the six different analyzed concrete contaminants.
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model is carried out using samples with known classes to be
used later to classify new samples that are made of the same
material as the known ones. Discriminant classification tech-
niques look for what makes members of a class different
from individuals in the other classes; as a consequence,
these techniques operate by building models which assign
one and only one of the categories represented in the dataset
to each sample.22 In particular, the PLS-DA method corre-
sponds to the inverse-least-squares approach to linear dis-
criminant analysis (LDA) and produces essentially the
same results but with the noise reduction and variable selec-
tion advantages of PLS.23

In this study, PLS-DA was used to perform a good dis-
crimination among classes of materials and to define predic-
tions in new hyperspectral images, adopting preprocessing
algorithms defined in the PCA step.

A class-modeling method such as soft independent mod-
eling of class analogy is not useful in order to obtain the
desired classification purpose because a different approach
should be applied. In detail, this kind of technique concen-
trates on finding the similarity/analogies among individuals
of the same class, rather than focusing on the differences
between members belonging to different categories. Each
category is independently modeled on the others and a sam-
ple can be assigned to only a class or even to more classes or
can be rejected by all classes.

The obtained PLSDA model, instead, assigns only one of
the available categories, based on its spectral signature, to
each unknown sample in the hyperspectral image, making
interpretation of the results easier. The results of PLS-DA,
applied to hypercubes, are prediction maps, where each
class is defined by a different color.

Fig. 8 PC1-PC2 score plot, obtained using 93 wavelengths, corre-
sponding to the acquired image of six materials in the NIR field
(1000–1700 nm). Detrend, SNV normalization, and mean centering
(MC) were applied.

Fig. 9 PC1-PC2 score plot resulting after outlying pixels are removed
from the training dataset in the NIR wavelength field (1000–1700 nm).

Fig. 10 (a and c) Source digital images set, (b) corresponding prediction images resulting from the appli-
cation of the PLS-DA two classes’ model to the same image utilized for training and (d) to the same
particles topologically rearranged. Classes: (1) contaminants and (2) aggregates.
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4 Results
The NIR range provides chemical information about the
investigated materials, because most absorption bands
observed in this interval arise from overtones of C-H, O-
H, and N-H stretching vibrations. The interpretation of the
results was addressed to verify the reliability and robustness
of the proposed NIR-HSI procedures with respect to contam-
inants/aggregates recognition.

4.1 Principal Component Analysis and Class Setting
4.1.1 Preliminary test: 2-classes model

Different regions of interest (ROI) were selected in order to
train the system to recognize the two classes of materials:
aggregates and contaminants. Figure 4 shows the selected
ROIs utilized for training dataset creation.

The original and the preprocessed average reflectance
spectra of the two different classes are reported in Fig. 5.
From the analysis of the spectra, it can be clearly outlined
as the application of the preprocessing algorithms (SNV
and mean center) highlights the differences among them.

Different combinations of PCs were plotted (Fig. 6). The
analysis of the score plots clearly shows as the two different
classes of products are recognized according to their group-
ing in a 3-D space formed by PC1, PC3, and PC5 [Fig. 6(d)].
PC1 and PC3 explained 62.03% and 5.73% of the variance,
respectively while the PC5 explained 2.02%.

4.1.2 Second experimental test: 6-classes model

Collected spectra were preliminarily preprocessed. Detrend,
SNV normalization, and MC were applied. In Fig. 7, raw and

preprocessed spectra are reported. After preprocessing, PCA
was then applied as exploratory data analysis. The analysis
of the score plot allows one to identify six different groups
according to material spectral signatures (Fig. 8). In this
experimental setup, the majority of the variance was captured
by the first two PCs, where PC1 and PC2 explained 58.43%
and 25.03% of the variance, respectively. Some pixels of
each identified group were selected in order to set classes
and others were removed in order to build the training dataset
for the following classification model. The training dataset
was then analyzed by PCA again to better appreciate the
reflectance differences between samples: similarities were
expressed by sample grouping on the PCA score plot
(Fig. 9). In this second case, the captured variance by PC1
increases up to 64.55%, explaining the majority of the sam-
ple variability.

4.2 Partial Least-Square-Discriminant Analysis
Classification

The same algorithms used to perform the previous explora-
tive analyses by PCAwere applied to build PLS-DA models.

4.2.1 Preliminary tests: 2-classes model

The results achieved after the two classes’ model application
are shown in Fig. 10. The same image [Fig. 10(a)], adopted
to realize the training dataset, was preliminarily classified
and the results are shown in Fig. 10(b). The same particles
were then spatially re-arranged [Fig. 10(c)] and their classi-
fication performed [Fig. 10(d)]. The built model was then
applied to a new image containing samples not previously

Fig. 11 (a) Source digital image set (b) and corresponding PLS-DA 2-classes model applied to a new
image. Classes: (1) contaminants and (2) aggregates.

