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Abstract. Visual tracking is very challenging due to the existence of several sources of variations, such as partial
occlusion, deformation, scale variation, rotation, and background clutter. A model-free tracking method based on
fusing accelerated features using fast explicit diffusion in nonlinear scale spaces (AKAZE) and KLT features is
presented. First, matching-keypoints are generated by finding corresponding keypoints from the consecutive
frames and the object template, then tracking-keypoints are generated using the forward–backward flow tracking
method, and at last, credible keypoints are obtained by AKAZE-KLT tracking (AKT) algorithm. To avoid the
instability of a statistical method, the median method is adopted to compute the object’s location, scale, and
rotation in each frame. The experimental results show that the AKT algorithm has strong robustness
and can achieve accurate tracking especially under conditions of partial occlusion, scale variation, rotation, and
deformation. The tracking performance shows higher robustness and accuracy in a variety of datasets and
the average frame rate reaches 78 fps, showing good performance in real time. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.25.2.023011]
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1 Introduction
Visual object tracking, which is the process of estimating
the motion parameters such as location, scale, and rotation
of the object in an image sequence given the initial box
in the first frame, is a popular problem in computer vision,
with wide-ranging applications including visual navigation,
military reconnaissance, and human–computer interaction.1,2

Although significant progress has been made in recent years,
the problem is still difficult due to factors such as partial
occlusion, deformation, scale variation, rotation, and back-
ground clutter.3 To solve these problems, numerous algo-
rithms have been proposed.4–6

The online learning algorithm is one of the useful algo-
rithms that has been widely used to solve the problem of
objects’ changing appearance. As some information of the
objects to be tracked is known in advance in various scenar-
ios, it is possible to employ prior knowledge to design the
tracker. However, for other applications, as nothing about
the objects of interest is known beforehand, no prior knowl-
edge can be of use. Also, it is impossible to employ offline
machine learning techniques to achieve efficient tracking
because the appearance of an object is likely to vary due
to its constant movements and also under different environ-
mental conditions, such as varying level of brightness.7,8

Instead, online learning algorithms have been employed to
adapt the object model to the abovementioned uncertainties.
In practice, however, updating a model often introduces
errors as it is difficult to explicitly assign hard class labels.

To efficiently track the constantly changing object and
avoid the errors caused by an online learning algorithm,

a model that precisely represents the object is needed.
Various forms of representation of the object are used in
practice, for example: points,9,10 contours,11,12 optical
flow,13,14 or articulated models.15,16 Models that decompose
the object into parts are more robust,17,18 as local changes
only affect individual parts. Even when individual parts are
lost or in an erroneous state, other object parts can still re-
present the object well. Keypoint, such as SIFT,19 SURF,20

ORB,21 AKAZE,22 and so on, is a representative kind of
local feature that has been widely used in image fusion,
object recognition, and other fields.

In this paper, a model-free tracking method based on
fusing AKAZE and KLT features is proposed. The brief
procedure is as follows: first, generate matching-keypoints
by finding corresponding keypoints from the consecutive
frames and the object template, then generate tracking-key-
points using the forward–backward flow tracking method,
and at last, obtain credible keypoints by AKT fusion algo-
rithm. To avoid the instability of a statistical method, the
median method is adopted to compute object’s location,
scale, and rotation in each frame.

2 Background Work
AKAZE22 is regarded as the improved version of SIFT
features and SURF. It is a more stable feature detection algo-
rithm. Traditional SIFT and SURF feature detection algo-
rithms build scale space by the linear Gaussian pyramid.
However, this kind of linear decomposition can cause loss of
accuracy, object’s edge blur, and loss of details. In order to
solve these problems, AKAZE algorithm uses the method
based on nonlinear scale space. The fast explicit diffusion
(FED)23 is used to construct scale space. By using this
method, any step length can be applied. Compared to*Address all correspondence to: Junhua Yan, E-mail: yjh9758@126.com.
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SIFT and SURF, the computational complexity is greatly
reduced and the robustness is improved. In the following
subsections, the detailed procedures of constructing nonlin-
ear scale space using FED scheme will be illustrated. The
process of feature detection and the effects of feature descrip-
tion of AKAZE algorithm based on modified-local differ-
ence binary (M-LDB) will then be discussed.

