6 October 2016 Human fatigue expression recognition through image-based dynamic multi-information and bimodal deep learning
Author Affiliations +
Abstract
Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.
© 2016 SPIE and IS&T
Lei Zhao, Lei Zhao, Zengcai Wang, Zengcai Wang, Xiaojin Wang, Xiaojin Wang, Yazhou Qi, Yazhou Qi, Qing Liu, Qing Liu, Guoxin Zhang, Guoxin Zhang, } "Human fatigue expression recognition through image-based dynamic multi-information and bimodal deep learning," Journal of Electronic Imaging 25(5), 053024 (6 October 2016). https://doi.org/10.1117/1.JEI.25.5.053024 . Submission:
JOURNAL ARTICLE
11 PAGES


SHARE
RELATED CONTENT


Back to Top