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Abstract. Recent advancements in visual sensor technologies have made behavior analysis practical for in-
home monitoring systems. The current in-home monitoring systems face several challenges: (1) visual sensor
calibration is a difficult task and not practical in real-life because of the need for recalibration when the visual
sensors are moved accidentally by a caregiver or the senior citizen, (2) privacy concerns, and (3) the high hard-
ware installation cost. We propose to use a network of cheap low-resolution visual sensors (30 × 30 pixels) for
long-term behavior analysis. The behavior analysis starts by visual feature selection based on foreground/back-
ground detection to track the motion level in each visual sensor. Then a hidden Markov model (HMM) is used to
estimate the user’s locations without calibration. Finally, an activity discovery approach is proposed using spatial
and temporal contexts. We performed experiments on 10 months of real-life data. We show that the HMM
approach outperforms the k-nearest neighbor classifier against ground truth for 30 days. Our framework is
able to discover 13 activities of daily livings (ADL parameters). More specifically, we analyze mobility patterns
and some of the key ADL parameters to detect increasing or decreasing health conditions.©The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.25.4.041003]
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1 Introduction
Due to rapid improvement in the medical sector over the last
decades, the average lifespan of seniors has been steadily
increasing. According to the UN world population pros-
pects,1 by 2020, more than 25% of the European population
will be over 60. During the same period, the number of peo-
ple over 80 will double. As a person ages, the immune sys-
tem is getting weaker and body organs begin to degrade. This
results in a variety of chronic and degenerative diseases, such
as Alzheimer’s disease, diabetes, Parkinson’s disease, heart
attacks, and arthritis.2

Nowadays, aging-associated diseases have a significant
impact on health care. The institutions that take care of the
senior citizens will run into operational and financial prob-
lems in the approaching decade. As a financial consequence,
it is estimated that the total number of workers is going to
decrease from four workers per retiree to two workers per
retiree. This reduction in the workforce is going to act as
a drag on the growth and the per capita income, with a reduc-
tion risk in potential growth. This will increase the health
care expenditure over the next couple of decades.3–5 Also,
the senior citizens in Europe use more than 54% of the hos-
pital care followed by 19% of nursing home care in their last
year of life.6 Therefore, the current health care system is
becoming strained as the aging population increases over
time.

At the same time, a shortage of professional caregivers for
the aging population is predicted. Therefore, family mem-
bers acting as informal caregivers will play a more prominent

role. Clinical observation7 showed that supporting-depen-
dent individuals at home create many complications for
the informal caregiver, such as high levels of distress and
depression. With an increase in the aging-associated dis-
eases, the demographic old-age dependency ratio is pre-
dicted to increase in 2060 from 27.8% to 50.1% in the
EU.5 This raises concerns on the quality of the offered health
care service for the senior citizen in the future.

Aging-in-place presents itself as a promising solution for
health care systems. It is defined by the Center for Disease
Control as “the ability to live in one’s own home and com-
munity safely, independently, and comfortably, regardless of
age, income, or ability level.”Aging-in-place has gained a lot
of attention in recent years due to the fact that many senior
citizens prefer to age and maintain their independence as
long as possible in their own homes8 because of emotional
and physical associations, memories, and comfort. Aging-in-
place promotes the well-being of older people without sac-
rificing the quality of life in a familiar environment and
maintains valuable social networks. The success of aging-in-
place depends on ambient-assisted living (AAL) tools, which
have witnessed tremendous improvements in the last few
years. AAL tools provide supervision and assistance with
activities of daily living (ADL) to prevent, cure, and improve
wellness and health conditions of seniors.

In this paper, we utilize low-resolution visual sensors to
build an in-home monitoring system. The system is installed
in a service flat of a senior citizen. The results in this paper
are based on data obtained from an elderly volunteer, 83
years old with diabetes and decreased mobility due to a little
paralysis. The resident has a very clear mind. In previous
work,9 users’ locations and mobility statistics were obtained
from a robust people tracker based on recursive maximum
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likelihood principles. However, this people tracker requires
accurate camera calibration. Camera calibration is a difficult
task since it requires efforts to adjust the camera poses to
have overlap between the cameras’ fields of view (FOVs).
Also, calibration is not practical in real-life monitoring envi-
ronments because it may have to be repeated after acciden-
tally moving the camera by a caregiver or the senior citizen.
In this case, recalibration is needed.

The computer vision algorithms used in this paper are
based on vision algorithms developed in the research project
“Little Sister: low-cost monitoring for care and retail,”10
which focuses on creating a sensor-based monitoring system
that can match, in terms of performance, a combination of
the body-worn devices and the high-resolution cameras at
a much reduced cost. They are also one of the core compo-
nents of the AAL Joint Programme project “SONOPA: social
networks for older adults to promote an active life.”11 In
SONOPA, the aim is to combine a social network with activ-
ity recognition in a smart home environment to stimulate and
support activities and daily life tasks. SONOPA suggests
suitable activities and social connections to the senior citizen
automatically, proactively, and at the optimal time, while
providing a simple bridge to the social network of the senior
citizen. SONOPA achieves this by analyzing both physical
and online activities of senior citizen users in their smart
homes. We have an in-home monitoring system with visual
sensors installed in Belgium, which has been operational for
10 months. This paper extends and improves the work of
SONOPA and Little Sister with hidden Markov modeling
and activity discovery techniques.

The main contributions of this paper are (1) the extraction
of the elderly’s location using visual sensor features and a
hidden Markov model (HMM). This approach avoids the
usage of tracking algorithms in a calibrated sensor network.
We compare our approach with a k-nearest neighbor (kNN)
classifier against collected ground truth for 30 days. (2) The
introduction of a rule-based approach for activity discovery
using spatial and temporal contexts. The ADL parameters
span 10 months of real-life data in a service flat of a senior
citizen. The data include many different activities, such as
sitting, taking a nap, eating, cooking, taking a shower, going
to the toilet, watching TV, sleeping, and being out-of-home.
In contrast to earlier research,12,13 we monitored real-life
activity without resorting to simulations. Simulated data are
obtained by people acting out senior citizens’ life-style risk
not being representative of real-life situations. Moreover,
they are by necessity short, making it difficult to study the
analysis of long-term trends. (3) the detailed analysis of
some key ADL parameters is to detect some health changes.

The remainder of the paper is organized as follows.
Related work in the literature is listed in the next section.
Section 3 gives an overview of the service flat set-up with
the in-home monitoring system. Section 4 explains the pro-
posed behavior analysis approach. Section 5 shows the
experimental results. Finally, Section 6 draws conclusions.

2 Related Work
The sensors used in AAL tools can be divided into two main
categories: (1) wearable sensors and (2) ambient sensors. In
the first category,14–16 various wearable sensors, such as
accelerometers, gyroscopes, proximity sensors, and e-textile
sensors, are attached to the subject to monitor vital signs,

such as heart rate, respiration, blood pressure, glucose level,
and muscle activity. Wearable sensors face a few dis-
advantages, such as limited battery life, high cost, missing
data when the user forgets to wear the device, and the
need to attach them to specific body parts to provide reliable
measurements.

