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Abstract. A stable and unsupervised version of the fuzzy C-means algorithm, named FCM-optimized (FCMO),
is presented. The originality of the proposed algorithm stems from (1) the introduction of an adaptive incremental
procedure to initialize class centers, which makes the algorithm stable and deterministic; therefore, the classi-
fication results do not vary from one run to another and (2) the use of an unsupervised evaluation criterion to
estimate the optimal number of classes. The validation of FCMO with regard to stability, reliability in class num-
ber estimation, and classification efficiency is shown through experimental results on synthetic monocomponent
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1 Introduction
Data classification is an essential step in automated decision
making which still remains unsolved. Classification methods
can be categorized into three groups: supervised, semisuper-
vised, and unsupervised.

“Supervised methods” need a priori knowledge (e.g.,
training samples) to accomplish classification. However,
a priori knowledge may not be available in all cases of
applications. Maximum likelihood,1 support vector machines
(SVM),2 and expectation-maximization3 are some of the
most commonly used supervised methods.

“Semisupervised methods” require at least some minimal
input from the operator as a priori knowledge (e.g., the
expected number of classes, some threshold value, or a
fixed number of iterations). K-means4 is an example of a
semisupervised algorithm that requires a priori knowledge
of the number of classes. This algorithm is highly sensitive
to the initial randomly selected class centers,5 which makes it
unstable; hence, it may yield varying results for the same
dataset for different runs. The principle of K-means is
used in the Linde–Buzo–Gray (LBG) algorithm, which, as
a result, is also unstable.6 The fuzzy C-means (FCM) is
another semisupervised algorithm.7 It extends the K-means
algorithm using a fuzzification operation to solve ambiguous
classification problems. This algorithm is one of the most
widely and successfully used methods. However, it also
requires the number of classes to be known a priori.
Furthermore, it is sensitive to the initial class centers and
also to the choice of the fuzzification parameter.7

“Unsupervised” classification is a kind of approach that
does not need training samples or a priori knowledge. One of
the most recent unsupervised methods is affinity propagation
(AP).8 Unfortunately, AP is found to highly overestimate
the number of classes, and it is inapplicable to large image

datasets owing to its computational memory complexity. In
Ref. 9, an unsupervised version of FCM that is adapted to
high-dimensional multiclass pattern recognition problems
is presented. This method estimates the number of classes
automatically, but it is not completely stable for some com-
plex datasets.

In this paper, we propose an optimized version of the
baseline FCM algorithm, FCM-optimized (FCMO), which
is stable and completely unsupervised.

The remainder of the paper is organized as follows. In
Sec. 2, we present a description of the proposed method, fol-
lowed by experimental results obtained on monocomponent
and multicomponent images in Sec. 3. Finally, in Sec. 4, we
present the conclusions.

2 Proposed FCM-Optimized Algorithm
From a general point of view, a robust classification method
must check the following three properties:

• nonrequirement of any ground truth (GT) knowledge
(training samples),

• ability to automatically estimate the correct number of
classes,

• insensitivity to the random choice of the initial class
centers (stability).

The FCMO algorithm that we propose meets these three
properties.

2.1 Overview of the Proposed Algorithm
Let X be the dataset where each element is characterized by
a vector of features and K is the number of classes.

To partition this dataset, the proposed iterative algorithm
involves the following four steps:

• Step 1: Choice of the class to be subdivided:
At the beginning (K ¼ 1), the class to be divided

is the whole dataset, X; whenever K > 1, the most
*Address all correspondence to: Kacem Chehdi, E-mail: kacem.chehdi@
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expanded class is chosen as the candidate class for
further splitting, if the unsupervised evaluation cri-
terion in step 4 is true.

• Step 2: Choice of the initial subclasses centers:
The selected candidate class is subdivided into two

subclasses; its center of gravity is chosen as the first
subclass center, whereas the second subclass center is
an element randomly selected within the same class.

• Step 3: Classification with class center fine-tuning:
The dataset is partitioned using standard FCM. To

make the approach independent of the initial class
centers, a removal-insertion fine-tuning process is
used.

• Step 4: Evaluation of the obtained intermediate parti-
tioning using an unsupervised criterion:

If this criterion is satisfied, partitioning into K þ 1
classes is validated; then go back to step 1. If the
criterion is not satisfied, go to step 1 and change
the class to be subdivided by choosing the next
most expanded class and so on. The algorithm stops
if no subdivision satisfies the criterion. In this case,
the current number of classes is considered as
optimal.