Table 2 Sensitivity and specificity values obtained for the two classes PLS-DAmodel built for aggregates and contaminants. Results are based on
the modeling performed utilizing 93 wavelengths.

Applied algorithms in
the PLS-DA model Class

Sensitivity Specificity

Calibration Cross validation Calibration Cross validation

SNV and mean center Contaminants 0.985 0.984 1.000 1.000

Aggregates 1.000 1.000 0.985 0.984
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utilized. The corresponding prediction map is shown in
Fig. 11.

PLS-DA results can be better appreciated considering the
values of the sensitivity and specificity obtained for each
model. The sensitivity is a true positive rate: it is the estima-
tion of the model’s ability to avoid false negatives (i.e., num-
ber of samples of a given type correctly classified as that
type). The specificity is the estimation of the model’s ability
to avoid false positives (the number of samples not of a given
type correctly classified as not of that type). These values,
ranging from 0 to 1, can give information about model effi-
ciency: the higher the values are, the better the models are.
The obtained values for the two classes’ model are shown in
Table 2.

From the analysis of the results showed in Figs. 10 and
11, it appears that in the 2-classes model, aggregates and
contaminants are recognized. Even if some pixels are mis-
classified, the majority of them belong to the correct class
in each object. These sporadic errors in prediction are prob-
ably due to the surface roughness of the sample, highlighting
the scattering effect of the light, or to the presence of dirti-
ness on the sample surface.

4.2.2 Second experimental test: 6-classes model

The same images utilized to perform the preliminary test
were then used to perform the six classes’ modeling. The

corresponding sensitivity and the specificity parameters
are reported in Table 3.

Prediction maps of these images, used for validation, are
shown in Figs. 12, 13, and 14. From the analysis of Figs. 12,
13, and 14, it can be noticed that good classification results
were obtained. Some errors still occur between aggregates
and brick, whereas aggregates are perfectly recognized with
respect to the other classes of contaminants.

Fig. 12 PLS-DA six classes’ model applied to the same image used
to build the model. The classes are plastic (A), brick (B), aggregates
(C), wood (D), gypsum (E) and foam (F).

Fig. 13 PLS-DA six classes’model applied to the same particles used
to build the model topologically rearranged. The classes are plastic
(A), brick (B), aggregates (C), wood (D), gypsum (E) and foam (F).

Table 3 Sensitivity and specificity values obtained for the six classes’ PLS-DA built for the different concrete contaminants, based on 93
wavelengths.

Applied algorithms in
the PLS-DA model Class

Sensitivity Specificity

Calibration Cross validation Calibration Cross validation

Detrend, SNV, mean center Aggregates 0.941 0.947 0.995 0.896

Brick 0.998 0.994 0.996 0.996

Gypsum 0.983 0.983 0.999 0.999

Plastic 1.000 1.000 1.000 1.000

Wood 0.983 0.983 0.995 0.995

Foam 1.000 1.000 1.000 1.000

Fig. 14 PLS-DA six classes’ model applied to a new image. The
classes are plastic (A), brick (B), aggregates (C), wood (D), gypsum
(E) and foam (F).
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Some sporadic errors in brick and plastic classifications
are visible, especially in the new image prediction map
(Fig. 14). This phenomenon is probably due to the hetero-
geneity of investigated materials and, therefore, to the light
scattering, but also to the “dirty” nature of this material as
collected from a DW stream.

5 Conclusions
The use of HSI in the NIR range (1000–1700 nm) as a tool
for recognition/classification of recycled aggregates and
unwanted contaminants was investigated, developing differ-
ent experimental setups.

Results showed that the proposed technology, combined
with specific chemometric techniques, is particularly suitable
to recognize the products obtained by a recycling process of
DW in order to control the quality of the output streams. The
results demonstrated that aggregates can be distinguished
from concrete pollutants. A good recognition of all the differ-
ent materials, both adopting the two classes’ model and the
six classes’ model, is possible. Some few misclassifications
in prediction occur, both for the two classes’ and the six
classes’ models, probably due to the heterogeneity of sam-
ples or a border effect. Indeed, it is also important to take into
account that these materials are not perfectly cleaned, so it is
possible to have some impurities, characterized by their own
spectral behavior, that negatively influence the recognition/
classification process. In any case, it is important to note that
this technique allowed us to recognize the presence of differ-
ent materials inside a DW recycling plant, independently
from some sporadic pixels misclassifications.

The proposed approach presents several advantages: it is
objective, rapid, nondestructive, and low cost. This latter fea-
ture is really important in the secondary raw materials sector,
where the utilization of expensive and/or sophisticated qual-
ity control devices cannot be practically proposed, both for
technical (i.e., particles of different size, shape, and compo-
sition) and economic reasons.

Thus, the HSI based approach can be adopted to perform
DW classification, which is useful for monitoring the con-
crete recycling process and to control its quality. This system
could play a fundamental role in the DW recycling in the
near future.
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