In the second category, ambient sensors are installed in
the home environment by mounting them on the wall or the
ceiling and/or embedding them in furniture and appliances.
Passive infrared (PIR) motion sensors, visual sensors
(including special technologies such as depth cameras), and
radio frequency identification (RFID) are most popular in
research.

Tables 1 and 2 summarize the different capabilities and
properties of three in-home sensors: PIR, Kinect, and visual
sensors. In Table 1, four capabilities such as location, pres-
ence, shape, and tracking of the three technologies are com-
pared. PIR sensors have limited capabilities when they are
compared to Kinect and visual sensors. PIR sensors can pro-
vide good presence detection accuracy, but they cannot pro-
vide very accurate information about the exact location (e.g.,
x and y positions). Also, PIR sensors cannot track multiple
persons at the same time or do shape detection. On the
contrary, Kinect and visual sensors have highly accurate
location and presence detections, and both technologies
can track multiple persons. Shape detection and skeleton
extraction can be done more accurately using Kinect than
visual sensors.

Table 2 shows several properties of PIR, Kinect, and vis-
ual sensors:

• Network density: The number of sensors required to be
installed in an area to provide some specific service. In
Ref. 17, the authors quantified the network density
(ND) using the order of magnitude (in base 2) of
the number of sensors. For instance, if a single camera
can detect a person within area A, then the density of
the camera solution is log2ð1Þ ¼ 0. PIR sensors require
a high ND to provide accurate locations (ND ¼ 4). A
high ND requires a complex infrastructure, cumber-
some to install and manage.

• Resolution: PIR sensors return a state “on” if human
presence is detected within a certain sensing area,
otherwise a state “off” is returned. Kinect has an infra-
red depth sensor with an image resolution of 640 ×
480 pixels and a color camera sensor with an image

Table 1 Comparison between the different capabilities of PIR, visual,
and Kinect sensors. H, M, and L stand for high, medium, and low val-
ues, respectively.

Technology
Location
detection

Presence
detection

Shape
detection Tracking

PIR
sensors

L M Not
possible

Single
person

Visual
sensors

H H L Multiperson

Kinect
sensors

H H H Multiperson
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resolution of 1280 × 1024 pixels. Visual sensors pro-
vide an image resolution of 30 × 30 pixels.

• Space occupancy: The dimensions of Kinect, visual,
and PIR sensors are (w × d × h): 37 × 15 × 12 cm3,
6.2 × 4.1 × 2 cm3,18 and 3.2 × 2.5 × 2.8 cm3, respec-
tively. The Kinect sensor clearly occupies more space
than PIR and visual sensors.

• Cost: The Kinect sensor has advanced hardware com-
ponents. This increases the price per unit (above 100
Euros), while the bill material of the visual sensor is
under 25 Euros.18 The PIR sensor is the cheapest
solution.

• Privacy concern: User studies in the projects Little
Sister and SONOPA indicated that the users attach
high priority to privacy, and they agreed to install low-
resolution cameras (e.g., visual sensors) or PIR sen-
sors, but not high-resolution cameras (e.g., Kinect),
which often raises privacy concerns. Visual sensors
pose very little privacy issues since they are not capable
of gathering detailed information.

• Operation: PIR sensors and the infrared depth sensor in
Kinect do not require lighting conditions to operate,
while visual sensors and the color camera in Kinect
require sufficient lighting conditions to operate.

• Applicability: PIR and visual sensors can only be used
in indoors scenarios (e.g., behavior analysis), while
Kinect sensors can be used indoors and outdoors (e.g.,
car tracking).

• Battery life: PIR sensors have a longer battery life than
Kinect and visual sensors, because PIR sensors con-
sume less processing power. Kinect and visual sensors
are installed in a wired setup and powered by mains
electricity. Given the low power consumption of the
visual sensors, it is possible to operate them on battery
over prolonged periods of time.

From the detailed comparison in Tables 1 and 2, Kinect
and visual sensors have similar and more powerful capabil-
ities than PIR sensors. Furthermore, the properties of the
visual sensors are more suitable than Kinect for in-home

monitoring systems, because of the affordable price and
the preservation of privacy.19 The images produced by the
visual sensors are 30 × 30 pixels. In these images, privacy
is maintained; thus, it is, for instance, hard to recognize
faces. However, they are very useful in our in-home moni-
toring system to recognize activities and to detect behavior
and behavioral changes of elderly. Examples of activities are
going outside the home or receiving visits.20 An example of a
behavioral change is increased or decreased mobility mea-
sured from speed or walked distance.21

A single PIR sensor records the occupant’s activities with
only a binary state indicating whether there is a motion
detected within its detection range. Thus, datasets recorded
using PIR sensors are, in fact, a time series of sensor acti-
vation events, which contain very limited information that
can be used to identify the corresponding individual. A sin-
gle camera can capture rich information with different levels
of granularities from the gross movements of subjects similar
to that provided by simple motion detection sensors to richer
information about posture, body motion, head and body ori-
entation, fidgeting, and so on. In most cases, multiple PIR
sensors and cameras are used in smart homes.

There have been many proposed approaches toward
recognizing ADL in a home setting with PIR sensors and cam-
eras, which can be broadly divided into two major categories:
supervised and unsupervised approaches. In the supervised
approaches, the task of recognizing ADL can be easily format-
ted into a classification problem where the model relies on
labeled data for training the desired activities. Many popular
machine learning algorithms such as support vector machine
(SVM), naive Bayes classifier, decision tree, and neural net-
work can be directly applied to activity recognition tasks.22–27

Moreover, probabilistic graphical models, such as HMM,
dynamic Bayesian network, and conditional random fields
(CRFs), have been used to model the activity transition
sequence for activity recognition purposes.28–34

PIR sensors are commonly used with supervised learning
approaches. Ordóñez et al.35 proposed hybrid discriminative
models by combining an artificial neural network and
an SVM with an HMM to recognize ADL parameters
from PIR sensor streams. van Kasteren et al.36 recognized

Table 2 Comparison between the different properties of PIR, visual, and Kinect sensors. H, M, and L stand for high, medium, and low values,
respectively.

Properties PIR sensors Visual sensors Kinect sensors

ND H M M

Resolution Single pixel (on/off) 30 × 30 pixels IR depth sensor: 640 × 480 pixels
Color camera: 1280 × 1024 pixels

Space occupancy L L H

Cost L M H

Privacy concern L L H

Operation (lighting) No Yes IR depth sensor: No; Color camera: Yes

Applicability Indoors Indoors Indoors/Outdoors

Battery life H L Not possible
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activities using an HMM and CRFs on a PIR sensor dataset
of 28 days. In Ref. 37, they focused on modeling activities
from PIR sensor data using hidden semi-Markov models
(SMM) and semi-Markov CRFs.