In the following, we present the details of the four afore-
mentioned steps.

2.2 Algorithm Details
We denote PK ¼ fC1; : : : ; CKg as a partition of X into K
classes. We attempt to subdivide one of these classes to
obtain K þ 1 classes.

To choose a candidate class to subdivide, we calculate a
dispersion measure for each class Ci, for i ¼ 1; : : : ; K as
follows:

EQ-TARGET;temp:intralink-;e001;63;371DispersionðCiÞ ¼
1

jCij
XjCij

j¼1

d½gðCiÞ; Cj
i �; (1)

where gðCiÞ and jCij, respectively, are the center of gravity
and the number of elements of class Ci; dð:; :Þ is the
Euclidean distance; and Cj

i is the j’th element of class Ci.
The dispersion values of the classes are then arranged in

decreasing order so that the most expanded class is selected
as the first candidate to be subdivided. Recall that if the sub-
division of the selected class is not validated in step 4, the
next most expanded class is selected in turn.

After selecting the class to subdivide into two subclasses,
followed by the initialization of the class centers (step 2), the
whole dataset is then partitioned into K þ 1 classes by using
FCM with the selected centers. To ensure that the proposed
method is independent of the initial class centers, a removal–
insertion process to fine-tune the class centers is used, based
on the assumption that the dispersion values of the classes are
identical.10 According to this assumption, the empty class
and the class with the lowest dispersion (called the “losing”
class) are removed directly. The elements of the class adja-
cent to the losing class (called “neighbor” of losing class)
and the elements of the losing class are merged. The center
of gravity of this new class (losing and neighbor of losing)
is then recalculated. Then a new class center is introduced
near the class with the highest local dispersion (called the

“winning” class). This new class center is inserted by ran-
domly selecting an individual from the winning class. The
FCM algorithm is then applied on the whole dataset. This
process is repeated until the decrease in the dispersion
achieves a lower limit.

The final step (step 4) validates or rejects the partitioning
obtained with K þ 1 classes. This step allows estimating the
final partition of the dataset X and the associate number of
classes.

To validate the partition result PKþ1 of the dataset X after
splitting of the most expanded class, the following condition
must be met:

EQ-TARGET;temp:intralink-;e002;326;620DðPKþ1Þ −DðPKÞ > ηDðPKÞ; (2)

where η is a small value which guarantees the stopping of the
subdivision algorithm (we have chosen η ¼ 10−3 in our
experiment), and DðPKÞ is the criterion defined as11

EQ-TARGET;temp:intralink-;e003;326;556DðPKÞ ¼
1þ D̄ðPKÞ − ̱DðPKÞ

2
; (3)

where ̱DðPKÞ and D̄ðPKÞ are the global within-class and
between-class disparities of partition PK , respectively.

̱DðPKÞ is calculated from the within-class disparity ̱DðCiÞ
of each class in partition PK

EQ-TARGET;temp:intralink-;e004;326;470̱DðPKÞ ¼
1

NC

XNC

i¼1

jCij
N

̱DðCiÞ; (4)

where NC is the number of classes of partition PK and N is
the number of elements in the dataset X.

D̄ðPKÞ is calculated by including the disparity between
each class and the other classes of PK

EQ-TARGET;temp:intralink-;e005;326;376D̄ðPKÞ ¼
1

NC

XNC

i¼1

jCij
N

D̄ðCiÞ: (5)

If a partition PKþ1 is validated by satisfying Eq. (2), the algo-
rithm is repeated in order to subdivide the most expanded
class from the ones created thus far. If not, the algorithm
is repeated, attempting to subdivide the following class in
the sorting order. If none of the classes allow for valid sub-
division, the current number of class K is considered as
optimal.

The proposed FCMO algorithm can be applied to any
dataset X specified in the standard array format
(N elements ×M quantitative features).

In the case of image partitioning, two schemes were
considered:

1. For a monocomponent image, where each pixel is
characterized by a set of M features, the described
algorithm is applied directly.

2. For a multicomponent image with B bands, the FCMO
algorithm could be applied directly on the set ofN pix-
els, each characterized by B ×M features. In this
paper, we have chosen to apply FCMO to each com-
ponent independently in parallel, thereby generating B
partitions. In order to obtain a global partition from
these B partitions, a genetic fusion algorithm is
used.11,12 This strategy is motivated by the algorithm’s
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ability to solve problems with multiple solutions, and
therefore, synthesize relevant information owing to its
regularizing capability.