2.1 Building Nonlinear Scale Space
Similar to SIFT in the construction of the nonlinear scale
space, scale level increases logarithmically. The scale space
constructed has Pt

aiðx; yÞ octaves and each octave has Va

layers. Different octaves and layers are marked with serial
numbers o and s, respectively. The relationship between
them and the scale parameter σ is shown in the equation
below:

EQ-TARGET;temp:intralink-;e001;63;572σiðo; sÞ ¼ 2oþs∕S; (1)

where o ∈ ½0: : : O − 1�, s ∈ ½0: : : S − 1�, i ∈ ½0: : :M − 1�.
M is the total number of images that remain after filtration
by the filter. Since the nonlinear diffusion filter is based on
the scale of time, scale parameters σi with the unit of pixel is
transformed to the unit of time, as shown below:

EQ-TARGET;temp:intralink-;e002;63;486ti ¼
1

2
σ2i ; i ∈ ½0: : :M�; (2)

where ti is o ∈ ½0: : : O − 1�, s ∈ ½0: : : S − 1�, i ∈ ½0: : :M�
called evolutionary time. For each input image, a
Gaussian filter is first applied, then the gradient histogram
of the image is calculated. The contrast factor Pt

iðx; yÞ is
set as 70% of the gradient histogram. In the case of two-
dimensional (2-D) images, since the image derivative is
one pixel grid size, the maximal step size tmax is 0.25 without
violating stable conditions. Then by using a set of evolution-
ary time ti, all the images of scale space can be obtained
using FED scheme.

2.2 Feature Detection
Feature detection of AKAZE is achieved by computing
the Hessian local maxima after normalization of various
scales for the filtered images in the nonlinear scale space.
Calculation of a Hessian matrix is as follows:

EQ-TARGET;temp:intralink-;e003;63;264Li
Hessian ¼ σ2i;normðLi

xxLi
yy − Li

xyLi
xyÞ; (3)

where σi;norm ¼ σi∕2o
i
. For computing the second order

derivatives, the concatenated Scharr filters with step size

σi;norm are applied. First, search for maxima of the detector
response in spatial location. Check that the detector response
is higher than a predefined threshold and that it is a maxima
in a window of 3 × 9 pixels of three adjacent sublevels.
Finally, the 2-D position of the keypoint is estimated with
subpixel accuracy by fitting a 2-D quadratic function to
the determinant of the Hessian response in a 3 × 3 pixels
neighborhood and finding its maximum.

2.3 Feature Description
The diagram in Fig. 1, as supplied by Ref. 22, demonstrates
LDB24 and M-LDB tests between grid divisions around a
keypoint. The intensity is expressed by colorful grids and
the gradients in x are expressed by the arrows. The feature
description of AKAZE algorithm is based on M-LDB that
exploits gradient and intensity information from the nonlin-
ear scale space. And there are two main improvements of M-
LDB compared with LDB: (1) rotation invariance is obtained
by estimating the main orientation of the keypoint, as is done
in KAZE,25 and rotating the grid of LDB accordingly. (2) A
function of the scale σ is used as the subsample grids in steps
instead of using the average of all pixels inside each subdi-
vision of the grid. The scale-dependent sampling in turn
makes the descriptor robust to changes in scale.

3 Fusing AKT Tracking

3.1 Forward–Backward Flow Tracking
Because of the environmental impact or object’s appearance
change, the results of KLToften produce deviation, an evalu-
ation method needs to be established to judge the accuracy of
tracking results. Forward–backward error,26 which is based
on the forward–backward continuity assumption, can effec-
tively estimate the trajectory error of keypoints, i.e., if the
object tracking is correct, then the tracking results are inde-
pendent of time.