Also, cameras have been used with supervised learning
techniques. Chaaraoui et al.38 proposed a vision-based mon-
itoring system that relies on a multiview silhouette-based
pose representation where key pose models are learned. Then
dynamic time warping is used to recognize human actions.
Ahmad and Lee39 proposed a method for human action rec-
ognition from an arbitrary view image sequence by using
optical flow and human body shape features. Finally, HMMs
are trained to declare the action performed in the image
sequence. Chung and Liu40 applied a hierarchical context
HMM for behavior understanding from video streams in a
nursing center. Duong et al.41 applied the switching hidden
SMM to learn and recognize human behaviors and detect
anomalies using multiple cameras. Natarajan and Nevatia12

evaluated a coupled hidden SMM for activity recognition on
simulated and laboratory data.

Even though the majority of the proposed activity recog-
nition approaches are supervised methods, most of them
share the same limitation that the accurate activity labels for
PIR sensor datasets and cameras are very difficult to get. For
almost all of the current smart home testbeds with PIR sen-
sors and cameras, the data collection and data labeling are
two separate processes for which the activity labeling for
the collected data is extremely time consuming and laborious
because it is usually based on direct video coding and man-
ually labeling. Clearly, this limitation prevents the supervised
approaches from being easily generalized to the real-world
situation where activity labels are usually not available for a
huge amount of sensor data.

Therefore, many unsupervised approaches have been
proposed to handle the problem that activity labels are not
available. Many of them are based on sequence mining
approaches that use different sliding windows to find fre-
quent patterns,42–44 rule-based engines,13,45 and topic
models46,47 to discover repeated activities from raw sensor
event sequences. Castanedo et al.47 tackled the problem of
the large amount of sensor data by employing topic models
to learn the latent structure and the dynamics of sensor net-
work data in office environments. The authors used two data-
sets to analyze the data with the aim of learning and
discovering what is happening in the monitored environ-
ment. Alwan et al.13 explored the spatial–temporal relation-
ships among PIR sensor events using a rule-based approach
to infer the occurrence of activities with a high degree of
confidence on 37 days of test data in a living laboratory.
Theekakul et al.45 proposed a rule-based framework using
the mean of dynamic activities to infer the device orientation,
from which the appropriate set of activity classification rules
and threshold parameters can be selected. In Ref. 48, the
authors monitored the behavioral patterns for a senior citizen
living independently to perform analysis in the form of
behavioral rules. An evolving fuzzy rule-based system has
been proposed in Ref. 49 for modeling activities that evolve
over time, according to the changes observed in the way an
activity is performed from PIR sensor readings. The
Millennium Home50 detects deviations from normal daily
activities by using rule-based techniques.

Despite the popularity of PIR sensors, they are known for
having the following problems: (1) highly bursty output,
which limits PIR systems to single-person scenarios;
(2) self-triggering due to sudden changes in environmental
conditions, such as temperature, ventilating, and air condi-
tioning; (3) PIR sensors cannot sense immobile people.17

With cameras, the detection of people standing is possible,
because those persons tend to move parts of the upper body
(head, shoulders, and hands), which could be easily detected
by foreground detection algorithms.51,52 For this reason,
researchers found an alternative in using cameras to detect
different ADL parameters and abnormal behavioral patterns.
However, cameras are regarded with caution in terms of cop-
ing with user privacy concerns. In this case, postprocessing
algorithms are required to solve privacy issues.38

There are other efforts to demonstrate the usage of visual
sensors in simple scenarios. The authors in Ref. 53
constructed a camera sensor network for abnormal behavior
detection in outdoor environments for short sequences (500
and 236 frames) with a video resolution of 320 × 240 pixels.
Downes et al.54 designed an integrated mote for wireless
sensor networks where the cameras are a combination of
medium resolution (CIF) and low resolution (30 × 30) pix-
els. They demonstrated the use of their wireless sensor net-
work with a single-sensor node, which produces images
of 30 × 30 pixels to count pedestrians passing a walkway.
Rowe et al.55 presented FireFly Mosaic, a wireless image
sensor network system that has been deployed in an apart-
ment for activity analysis with an image size of 352 ×
288 pixels. Instead of using low-resolution cameras to ana-
lyze the occupancy map and to track people, Grünwedel
et al.56 resized images captured by high-resolution cameras.

The proposed low-resolution visual sensor network has
shown promising results in the application of AAL. In
Ref. 57, the authors proposed a novel measure to find similar
patterns of behavior between each pair of days from the
users’ detected positions, based on heatmaps and Earth
Movers Distance. Then an exemplar-based approach is used
to identify sleeping, eating, sitting activities, and walking
patterns. They used a dataset of 14 days. Xie et al.21 analyzed
the behavior patterns of an elderly person using statistical
features extracted from the senior citizen tracks, such as
the time of getting up and going to bed, the walking distance
over a day, and the number of tracks detected in a specific
area. Then the statistical features are clustered using a ran-
dom sample consensus principle method to detect the behav-
ior patterns. Eldib et al.20 measured the socialization level of
a senior citizen by detecting visits via HMM. In Ref. 58, a
video-based approach has been proposed to detect sleep
duration and quality among older adults. The authors ana-
lyzed sleep patterns and nightly bathroom visits indirectly
to recognize sleep disorders.

Our approach of building an in-home monitoring system
is different from the work in Refs. 38, 40, and 41. In the
aforementioned papers, camera calibration is a prerequisite
step to track the users’ locations for the ADL parameters
analysis. By contrast, we perform behavior analysis in an
uncalibrated environment. In addition, there are more
attempts to apply unsupervised approaches for activity rec-
ognition using PIR sensors than cameras.59–62 Also, cameras
with regular imaging resolutions often raise privacy concerns
and increase the cost of the sensor network. We solve these
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problems by using low-resolution cameras. Finally, in
Refs. 13, 35, 36, 53, and 55, the authors performed behavior
analysis on small datasets (several weeks) and the datasets
were captured in lab environments. On the contrary, we per-
form long-term behavior analysis on 10 months of real-data
recordings in a real-service flat setup.

3 Service Flat Setup
The in-home monitoring system deployed in the service flat
is composed of 10 cameras,18 as shown in Fig. 1. Each cam-
era includes a stereo pair of visual sensors producing images
of 30 × 30 pixels and a digital signal controller. The visual
sensor images often suffer from artifacts due to read-out
problems such as electrical interference, and it does not
have built-in processing capabilities, such as lens shading
correction resulting in a reduction of the image’s brightness

(vignetting). This can be solved by performing devignetting
on the digital signal controller.

The cameras consist of two Agilent ADNS-3060 high-
performance optical mouse sensors. These sensors are
used in gaming applications. Camilli and Kleihorst18 used
this sensor with a small adaptation to produce videos of 30 ×
30 pixels at 100 frames∕s. The sensors connect over a serial
peripheral interface bus directly to the internal memory of the
digital signal processor, which performs the video process-
ing. In our work, each microcontroller in each sensor per-
forms preprocessing, including devignetting (correcting
for lower brightness at the periphery of the image), automatic
gain control, and noise reduction.