3 Experimental Results
We assessed the proposed unsupervised classification
approach FCMO with respect to three criteria: the stability
of the classification results as a function of the initial choice
of cluster centers, the accuracy of the estimated number of
classes, and the correct classification rate.

In order to partition an image, each pixel is characterized
by a set of 15 spatial features (for each spectral band) calcu-
lated using a window of spatial size 9 × 9 pixels. These fea-
tures include the statistical moments of orders 1 to 4, nine
co-occurrence features13 (contrast, correlation, inverse differ-
ence moment, sum average, sum entropy, entropy, first infor-
mation measure of correlation, second information measure
of correlation, and contour information) and two features
from the curvilinear integral with two angles.11

3.1 Assessment on Synthetic Monocomponent
Images

We first checked the stability of the FCMO algorithm by exe-
cuting it 100 times on 50 different synthetic monochrome
images. Each image in the database is composed of five tex-
tured regions extracted from the Brodatz album.14 Figure 1(a)
shows an example of one synthetic image of this database. To
check the stability, the number of classes is fixed to K ¼ 5 in
this experiment for all the compared methods. Table 1 shows
the stability performance of FCMO for all the values of the
fuzzification parameter m as compared to that of FCM and
LBG. These results show that FCM yields identical classifi-
cation results in only 77% of the runs whenm ¼ 2 and 94% of
the runs when m ¼ 4. Moreover, LBG is stable in 73% of
the runs.

With regard to the estimation of the number of classes, we
tested the FCMO algorithm on the same image database
without specifying any prior knowledge. The average correct
class number (ACCN) estimation was 90% over the same 50
images. This rate is coherent because in some images of the
database, high fluctuations could occur within a class, which
consequently would be detected as distinct classes. For
example, in Fig. 1(a), the region on the left of the image dis-
plays a wood texture with defect (surrounded area). It is clear
that this area rigorously should not be classified in a single
class. Indeed, the FCMO algorithm, as expected, divides this
class into two subclasses, which is coherent [Fig. 1(b)]. This
poses the problem of the reliability of GT data, which does
not account for class heterogeneity. Consequently, if the GT
was accurate, the true ACCN would be superior to 90%.

The average correct classification rates (ACCR) obtained
by FCMO and other methods given in Table 2 confirm the
superiority of FCMO. We emphasize that the best overall
classification results are given when m ¼ 4, which confirms
the suggestion proposed by Wu.7

Additionally, we compare the performance of FCMO
with supervised and semisupervised classification methods:
SVM, ISODATA, as well as a parallel cooperation system
using SVM with ISODATA algorithms.15 For SVM, 10%
of the GT pixels are used for training, the kernel function
used is the Gaussian RBF, and the optimal parameters are
chosen by fivefold cross validation. The optimal parameters
fixed for the ISODATA algorithm are 4, 10, 2, and 5%,
respectively, for the minimum number of classes, the maxi-
mum number of classes, the minimum number of pixels in a
class, and the change threshold. Table 3 shows two examples
of this performance comparison on the images of Fig. 2. Note
that K̂ denotes the estimated number of classes. For SVM
and SVM with ISODATA, the number of classes K is
fixed to 5.

Fig. 1 Example of estimation of the number of classes: (a) original
image and (b) classification result (six classes).

Table 1 Stability performance comparison.

FCMO m ¼ 2, 4, 6, 8 100%

FCM m ¼ 2 (m ¼ 4) 77% (94%)

LBG 73%

Table 2 Average correct classification rates (ACCR) performance
comparison.

FCMO m ¼ 2 (m ¼ 4) 99.92% (99.97%)

FCM m ¼ 2 (m ¼ 4) 87% (94%)

LBG 74%

Table 3 Examples of performance comparison of fuzzy C-means
optimized (FCMO) with other methods.

Methods

ACCR (K̂ : estimated number
of classes)

Image 1 Image 2

Support vector machines (SVM) 93.68% 85.97%

ISODATA 74.34% (K̂ ¼ 7) 74.54% (K̂ ¼ 9)

SVM with ISODATA 94.27% 87.62%

FCMO 99.47% (K̂ ¼ 5) 89.80% (K̂ ¼ 5)

Journal of Electronic Imaging 061117-3 Nov∕Dec 2015 • Vol. 24(6)

Chehdi, Taher, and Cariou: Stable and unsupervised fuzzy C-means method. . .



These results show that FCMO yields the best results
despite its unsupervised nature.