As shown in Fig. 2, for two adjacent frame It−1 and It,
xt−1 is a random keypoint from object template in the
frame It−1, xt is the corresponding keypoint of xt−1 in the
frame It using forward tracking, and x̂t−1 is the correspond-
ing keypoint of xt in the frame It−1 using backward tracking.
Forward–backward error is defined as the Euclidean
distance between two keypoints in frame It−1, i.e., eFBt−1 ¼
kxt−1 − x̂t−1k. If error eFBt−1 is bigger than a threshold
which we set, the keypoint will be tracked falsely.

We set the location of keypoint and status of forward–
backward error as a pair pair (keypoint, status). If the status
corresponding to keypoint is TRUE, which means the status

Fig. 1 Binary test: (a) LDB and (b) M-LDB.
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of forward KLT and backward KLT themselves both must be
TRUE, and error eFBt−1 is smaller than the Euclidean distance
threshold, then we call the keypoint with TRUE status
tracking-keypoint. The rest are called failing tracking-
keypoint.

3.2 Model of AKT
When calculating the homographic matrix between the initial
keypoints and the current keypoint based on the traditional
AKAZE algorithm, robust statistical methods, such as
RANSAC and LMEDS, are usually adopted. However, when
the number of outliers is too much, homographic matrix
estimation will get poor results. So, in this paper, we put
forward a tracking model called AKT, which can
fundamentally eliminate the false matching-keypoints and
reduce the proportion of outliers to effectively solve the
problem of inaccurate parameter estimation.

The diagram in Fig. 3 demonstrates how the AKT algo-
rithm fuses the matching-keypoints and tracking-keypoints
by AKT algorithm. The collection of Va is composed of
matching-keypoints Pt

aiðx; yÞ in the t’th frame corresponding
to the keypoints in object template obtained by AKAZE
matching algorithm. And these matching-keypoints are rep-
resented by black circles in Fig. 3. The collection of Vk is
composed of tracking-keypoints Pt

kiðx; yÞ in the t’th frame
corresponding to the keypoints in object template obtained
by KLT algorithm. And these tracking-keypoints are repre-
sented by gray circles in Fig. 3. There is a one-to-one
correspondence between matching-keypoints and tracking-
keypoints. Keypoints surrounded by the curve are credible
keypoints in the t’th frame, which will make contributions
to calculating an object’s location, scale, and rotation. The
rest of the key points are outliers and thus, they are deleted.

The credible keypoints are obtained by fusing matching-
keypoints and tracking-keypoints. Its collection is V.

Sort the Euclidean distance lti between the i’th pair of
matching-keypoints and tracking-keypoints in the t’th
frame in descending order, then the experiments show that
the optimal value ltTh to be set as maximum allowable
deviation threshold is in 0.26th of the distance sequence
because enough credible keypoints are ensured, and the
obvious false matching-keypoints can be removed. This
means that the all but the bottom 0.74th pairs of points
are valid matches. Set keypoint Pt

iðx; yÞ as the center, a
as the width and the height of the patch as Mt

i. The degree
of similarity between two patches is defined as

EQ-TARGET;temp:intralink-;e004;326;609αðMi;Mt
iÞ ¼ 0.5½βNCCðMi;Mt

iÞ þ 1�; (4)

where βNCC is the normalization correlation coefficient. Set
minimum allowed similarity threshold to be αTh, the set V of
credible keypoints is composed of three parts: (1) when the
Euclidean distance between the i’th pair of matching-key-
points and tracking-keypoints satisfies lti ≤ ltTh, keypoints
Pt
aiðx; yÞ ∈ V; (2) when lti > ltTh, AKAZE match or KLT

track may cause an error, lead to an excessively large
deviation, so mistakenly deleted credible keypoints can
be screened out by referring to similarity, namely if
αðMi;Mt

iÞ > αTh, matching-keypoints Pt
aiðx; yÞ ∈ V; and

(3) if αðMi;Mt
iÞ > αTh, tracking-keypoints Pt

kiðx; yÞ ∈ V.