The results in this paper are obtained from a system setup
in a service flat, covering an area of 8 × 4.4 m2. Figure 2
displays the living space layout with camera positions.

Fig. 1 The camera consists of stereo pair of image sensors controlled by a digital signal controller. Each
image sensor delivers an image with a resolution of 30 × 30 pixels.

Fig. 2 Living space layout showing the configuration of 10 visual sensors (each containing stereo image
sensor) covering an area of 8 × 4.4 m2.
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There are several challenges in the current setup:

• The collected visual sensor data includes 4 months of
partial recordings (from 5 to 7 running visual sensors
out of 10) and 6 months of full recordings. Our
approach should make use of both types of recordings
to have a continuous long-term dataset for behavior
analysis.

• The visual sensors cannot show what the senior citizen
is doing in the absence of sufficient lighting.

• The visual sensors are not installed in the bedroom
or the bathroom for the preservation of privacy. This
increases the difficulty of detecting accurate sleep
durations and bathroom visits. Also, other sensing
devices in other rooms are unavailable.

4 In-Home Monitoring System
Our proposed in-home monitoring systems include three
processing layers: a low-level, a mid-level, and a high-level
layer. In the low-level processing layer, the visual sensor fea-
tures are extracted by computing the foreground pixels to
track the motion level in each visual sensor. Then a simple
feature vector is formed, containing the most active visual
sensors at time instant t. In the mid-level processing layer,
an HMM uses the feature vector as observation sequences to
estimate the corresponding state sequences. The states are
the different locations in the service flat. In the high-level
processing layer, a rule-based approach for activity discovery
utilizes the spatial context, such as location, and the temporal
context, such as time duration, to infer the ADL parameters
of the senior citizen. Figure 3 shows a diagram with the three
processing layers of the proposed in-home monitoring
system.

There are several constraints, which have led us to depict
the current proposed system architecture. First, shape detec-
tion to extract the silhouette of the person for pose represen-
tation is a difficult task under low-resolution constraints,
because of large variations in both pose and orientation,

poor and quickly changing lighting conditions, and the
appearance of a person changes with body movements.
Second, tracking algorithms require a calibrated visual sen-
sor network and to have overlap between the cameras’ FOVs.
Both tasks are not practical to be performed in real-life envi-
ronments, because the visual sensors can be moved acciden-
tally. Therefore, recalibration and adjusting the cameras’
FOV are needed.

4.1 Low-Level Processing Layer
In this layer, the visual sensor video capturing and prepro-
cessing are done as in Ref. 9. We operate the visual sensor to
produce images of 30 × 30 pixels and an image depth of
6 bit∕pixel. In the preprocessing stage, a denoising step is
applied by averaging the gray values of each pixel over
time. The second preprocessing step is to produce a sharp
image of the outside world by applying devignetting and also
by correcting any pixel-dependent dark stream current in the
visual sensors.

The images captured by the visual sensors suffer from
noisiness and poor and quickly changing lighting conditions,
which are quite prominent indoors. In a previous study,9 sev-
eral foreground/background algorithms have been tested to
handle this effect. The correlation method has shown suffi-
cient robustness to illumination changes. In this paper, we
opted to use the correlation method, as shown in Fig. 4.
The correlation method parameters have been tuned to pro-
duce the best visualization results and to work with the mini-
mum lighting conditions. As a future work, we plan to study
different parameter settings. Table 3 summarizes the tuned
parameters.

Next, we propose a simple feature vector from which we
will estimate the presence of the senior citizen location. Let
pkðtÞ be the average number of foreground pixels in frames
t: : : tþ L − 1 of camera k. If some of the pkðtÞ exceed a
threshold Tp, then we consider this as a possible indication
that a person is in the room. Tp is selected by computing the
average number of the foreground pixels in the background
image. Then we output a feature vector xt ¼ ðk; k 0Þ, where k

Fig. 3 System architecture of the proposed approach.
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and k 0 are the indices of the cameras producing the largest
and second largest pkðtÞ at time instant t. The indices of the
cameras in xt are ordered from the largest to the smallest
pkðtÞ value. We chose not to have more than two camera
indices. In order to model the distribution of the observation
vector exactly, we would need to consider all possible com-
binations of values in the vector dimensions. This would
require nn parameters per camera, where n is the number
of features (camera index in this case), which easily results
in a large number of parameters and requires accordingly
large numbers of training elements.

Computing the feature vectors in all cameras causes the
HMMmodel to suffer from a high computational complexity
in the training stage. Another way is to use a supervised
learning approach to train a model using all the cameras’
foreground pixel percentages to estimate the senior citizen
locations. For this purpose, we used the kNN classifier as
a comparison to the HMM model. In the results section,
we will show that the HMM approach outperforms the tradi-
tional kNN classifier when compared to ground truth.

In the following section, we will estimate senior citizen
location based on a feature vector xt, which contains all
observations at a given time.

4.2 Mid-Level Processing Layer
An HMM is defined in terms of an observable measurement
variable xt and a hidden state variable yt. These variables
change with time t. In our case, the observable variable is the
feature vector produced by the low-level processing layer.
The hidden variable yt is the estimated location of the senior
citizen at time t. In this paper, the location is actually a dis-
crete index, with each index value representing a possible
location (e.g., a room or a part of a room).

Let x1; x2; : : : ; xT be the sequence observed. In the fol-
lowing, we will use the short-hand notation X1∶t to denote
the subsequence of observations with t ¼ 1; : : : ; T. The cor-
responding sequence of hidden states is represented as
y1; y2; : : : ; yT , where yt can assume one of Q possible states
1; : : : ; Q.

Our HMM assumes that only two dependencies exist, rep-
resented by directed arrows in Fig. 5. First, the hidden var-
iable yt at time t statistically depends only on the previous
hidden variable yt−1 (first order Markov assumption).
Second, the observable variable xt at time t depends only on
the hidden variable yt at the same time instant. We can, there-
fore, specify the HMM using three probability distributions:

• The probability of the initial states, pðy1Þ representing
the probability that a location y occurs at the beginning
of the state sequence.

• The probability of the state transition, pðytjyt−1Þ rep-
resenting the probability of switching from one state
yt−1 ¼ i (e.g., kitchen) at time t − 1 to another state
yt ¼ j (e.g., dining table) at the next time step, t. This
represents the probability of transitions between
locations.

• The probability of the observation, pðxtjytÞ, indicating
the probability that state yt (e.g., Sofa 1) would

Fig. 4 (a) Original images and (b) foreground images produced by the correlation method.

Table 3 Tuned parameters of the correlation method.

Parameters Values

Size of ω 3

ρmin 0.985

α 0.005

Fig. 5 A graphical representation of an HMM. The dark nodes represent observable variables, whereas
the white nodes represent hidden variables.
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generate observation xt. This represents the probability
of a particular location, generating a specific associated
visual sensor event.