3.2 Assessment on Real Image
FCMO is also evaluated on two real applications. In the first
application, a hyperspectral image is used for invasive veg-
etation identification, whereas in the second application, a
multispectral image is used for the detection of pine trees.

3.2.1 Assessment on hyperspectral image

To assess our unsupervised method, GT data were provided
with the image. The hyperspectral image has 62 spectral
bands and its size is 1000 × 1000 pixels. The GT related
to this image includes six different invasive and noninvasive
vegetation classes, namely, Phragmites australis, Arundo
donax, Tamarix, Ulmus minor, Pinus halepensis, and peach
trees.16 The GT comprises 9059 pixels.

For each component of this image, FCMO is first applied
using the feature set described above. This step, therefore,
provides 62 independent classification results, which are
then fused by a genetic algorithm.11,12 Figure 3 and Table 4
show the result of FCMO and the corresponding confusion
matrix, respectively.

The obtained result shows that the proposed method
provides a very good classification result with an ACCR
of 98.71%.

To confirm the relevance of the FCMO method, we com-
pared it with SVM, ISODATA, FCM, and also a cooperative
approach15 that uses SVM with ISODATA. The results of
SVM and this cooperative approach with a postrelaxation
are also presented.

Table 5 summarizes the results of this comparative study.
The results validate the superiority of the proposed FCMO
method in unsupervised classification of hyperspectral data.

3.2.2 Assessment on multispectral image

The performance of FCMO is investigated in another con-
text: the detection of the presence of Pine trees in a region
of Lebanon from a multispectral image [Fig. 4(a)] acquired
by the Earth observation satellite Ikonos (2005). In order to
assess FCMO, a GT is provided where 11,736 pixels are

Fig. 2 Examples of images used for performance comparison:
(a) original image 1 and (b) original image 2.

Fig. 3 Identification results of invasive and noninvasive vegetation on
the hyperspectral image using fuzzy C-means optimized (FCMO):
(a) original image (three components over 62 for visualization),
(b) ground truth (GT) areas, and (c) FCMO classification result.

Table 4 Confusionmatrix for the proposed approach in the classification of invasive and noninvasive vegetation species [correct classification rate
in %, (.): number of pixels].

Ground truth classes (number of pixels)

Classes predicted automatically
by our approach

Phragmites
australis (544)

Arundo
donax (4200)

Tamarix
(162)

Ulmus minor
(764)

Pinus halepensis
(274)

Peach trees
(3115)

Phragmites australis 98.90% (538) 1.15% (48) 2.47% (4) 0.52% (4) 1.10% (3) 0.93% (29)

Arundo donax 0 98.85% (4152) 0 0 0 0

Tamarix 0 0 97.53% (158) 0 0 0

Ulmus minor 0.73% (4) 0 0 99.48% (760) 0 0.48% (15)

Pinus halepensis 0.37% (2) 0 0 0 98.90% (271) 0

Peach trees 0 0 0 0 0 98.59% (3071)
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labeled in the original multispectral image as pine trees
[Fig. 4(b)]. For this application, the FCMO algorithm is
applied in the same manner as on the hyperspectral image
described in Sec. 3.2.1. Figure 4(c) shows the detection
result, where 11,328 of 11,736 pixels are detected by
FCMO as pine trees. Therefore, the correct detection rate
obtained is 96.52%. This application perfectly illustrates
the problem of nonprecision of the GT provided. Indeed,
all the pixels of the two areas in Fig. 4(b) are reported as
corresponding to pine trees, whereas we see that some pixels
actually correspond to bare soil. Therefore, we can consider
that the good detection rates obtained by FCMO is higher
than 96.52% if the GTwas established with greater accuracy,
which is difficult to achieve in practice. This fully justifies
the development of completely unsupervised methods such
as FCMO.

4 Conclusion
In this paper, a deterministic and unsupervised version of
the FCM algorithm, named FCMO, is presented. FCMO is
optimized in two aspects: the first one is stability, which is
achieved through the use of an adaptive incremental
approach that ensures independency in the initialization of
the class centers; the second one is class number estimation
using an objective evaluation criterion, which makes the
algorithm fully unsupervised.

Experimental results, obtained on a synthetic image
database and on two real applications in the context of hyper-
spectral and multispectral image partitioning, are presented.
These results prove the effectiveness of the proposed

algorithm with regard to both stability and class number
estimation, as well as classification efficiency in compari-
son with other unsupervised and supervised classification
approaches.
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