3.3 Bounding Box
The traditional ways to calculate the homographic matrix
are statistical methods, such as RANSAC and LMEDS.
However, experiments show that the estimation of homogra-
phy gives poor results for nonplanar objects, even though the
keypoint association was performed correctly.27 So, in this
paper, the median method is put forward to compute object’s
location, scale, and rotation in each frame.

As shown in Fig. 4, Pcenterðx; yÞ and Pt
centerðx; yÞ represent

the center of the initial template and the object’s bounding
box in the t’th frame, respectively. Piðx; yÞ and Pt

iðx; yÞ re-
present credible keypoints of the initial template and that in
the t’th frame. θn and θtn represent the angle between the
i and iþ 1 keypoints of the initial template and that in the
t’th frame. dn and dtn, respectively, represent the Euclidean
distance between the keypoints in the initial template and
that in the t’th frame. With the following equations, the
relative changing rate of position, scale and rotation angle
can be calculated:

Fig. 3 The model of AKT.

Fig. 2 Forward–backward error in two adjacent frames.

Fig. 4 The median method to get object’s location, scale, and
rotation.
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EQ-TARGET;temp:intralink-;e005;63;752dtcenterðx;yÞ¼medianðkPt
iðx;yÞ−Piðx;yÞkÞ;i∈ ½1;N�; (5)

EQ-TARGET;temp:intralink-;e006;63;729stcenter ¼ medianðdtn∕dnÞ; n ∈ ½1; ðN − 1Þ!�; (6)

EQ-TARGET;temp:intralink-;e007;63;702θtcenter ¼ medianðθtn − θnÞ; n ∈ ½1; ðN − 1Þ!�; (7)

where median represents the function of calculating median.
Set the four vertices’ coordinates of initial tracking box as
Priðx; yÞ; i ¼ ½1;4�, its relative offset to the center of initial
tracking box is Pdiðx; yÞ, i ¼ ½1;4�, in the t’th frame, the ver-
tices’ coordinates of tracking box can be obtained by the fol-
lowing equations:

EQ-TARGET;temp:intralink-;e008;63;610Pt
centerðx; yÞ ¼ Pcenterðx; yÞ þ dtcenterðx; yÞ; (8)

EQ-TARGET;temp:intralink-;e009;63;578xtrotate ¼ cos θtcenter · xPdi
− sin θtcenter · yPdi

; (9)

EQ-TARGET;temp:intralink-;e010;63;550ytrotate ¼ cos θtcenter · yPdi
þ sin θtcenter · xPdi

; (10)

EQ-TARGET;temp:intralink-;e011;63;522Pt
riðx;yÞ¼Pt

centerðx;yÞþstcenter ·P
t
rotateðxtrotate;ytrotateÞ;i¼½1;4�;

(11)

where xtrotate and ytrotate, respectively, represent the x-coordi-
nate and y-coordinate after rotation. Pt

riðx; yÞ are the four
vertices’ coordinates of tracking box in the t’th frame.
The tracking box B ¼ ðb1; b2; : : : bnÞ of each frame can
be obtained through the calculation above.

3.4 Algorithm Procedure
Given a sequence of images I1; : : : ; In and an initializing
region b1 in I1, our aim in each frame of the sequence is

to recover the box of the object of interest. Steps of the
AKT Algorithm 1 are as follows:

4 Experimental Results
We evaluated the proposed tracking algorithm based on
fusing AKAZE and KLT (AKT) algorithm using sequences,
as supplied by Ref. 28, with challenging factors including
partial occlusion, drastic illumination changes, nonrigid
deformation, background clutter, and motion blur. We com-
pared the proposed AKT tracker with seven state-of-the-art
methods: tracking-learning-detection (TLD),14 compressive
tracker (CT),29 context tracker (CXT),30 color-based probabi-
listic tracking (CPF),31 structured output tracking with ker-
nels (Struck),32 multiple instance learning tracker (MIL)33

and the circulant structure of tracking with kernels (CSK).34

All data in the experimental results and the quantitative
evaluation are based on the unified dataset and the same ini-
tial state conditions. Since our algorithm focuses primarily
on the challenges of partial occlusion, deformation, rotation,
and scale variation, we only include eight of the videos that
mainly contain these challenges and neglect the others in the
following discussions. Additionally, the results of precision
and success rate are based on 22 videos, in which the good
ones are as shown in Fig. 5 and Table 1. Experimental envi-
ronment: Visual Studio 2013 + OpenCV3.1.0. Equipment is
configured to: 2.00 GHz, dual processor, a 64-bit operating
system, the 32-Gb installed memory.

There are a range of measures available in previous
research for assessing the performance of tracking algo-
rithms quantitatively. Many authors employ the center-error
measure that expresses the distance between the centroid of
the algorithmic output and the centroid of the ground truth.
This measure is only a rough assessment of the localization.
Since it is not bounded, the comparison of results obtained

Algorithm 1: Fusing AKAZE-KLT tracking.

Input: Sequences of images S ¼ ðI1; I2; : : : ; InÞ and initializing object template b1.

1: Pi ðx; yÞ←AKAZE detectðI1Þ, detect and describe keypoints of object template in the first frame using AKAZE algorithm.

2: for t ¼ 2: : : n do

3: Pt
di ðx; yÞ←AKAZE detect½I t ðROIÞ�, detect and describe keypoints of search window in the t th frame

4: Pt
ai ðx; yÞ←AKAZE matchðPi ; Pt

di Þ, match keypoints of object template and search window using AKAZE algorithm.

5: Pt
ki ðx; yÞ←KLTtrack½Pi ðx; yÞ; I1; I t �, track keypoints of object template in search window in the t th frame using forward-backward KLT algorithm.

6: Pt
i ðx; yÞ←fuse½Pt

ai ðx; yÞ; Pt
ki ðx; yÞ�, fuse the results of AKAZE matching and KLT tracking using AKT algorithm.

7: dt
centerðx; yÞ ¼ medianðkPt

i ðx; yÞ − Pi ðx; yÞkÞ

8: stcenter ¼ medianðdt
n∕dnÞ; n ∈ ½1; ðN − 1Þ!�

9: θtcenter ¼ medianðθtn − θnÞ; n ∈ ½1; ðN − 1Þ!�

10: bt←fPt
r1ðx; yÞ; : : : ; Pt

r4ðx; yÞg, the tracking box is acquired by coordinates of four vertices.

11: end for

Output: Tracking box B ¼ ðb1; b2; : : : bnÞ, tracking location dt
centerðx; yÞ, tracking scale stcenter, tracking rotation θtcenter.
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on different sequences is difficult. So, we also employed
the widely used overlap measure

EQ-TARGET;temp:intralink-;e012;63;96oðbT; bGTÞ ¼
bT ∩ bGT
bT ∪ bGT

; (12)

where bT is the tracker output and bGT refers to the manually
annotated bounding box, ∪ represents union, namely, the
overlap of bT , and bGT , ∩ represents intersection of these
boxes. The overlap rate is a better indicator for per-frame
success when bounded between 0 and 1.35

Fig. 5 The tracking results of AKT algorithm on different sequences: (a) FaceOcc1, (b) FaceOcc2,
(c) Jogging1, (d) Jogging2, (e) Mhyang, (f) Sylvester, (g) Walking, and (h) Walking2.

Table 1 The CLE and average frame per second (pixel/FPS).