Learning the parameters of these distributions corre-
sponds to maximizing the joint probability of a sequence of
states Y1∶t; t ¼ 1; : : : ; T and corresponding observations
X1∶t. The joint probability of all observations and hidden
states is

EQ-TARGET;temp:intralink-;e001;63;473pðY1∶T; X1∶TÞ ¼
YT

t¼1

pðxtjytÞpðytjyt−1Þ: (1)

The inference problem consists of finding the single
best state sequence (path) that maximizes pðY1∶T; X1∶TÞ.
Although the number of possible paths grows exponentially
with the length of the sequence, the best state sequence can
be found efficiently using the Viterbi algorithm.63 Using
dynamic programming, we can discard a number of paths
at each time step. This results in a computational complexity
of OðTQ2Þ for the entire sequence. Our HMM is fully con-
nected, as indicated in Fig. 6, where all the transitions are
allowed. Finally, the HMM model is trained based on the
Baum–Welch parameter estimation algorithm.64

4.3 High-Level Processing Layer
The commonly used approach to reason about human activ-
ities from sensor data is to identify ADL parameters that are
sufficiently important and interesting to track and then model
and detect occurrences of those ADLs. Modeling all of the
human activities in a supervised-based approach faces a
number of challenges and obstacles. First, in order to model
and detect activities, a large amount of sensor data must be
available. The sensor data should be labeled with the actual
activities (the “ground truth” labels). In real-world in-home
monitoring systems, such prelabeled data are very difficult to
obtain. Second, the time that is spent on activities, which are
easy to annotate (e.g., sleep times), is only a fraction of an
individual’s total behavioral routine. Therefore, modeling
and tracking only preselected activities ignores the important
insights that other activities can provide on routine behavior
and activity context of the individual.

In this section, we propose a rule-based method to
discover potential activity classes from unlabeled visual sen-
sor data. We look at the duration and the location to find

activities. To achieve this, we utilize the extracted state
sequence fy1; y2; : : : ; yTg, that is most likely to be generated
from the given observation sequence fx1; x2; : : : ; xTg. This
way, we interpret the meaning of the state sequence path.

Any human activity is associated with spatial and tempo-
ral contexts. Since the senior citizen locations are extracted
from the previous layer, this represents the temporal context
of a particular location such as being in the sofa or in the
bathroom. The temporal context is the time interval between
motions in a particular spatial context. The time interval
between motions is defined as the time that has elapsed
between two consecutive motions in a particular location.

When the senior citizen is located in the sofa, the most
probable activities associated with the sofa are sitting or tak-
ing a nap. The temporal context can easily differentiate
between both activities, the sitting activity contains more
micromovements (the time interval between motions is
low) while taking a nap activity contains less micromove-
ments (the time interval between motions is high). If the
senior citizen is inside the bathroom, the kind of the activity
performed in the bathroom depends on the spent time, taking
a shower requires a larger spent time than performing a toilet
activity such as washing hands. We used the K-means clus-
tering to determine the upper and the lower time interval
between motion thresholds. For instance, based on the
time interval between motions, there are two clusters cen-
tered around the sofa. In the first cluster, the time interval
between motion tends to be high. This provides an indication
of taking a nap activity. While in the second cluster, the time
interval between motion tends to be low. This shows the
senior citizen is active around the sofa. We follow the
same approach for each location to define the appropriate
thresholds. Finally, Fig. 7 shows the rules generated to dis-
cover activities related to bathroom and sofa locations.

On the other hand, eating and cooking activities are not
only associated with spatial and temporal contexts, but also
by the ratio of the spent time between the kitchen and the
dining table. A person is considered performing a cooking
activity, if the spent time in the kitchen area is higher than
for the dining table. Similarly, the eating activity is detected
when the spent time in the dining table is higher than for the
kitchen. Sitting (e.g., using a laptop) is another activity that is
associated with the dining table. The sitting activity occurs
when the time interval between motions is high and with no
spent time in the kitchen. The service flat exit door is close to
the kitchen and the dining table (see Fig. 2), the out-of-home
activity is found by detecting the last time an individual is
seen at one of the two locations and after that he is not

Fig. 6 A fully connected HMM configuration to recognize five distinct
locations.

Spatial (location)

Sofa Bathroom

Compute time interval
between motions (sofa)

>5s
<1500 s 

Sitting

<5 s 

Other

>1500 s
<3000 s 

Taking a 
nap

Compute time interval
between motions (bathroom)

>60 s
<300 s 

Toilet

<60 s 

Other

>300 s
<750 s 

Taking a 
shower

Fig. 7 A set of rules to identify bathroom and sofa activities as sitting,
taking a nap, toilet, taking a shower, or other.
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seen for a long time. Similarly, the K-mean clustering is used
to define the upper and the lower time intervals between
motion thresholds. Figure 8 shows the rules generated to dis-
cover activities related to kitchen and dining table locations.

The rule-based approach can be used to discover repeat-
ing occurrences. Our rule-based approach is able to discover
13 activities. Often, the rule-based approach does not lead to
results with 100% certainty. For example, if the time interval
between motions in the kitchen is very short, this could typ-
ically mean that the senior citizen is cooking, but it is also
possible that he is cleaning the kitchen. The rate of false-pos-
itive detection can be reduced by the use of additional appli-
ance sensors.

5 Experiments

5.1 Dataset
For validating the performance of our proposed framework,
we collected 10 months of real-life recordings using a net-
work of 10 low-resolution visual sensors producing images
of 30 × 30 pixels at a frame rate of 50 fps. Video capturing is
time synchronized. Figure 9 shows an overview of the num-
ber of running visual sensors in the dataset. The minimum
number of running visual sensors is 5 and the maximum

number is 10. The dataset includes 60% of 8 to 10 running
visual sensors (162 days) and 40% of 5 to 7 running visual
sensors (96 days). The number of running visual sensors has
some impact on the results, as shown in Sec. 5.2.

The ground truth is collected from the diaries. In the dia-
ries, the senior citizen wrote down some of his activities such
as sleep time, wake up time, the start and the end time of each
time being out-of-home. The diaries are verified by an infor-
mal caregiver (e.g., family member). The diaries are missing
information about the ADL of the senior citizen, such as the
amount of time the senior citizen spent taking a nap, sitting,
cooking, eating, taking a shower, watching a TV, and so on.
We performed a visual inspection of the videos in order to
collect ground truth for some of the senior citizen activities.
Also, the data interpreted has been demonstrated to some
caregivers in the project meetings and workshops.65 The
caregivers were excited about what is possible from the vis-
ual sensor data analysis.

5.2 Location Analysis
We compare the performance of the proposed HMM
described in Sec. 4.2 for estimating the senior citizen loca-
tion with a kNN classifier against ground truth. In the kNN
classifier, a data vector of size m 0 is constructed, where m 0 is
the number of the visual sensors (m 0 ¼ 10). The data vector
holds 10 floating numbers, where each number represents
the foreground pixel percentage of the visual sensor. For
training the kNN model, 3 days of video recordings were
annotated. For each second, we labeled the senior citizen
location with the corresponding data vector. There are five
classes representing the locations in the service flat (Sofa
1, Sofa 2, kitchen, dining table, and bathroom). Finally,
the kNN classifier is trained with k ¼ 5. Other classifiers
have been tested, but kNN has found to give the best perfor-
mance among them.