Sequence26 TLD14 CT27 CXT28 CPF29 Struck30 MIL31 CSK32 AKT

FaceOcc1 32.9/12.3 32.0/42.3 22.6/10.1 31.7/25.2 2.6/9.8 31.0/24.0 16.9/108.2 12.0/41.0

Gym 15.7/19.1 26.5/49.7 8.7/6.5 21.8/50.5 9.3/7.2 16.8/23.8 11.0/109.9 23/52.1

Jogging1 11.3/20.0 92.7/58.5 49.5/23.1 21.9/51.6 49.0/10.2 94.4/23.8 236.0/170.8 11.7/82.5

Jogging2 14.3/16.1 138.6/59.4 125.4/25.5 20.8/45.9 89.0/10.0 136.8/26.4 98.6/134.5 7.9/72.4

Mhyang 8.9/15.1 25.8/46.3 5.5/11.0 15.5/102.5 5.3/9.5 15.2/27.5 5.4/148.4 8.2/67.7

Sylvester 12.5/16.3 13.5/45.2 20.5/4.5 16.2/57.2 7.8/7.0 14.3/25.9 10.2/150.5 13.7/85.7

Walking 64.5/18.8 78.6/32.0 168.8/9.8 4.6/53.1 6.4/10.5 5.6/25.0 7.7/186.4 5.2/117.5

Walking2 24.3/20.1 65.6/48.3 30.4/14.8 49.9/52.1 13.9/10.6 35.5/31.5 28.8/150.9 13.1/104.1

Average CLE 23.0 59.2 53.9 22.8 25.2 43.7 39.3 11.9

Average FPS 17.2 47.6 13.2 54.8 9.3 26.0 144.9 77.9
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Since the rotation is not considered in the ground truth of
the benchmarks, it is excluded in the overlap comparisons
between our results and the benchmarks.

4.1 Accuracy Comparison of Methods for Tracking
The tracking performance of the AKT algorithm on
different datasets28 is as shown in Fig. 5. Sequences (a)
and (b) mainly contain the challenging aspect of partial
occlusion. Sequences (c) and (d) mainly contain deforma-
tion. Sequences (e) and (f) mainly contain plane rotation

and out-of-rotation. Sequences (g) and (h) mainly contain
scale variation, and so on. The results show that facing differ-
ent situations, the AKT algorithm can accurately track the
object and has a very good robustness.

Although the AKT algorithm shows good tracking results
in these videos, there are still some challenges that are hard to
deal with. Since the AKT algorithm is based on keypoints,
when the object’s appearance is smooth or the texture is not
rich, it may struggle, as shown in Fig. 6(a). Also, when the
object’s appearance is almost or totally changed, the tracking
box may drift. For example, the initial object is the face, but

Fig. 6 The AKT algorithm suffers from texture less object and the changed appearance: (a) the tracking
box is given falsely because of fewer keypoints and (b) the tracking box drifts because of the changed
appearance.
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Fig. 7 (a) Precision and (b) success rate.
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when the person turns around, it is hard to track because of
the changed appearance, as shown in Fig. 6(b).

4.2 Performance Comparison of Methods for
Tracking

The center location error (CLE) and average frame per sec-
ond (fps) of AKTalgorithm and other seven kinds of tracking
algorithms are shown in Table 1 (bold fonts indicate the best
or second best performance), the results of the other seven
kinds of tracking methods on different sequences in the table
comes from Ref. 26. In Table 1, the results show that among
the tracking on the eight datasets, the frame rate of AKT

algorithm is 77.9 fps, showing a high real-time performance
(the average fps comes in the top two 7 times), and achieving
a high tracking accuracy with the average CLE of 11.9 pixels
(the average CLE comes in the top two 5 times), the tracking
performance is better than the other seven methods.

The CLE is defined as the average Euclidean distance
between the center locations of the tracking boxes using
our method and the manually labeled ground truths. Then
the average CLE over all the frames of one sequence is
used to summarize the overall performance for that sequence.
Precision plot shows the percentage of frames whose esti-
mated location is within the given threshold distance Tth of
the ground truth, as shown in Fig. 7(a). The results show that

Fig. 8 Comparison results of methods for homography estimation: (a) similar accurate results for homog-
raphy estimation, (b) LMEDS and RANSAC gives poor results while MEDIAN gives good result, (c) errors
of x -coordinate displacement, (d) errors of y -coordinate displacement, (e) errors of scale, and (f) errors of
rotation.
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precision of AKT tracking is higher than the other algorithms
and similar to Struck.