The comparison is done by computing the time the senior
citizen spent in five locations in the service flat. The ground
truth is collected by visually inspecting the video recordings
and computing an approximation of the time the senior citi-
zen spent in each location. For testing the performance of the
HMM approach and the kNN classifier against ground truth,
10% of the dataset, which corresponds to 30 days, was

Spatial (location)

Kitchen Dining table

Compute time interval
between motions (kitchen)

>1500 s 

Out-of-
home

Compute time interval
between motions (dining table)

Sitting

>120 s
<1500 s 

Out-of-
home

>1500 s 

Compute spend time ratio
(kitchen and dining table)

<120 s<1500 s

H – Kitchen
L – Dining table

L – Kitchen
H – Dining table

EatingCooking

Fig. 8 A set of rules to identify kitchen and dining table activities as
out-of-home, sitting, eating, or cooking. L and H stand for low and high
micromovements, respectively.
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Fig. 9 Dataset analysis in terms of the number of running visual sensors.
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selected for the evaluation. We used the moving running
average to smooth out short-term fluctuations in the time
spent in all locations (average time spent in the kitchen,
with the time spent in the Sofa 1, with the time spent in
Sofa 2, with the time spent in the dining table, and with
the time spent in the bathroom), in order to choose days
with interesting results for the ground truth comparison.

Figure 10 shows the estimated time spent after applying
the moving average filter over an interval of 14 days. For the
ground truth comparison, we selected days with high and
low peaks to verify the estimated time spent in each location
with different numbers of running visual sensors. Figure 11
shows the comparison between the ground truth and the esti-
mated time spent. In Fig. 11(a), the estimated times spent of
HMM for Sofa 1, bathroom, and kitchen are 4.8, 0.73, and
1.35 h, which are better than the kNN approach (3.92, 0.98,
and 2.65 h) when compared to the ground truth (5.33, 0.83,
and 1.33 h). The kNN approach has better estimated time
spent for Sofa 2 (2.77 h) than HMM (2.27 h) when compared
to ground truth (2.66 h). Finally, both kNN and HMM
approaches have similar estimated time spent for dining
table. In Fig. 11(b), the estimated times spent of HMM
for Sofa 1 and dining table are 8.60 and 0.87 h, which
are significantly less than the estimated times spent of the
kNN classifier (9.65 and 2.29 h) when compared to ground
truth (7.5 and 1.03 h). The HMM and kNN have similar esti-
mated times spent for Sofa 2, bathroom, and kitchen.

To further analyze the performance of our approach with
kNN against ground truth, we use the mean absolute error
(MAE):

EQ-TARGET;temp:intralink-;e002;63;202MAE ¼
XN

r¼1

jvr − v 0
rj

N
; (2)

where vr is the estimated time spent for day r, v 0
r is the actual

time spent for day r, and N is the number of ground truth
days. The relative absolute error (RAE) is computed to mea-
sure the error percentage:

EQ-TARGET;temp:intralink-;e003;63;109RAE ¼
P

N
r¼1

jvr−v 0
rj

v 0
r

N
× 100: (3)

Finally, we measure the Spearman’s rank correlation coeffi-
cient (ρ) to assess the relationship between the estimated
time spent and the ground truth. The MAE, the Spearman’s
correlation coefficient, and the RAE results of the kNN and
HMM are shown in Table 4 for the different locations. The
overall MAE of HMM is 17.34 min, while the MAE of the
kNN classifier is 29.34 min. Similarly, the RAE of HMM is
19.73%, while the RAE of the kNN classifier is 66.01%. The
Spearman’s coefficients show that the correlation between
the estimated time spent of our approach and the ground
truth is higher than that for the kNN classifier. Clearly, our
approach using HMM outperforms the kNN classifier in
accuracy with MAE, ρ and RAE.

The MAE of HMM for Sofa 1 and dining table (29.82 and
26.59 min) are considerably higher than for Sofa 2, kitchen,
and bathroom (7.62, 13.83, and 8.83 min). The number of
running visual sensors has an impact on the HMM perfor-
mance, we found that there were more missing running
visual sensors in the dataset around Sofa 1 and dining table
than for Sofa 2, kitchen, and bathroom. The RAE and ρ of
our approach for Sofa 1, Sofa 2, and kitchen are better than
those for dining table and bathroom. We did a visual inspec-
tion of some of the ground truth videos, the visual inspection
has shown that the senior citizen tends sometimes to sit on
the dining table chair or go to the bathroom in very low light-
ing conditions. This results in difficulty for the visual sensors
to detect the presence of the senior citizen.

The estimated time spent in each location by our approach
is sufficiently reliable enough to perform behavior analy-
sis on.

5.3 Activity of Daily Living Analysis
An activity is associated with location and duration contexts.
Based on these two contexts, we identified 13 ADL param-
eters. The ADL parameters are cooking (kitchen), eating
(dining table), sitting (Sofa 1, Sofa 2, and dining table), tak-
ing a nap (Sofa 1 and Sofa 2), and watching TV which is
detected by computing the intensity values of the TV’s
region of interest. If the intensity precedes a threshold,
then the TV is on. Otherwise, the TV is off (Sofa 1), taking
a shower (bathroom), toilet (bathroom), being out-of-
home, going to sleep and waking up. In order to estimate the

Fig. 10 The overall estimated time spent after applying the moving average over an interval of 14 days.
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accuracy of our activity discovery approach described in
Sec. 4.3, we collected ground truth of 6 days by inspecting
the videos visually to check some of the findings. In the
ground truth, a set of criteria are defined to extract the ground
truth activities. For example, the senior citizen is said to be
cooking if he was using the oven, the cupboard, or the fridge.
Table 5 describes the chosen criteria for each ground truth

activity. Finally, we compute an approximation of the
time the senior citizen takes to perform an activity per day.

Table 6 shows the MAE and the RAE of the rule-based
activity discovery approach against ground truth. The
Spearman’s rank correlation coefficient is not computed for
this comparison because the sample size is too small to
allow a reliable calculation. The overall MAE of the activity
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Fig. 11 A comparison between the estimated time spent of the HMM approach and kNN classifier
against ground truth: (a) 10 running visual sensors and (b) 5 running visual sensors.

Table 4 Results for HMM and the kNN classifier. This table shows the MAE, the Spearman’s rank correlation coefficient (ρ), and the RAE for spent
times in Sofa 1, Sofa 2, kitchen, dining table, and bathroom.

Location

HMM kNN

MAE (minute) RAE (%) ρ MAE (min) RAE (%) ρ

Sofa 1 29.82 8.32 0.947 43.37 12.00 0.905

Sofa 2 7.62 21.73 0.963 11.93 150.23 0.906

Kitchen 13.83 18.54 0.942 34.82 47.17 0.665

Dining table 26.59 25.41 0.883 29.81 29.21 0.870

Bathroom 8.83 24.63 0.878 26.72 91.40 −0.069
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discovery approach is 9.39 min, while the overall RAE is
18.27%. The activity discovery approach is reliable enough
to find repeated activity patterns. But, some of the activities
have more reliable accuracy than others. According to the
MAE, sitting activity on Sofa 1 and dining table has the high-
est MAE, but their RAE is not the highest. Toilet (45.72%),
cooking (27.39%), eating (29.41%), and sitting on Sofa 2
(27.94%) have the highest RAE values. This can be attrib-
uted to the very low-resolution of the cameras and the asso-
ciated limitations in image processing and low lighting
conditions.

Figure 12 shows the percentages of the different ADL
parameters based on our activity discovery approach and
the ground truth for a single day. In this particular day, the
senior citizen spent around 50% of his time watching TVand
sleeping. He spent more time at the dining table (11.89%)
than at the sofa (7.58%). After checking the videos, we
noticed that the senior citizen was using his laptop at the din-
ing table. The senior citizen did not take any naps. However,
he had regular eating, cooking, toilet, and taking a shower
activities. Our analysis from the estimated results agrees
with the ground truth. The caregiver is interested in detecting
changes in the senior citizen behavior. This cannot be shown
from day to day ADL parameters reports.

We generated a monthly ADL parameters report based on
the rule-based activity discovery approach, so the caregiver
can compare between the percentages of the ADL parameters
to find any behavioral changes. The following results have
been confirmed by checking the diaries and the videos.
Figure 13 shows the ADL parameters of 4 months during the
summer (May and June) and the winter (November and
December). Sitting in Sofa 1, watching TV, and being out-
of-home have noticeable behavioral changes. The senior citi-
zen tended to sit more in May (21.02%) and in June
(24.87%) than in November (14.45%) and in December
(11.92%). He watched more TV in November (27.41%) and
in December (22.12%) than in May (7.33%) and in June
(7.50%). He was out-of-home for longer periods of time
in December (19.81%). According to diaries, the senior citi-
zen was hospitalized. Sleep duration almost remained con-
stant with over 20%. The rest of activities did not show
significant behavioral changes.

We performed more detailed analysis on activities with
changes and near-constant activities such as sleeping,
watching TV, and sitting on Sofa 1. The analysis also
includes walking mobility patterns. Our analysis aims at
detecting health deterioration or improvement after the hos-
pitalization period. According to diaries, the senior citizen

Table 5 A set of chosen criteria for collecting ground truth activities.

Activity Criteria

Sit Reading, using a laptop, or relaxing

Take a nap Lying on the sofa

Watch TV TV is on with sitting activity

Cooking Cupboard, oven, or fridge in use

Eating Preparing the dining table

Take a shower Spend more than 5 min in the bathroom

Toilet Spend less than 5 min in the bathroom

Table 6 Results for the rule-based activity discovery approach. This
table shows the MAE and the RAE for spent times of several activities.

Activity MAE (min) RAE (%)

Sit—Sofa 1 19.26 9.94

Take a nap—Sofa 1 6.32 11.73

Watch TV—Sofa 1 13.40 3.02

Sit—Sofa 2 8.74 27.94

Take a nap—Sofa 2 1.30 3.41

Eat—Dining table 12.54 29.41

Cook—Kitchen 7.64 27.39

Sit—Dining table 16.45 18.03

Take a shower—Bathroom 1.08 6.05

Toilet—Bathroom 7.08 45.72

(a) (b)

Fig. 12 ADL of a single day: (a) estimated and (b) ground truth.
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was hospitalized in April, December, and January for 18, 8,
and 9 days, respectively. Figure 14 shows activities of sitting,
taking a nap and watching TV on Sofa 1 from April to
December. After the hospitalization period in April, the
senior citizen was in a recovery process proven by high sit-
ting times during May and June. The sitting time decreased
after June, indicating health improvement. The senior citizen
preferred to watch more TV in the winter than in the summer.
For taking a nap activity, the senior citizen took more naps in
the summer than in the winter. This analysis has been dis-
cussed and confirmed with caregivers in project meetings.

5.3.1 Mobility pattern analysis

We analyze the number of trips and the average walking time
per trip for each pair of locations. We did a visual inspection
of the videos for 3 days to collect ground truth. We computed
an approximation of the number of trips and the average
walking time per trip. Table 7 shows the MAE and RAE
between estimated results and ground truth. The overall
MAE and RAE of the number of trips between locations

is 4.2 (trips) and 16.67%. The overall MAE and RAE of
the average walking time are 2.51 (s) and 20.99%, respec-
tively. Sofa 1 and bathroom have the highest MAE and RAE
when compared to other locations. This is attributed to the
very close distance between the bathroom and Sofa 1 (see
Fig. 2). The estimated results are reliable enough to see a
general trend of the walking mobility patterns of the senior
citizen.

One way to detect health deterioration or improvement
after the hospitalization period is by analyzing mobility pat-
terns over longer periods. We computed the number of trips
and the average walking time per trip between locations over
three periods: April to June, July to September, and October
to December. An informal caregiver (e.g., family member),
who used to visit the senior citizen three to four times per
week, confirmed our analysis. Table 8 shows the average
walking time per trip between kitchen, Sofa 1, Sofa 2,
and dining table locations. The senior citizen needed more
time to perform a trip after the hospitalization period in
April to June. This shows that the walking speed was
slow. The walking time to perform trips between locations

(a) (b)

(c) (d)

Fig. 13 ADL of 4 months: (a) May, (b) June, (c) November, and (d) December.

Fig. 14 The ADL parameters performed on Sofa 1 from April to December.
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subsequently improved in July to September. This indicates
an improvement in the walking speed. Finally, the user
recovered his normal walking speed in October to December
because the walking time per trip was the lowest in this
period. Also, Fig. 15 shows the average walking time per
trip and per month to go from the kitchen to the dining table,
from the bathroom to the dining table, and from Sofa 1 to the
dining table. After the hospitalization, the average walking
time to perform a trip was high from April to July. After
July, the user needed less time to walk between locations
(10 to 15 s). By asking the caregivers, they confirmed the
walking time per trip of the senior citizen was improving
from their observations.

Finally, Table 9 shows the number of trips to go from Sofa
1 to the dining table, from Sofa 1 to kitchen, and from
kitchen to dining table. The number of trips is noticeably
decreasing between kitchen to Sofa 1 and kitchen to dining
table. We checked some of the video over the three periods.
From the visual inspection, the senior citizen used to eat less
at the dining table. Also, his cooking activity decreased as
well. He preferred to eat his meals while watching TV. Also,
Fig. 14 confirms an increasing TV activity in October to
December. This shows a change in his behavior. The number
of trips did not have a significant change between Sofa 1 and
dining table. The visual analysis of the videos showed that
the senior citizen used to visit the dining table either to do his
daily exercises or to use his laptop.