To measure the performance of success rate on a sequence
of frames, we count the number of successful frames whose
overlap o is larger than the given threshold T 0

th. The success
plot shows the ratios of successful frames at the thresholds
varied from 0 to 1, as shown in Fig. 7(b). The results show
that AKT algorithm is superior to other algorithms.

4.3 Error Comparison of Methods for Homography
Estimation

In order to evaluate the different methods for homography
estimation, we developed our own dataset because the data
supplied by Ref. 26 did not include rotation data. We gained
a total of 200 frames randomly as original frames. Then we
transformed these frames using the affine model, as shown in
Eq. (13).

EQ-TARGET;temp:intralink-;e013;63;425

�
x 0

y 0

�
¼ s

�
cos α sin α
− sin α cos α

��
x
y

�
þ
�
dx
dy

�
; (13)

where ½x 0y 0�T represents the coordinate of a point in the
original frame. ½xy�T represents the coordinate of a point
in the transformed frame. s, α, and ½dxdy�T , respectively, re-
present scale, rotation, and displacement of the affine model.
After transforming, we can get the dataset composed of
original frames and transformed frames with known affine
homography.

Then, under the condition that the keypoints of original
frames and that of transformed frames are the same, we
calculate the errors of displacement (pixel), scale (1) and
rotation (deg) to get the error figures (method LMEDS in
red, RANSAC in blue, MEDIAN in green), as shown in
Fig. 8. The independent variable of error figures is the num-
ber of frames, whereas the dependent variable is the error.

The average error (AE) is used for comparison as the first
evaluation criterion, as shown in Table 2. There will be
noises causing by obvious variable estimation error, so to
make better comparison of the methods for homography esti-
mation, we set up average error without noise (AEN) as the
second evaluation criterion. From the error figures, we set
100 pixels as location noise threshold, 10 as scale noise
threshold, 150 deg as rotation noise threshold. The lower
the AE and AEN, the better the performance of method for
homography estimation. The smaller the difference between
AE and AEN, the more stable the method for homography
estimation. Therefore, the experimental results show not only
that the median method is more stable, not having apparent
noises, but also that its value of AE and AEN is less than that
of the traditional statistical method.

4.4 Selection of Threshold for Tracking Results
The ratio of the number of inliers to the total number of
matching-keypoints is called inlier ratio (IR). The larger
the IR, the better the estimation of homographies. We impose
that the error in location for two corresponding keypoints has
to be less than 2.5 pixels, i.e., kF 0

b −HðFaÞk < 2.5, where H
is the true homography between the frames, Fa is the loca-
tion of keypoint a in original frame F, and F 0

b is the location
of keypoint b in transformed frame Fb. The keypoint meet-
ing above condition is called inlier. To find the threshold for
better tracking, we still use the dataset put forward in Sec. 4.3
with the total number changed to 2000. We calculate the IR
of these corresponding frames and the mean of IR is 0.74, as
shown in Fig. 9. Therefore, we set optimal value ltTh for
tracking as the mean of IR to avoid outliers.

5 Conclusion
In this paper, in an effort to reduce an excess of outliers when
using traditional AKAZE match-tracking algorithm and
solve the problems caused by poor homography estimates
produced by statistical methods, AKT algorithm is put for-
ward. The experimental results on different datasets show
that the AKT algorithm can deal with challenges, such as
partial occlusion, deformation, scale variation, rotation, and
background clutter, showing high real-time performance and
accuracy. However, since the tracking method used is based
on keypoints, when the objects appearance is smooth, and
texture is not rich, using the AKT algorithm may result
in reduction of the effectiveness of tracking. Therefore, in
future work, we will address the problems mentioned above.
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