5.3.2 Out-of-home analysis

We compare our approach of detecting the number of times
the senior citizen has been out-of-home to ground truth. Out-
of-home is defined as the number of times a person leaves his
own home for some period per day. The ground truth is col-
lected from the diaries. The ground truth covers 112 days
(May, June, October, November, and December). The hos-
pitalization period has not been taken in the analysis.
Table 10 shows the confusion matrix for out-of-home activ-
ity. The precision is 87.5% and recall is 70.0%. The overall
accuracy is 78.38%. The accuracy can be higher when other
sensors are used, such as a door sensor.

Finally, the number of times the senior citizen has been
out-of-home per month is shown in Fig. 16. In October to
December period, the number of times the senior citizen has
been out-of-home is less than the other months. This

Table 7 Results for the number of trips and the average walking time
per day for each pair of locations. This table shows the MAE and the
RAE between estimated results and ground truth.

Number of trips
Average walking

time

Location 1—
Location 2

MAE
(#trips)

RAE
(%)

MAE
(s)

RAE
(%)

Sofa 1—Sofa 2 6 12.58 2.16 21.61

Sofa 1—Kitchen 7.33 29.74 3.95 39.55

Sofa 1—Dining table 5.66 17.04 1.45 13.29

Sofa 1—Bathroom 9 15.30 1.72 18.76

Sofa 2—Kitchen 1.33 33.33 1.10 2.16

Sofa 2—Dining table 0 0 0 0

Sofa 2—Bathroom 0 0 0 0

Kitchen—Dining
table

8.33 12.51 2.55 19.51

Kitchen—Bathroom 2.66 25.15 8.04 59.33

Dining table—
Bathroom

1.66 21.11 4.15 35.72

Table 8 The walking time per trip for three periods: April to June, July
to September, and October to December.

Location 1—Location 2
April to
June

July to
September

October to
December

Sofa 1—Sofa 2 52.85 20.43 12.74

Sofa 1—Kitchen 39.69 27.91 15.23

Sofa 1—Dining table 26.18 17.23 13.49

Kitchen—Dining table 30.52 11.64 13.11

Fig. 15 The average walking time per trip and per month for dining table.
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indicates that the senior citizen stayed at home because it is
cold and dark to be out-of-home.

5.3.3 Sleep duration analysis

The wake up time is detected when the senior citizen produ-
ces sufficient movement in the service flat in the morning.
The movement should last for several minutes (e.g., more
than γ min) to indicate the senior citizen has actually
woken up. In case of waking up in the middle of the night
to go to the bathroom, the senior citizen does not put any
lights on until he reaches the bathroom. Then he turns the
bathroom lights on. Once he finished visiting the bathroom
in the middle of the night, he turns the bathroom lights off
again and goes back to the bedroom. The wake up time in the
middle of the night is not counted when this pattern occurs.
This way the actual wake up time is not being confused with
a wake-up call for a nightly bathroom visit. While the time of
going to bed is detected by considering the last movement
the senior citizen produces (e.g., turning off the TVat night).

We compare the sleep duration estimates against ground
truth. The ground truth is collected from diaries in which
senior citizen wrote down when he went to bed and woke
up. Figure 17 compares the estimates and the ground
truth of sleep duration for two different periods. The vertical
error bars in Fig. 17 show the overestimates and the under-
estimates of sleep durations. About 20% of the cases are

overestimated and 6% of the cases are underestimated by
more than 30 min. From the visual inspection, the main
cause for the overestimates is that the elderly does not turn
the lights on after waking up. Finally, the MAE of the sleep
duration estimates is 22.91 min. Despite waking up without
turning the lights on, our approach of estimating the sleep
duration provides promising results close to the ground
truth. The accuracy can be increased by using other sensors
inside the bed room, such as PIR sensors and thermopiles.
On average, the user sleeps 6 h.

6 Conclusions
In this paper, we presented a network of low-resolution vis-
ual sensors (30 × 30 pixels) installed in a service flat of a
senior citizen as an alternative to PIR sensors and high-
resolution cameras. We proposed a framework for estimating
the locations and performing behavior analysis under low-
resolution constraints. Our framework is composed of three
processing layers: in the low-level processing layer, the
motion level in each visual sensor is computed to form a fea-
ture vector. In the mid-level processing layer, an HMM is
employed to estimate the senior citizen locations without cal-
ibration. Finally, an approach for activity discovery is pro-
posed to identify 13 ADL parameters based on spatial and
temporal contexts.

We collected 10 months of real-life video recordings.
First, we compared our approach of estimating the senior
citizen locations based on HMM with a kNN classifier
against ground truth for 30 days. The comparison to ground
truth has shown that the HMM outperforms the traditional
kNN classifier. Second, we evaluated the activity discovery
approach against ground truth of 6 days. The results showed
reliable extraction of the senior citizen activities. Then we
analyzed some of the ADL parameters of the senior citizen
during different months in the summer and in the winter. TheFig. 16 The number of times being out-of-home per month.

Fig. 17 A comparison between sleep duration estimates and ground
truth: (a) May and June; (b) October, November, and December.

Table 9 The number of trips per day for three periods: April to June,
July to September, and October to December.

Location 1—Location 2
April to
June

July to
September

October to
December

Kitchen—Sofa 1 36 46 17

Kitchen—Dining table 80 62 54

Sofa 1—Dining table 34 31 37

Table 10 Confusion matrix of out-of-home activity.

Prediction

Yes No

Truth Yes 42 6

No 18 45
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results showed several behavioral changes in watching TV,
taking a nap, and sitting on Sofa 1. Third, we computed the
walking mobility patterns based on the number of trips per
day and the average walking time per trip to show health
improvement after hospitalization periods. Also, we com-
pared the walking mobility patterns results against ground
truth of 3 days. The estimated results were reliable enough
to show a general trend of the senior citizen walking mobility
patterns. Finally, our approach of detecting out-of-home
activity has achieved a precision of 87.5% and a recall of
70.0%. Fourth, we compared the sleep duration estimates
against 5 months of ground truth. The sleep duration esti-
mates achieved MAE of 22.91 min.

The use of cameras to monitor residents in assisted living
facilities or nursing homes is not new. Traditionally, these
systems rely on high-resolution cameras to make sure all rel-
evant information is captured. This approach is not only
expensive (deployment and maintenance-wise), but also it
requires high bandwidths to transport and process the high-
resolution video feeds, and it is often challenged from a pri-
vacy perspective, too. Moreover, existing systems are gener-
ally “not self-aware.” They are not capable of monitoring (let
alone interpreting) behavior or the evolution of disorders
over time. We took a different approach by replacing high-
resolution cameras with low-cost low-resolution visual sen-
sors to capture what is happening in a given premises in a
way that is privacy compliant and using our proposed archi-
tecture to translate the input from low-resolution video feeds
into valuable information about the resident’s condition. The
ADL parameters were sufficient enough to show interesting
facts about the senior citizen’s health condition (recovering
from a hospitalization period by analyzing mobility pat-
terns). Also, the results presented in this paper were usable
by the caregivers and the senior citizen. The data were
interpreted in real time by visualizing the ADL parameters
on a smart display. So, the caregivers can monitor the
ADL parameters on a daily basis and detect any abnormal
behavior.
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