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Abstract. Facial expression recognition in the wild is a very challenging task. We describe our work in static and
continuous facial expression recognition in the wild. We evaluate the recognition results of gray deep features
and color deep features, and explore the fusion of multimodal texture features. For the continuous facial expres-
sion recognition, we design two temporal–spatial dense scale-invariant feature transform (SIFT) features and
combine multimodal features to recognize expression from image sequences. For the static facial expression
recognition based on video frames, we extract dense SIFT and some deep convolutional neural network (CNN)
features, including our proposed CNN architecture. We train linear support vector machine and partial least
squares classifiers for those kinds of features on the static facial expression in the wild (SFEW) and acted facial
expression in the wild (AFEW) dataset, and we propose a fusion network to combine all the extracted features at
decision level. The final achievement we gained is 56.32% on the SFEW testing set and 50.67% on the AFEW
validation set, which are much better than the baseline recognition rates of 35.96% and 36.08%. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.25.6.061407]
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1 Introduction
With the development of artificial intelligence and affective
computing, facial expression recognition has shown pros-
pects in human–computer interfaces, online education, enter-
tainment, intelligent environments, and so on. In past years,
much research has been done on the data collected in strictly
controlled laboratory settings with frontal faces, perfect illu-
mination, and posed expressions. As the application environ-
ment turns into a real world scenario, those methods using
the monomial feature such as local binary patterns (LBP)1 or
bag of visual words2 cannot achieve promising results. In
addition, unlike the lab-controlled dataset, human heads in
a real environment can be in any position of an image
with all sorts of angles and poses. So, for most automatic
facial expression recognition methods, the first step is to
locate and extract the position of a face in the whole scene.
The traditional way of this progress is always to combine
the Viola–Jones face detector and the Haar-cascade eye
detector.3 Recently, some methods, such as mixture of
parts (MoPs)4 and supervised descent method,5 have robust
face detection results in various head rotations.

To explore facial expression recognition in the real world,
we do experiments on three public datasets: acted facial
expression in the wild (AFEW), static facial expression in
the wild (SFEW), and facial expression recognition (FER).
The AFEW database6 consists of short video clips extracted
from popular Hollywood movies. Each clip contains a
film actor who has been labeled into one of the seven
basic facial expression categories, namely Anger, Disgust,
Fear, Happiness, Neutral, Sadness, and Surprise. The AFEW
set has 711 training videos, 371 validation videos, and 539

test videos. We only know the labels of the training and val-
idation sets, specific numbers of which are shown in Table 1.
The SFEW database7 is almost the same as that of the AFEW
set, except that it consists of static frames of the movies. Both
of the datasets are very challenging for traditional facial
expression recognition methods due to the complicated
scenes of films, which can be seen from the uncompromising
baseline recognition rate of 36.08% and 35.96%. The SFEW
set consists of 891,427, and 372 RGB color images for
training, validation, and testing, respectively. Samples of
expression data are shown in Fig. 1. The FER-2013 dataset8

is a facial expression dataset created using the Google image
search application programming interface to search for
images of faces that match a set of 184 emotion-related key-
words such as “blissful” and “enraged.” It has 28,709 gray
images for training and 7178 images for validation. On the
FER dataset, the human accuracy was 68� 5%.

In our proposed method, openly available tools such as
MoPS4 and Intraface5 are used for face detection and align-
ment. For facial expression, we employ the descriptors of
LBP,1 local phase quantization (LPQ),9 histogram of oriented
gradients (HOG),10 and dense scale-invariant feature trans-
form (SIFT).2 We also design a deep convolutional neural
network (CNN)11 for feature learning and compare the rec-
ognition results between gray data and color data. Then, we
propose a fusion network for classification, which is a deci-
sion-level fusion method for improving the result. Our fusion
network fuses different features and gains a promising rec-
ognition performance. We also compare the result of it with
that of other state-of-the art fusion methods.

The rest of this paper is organized as follows: In Sec. 2,
we review the related works. The facial image extraction
progress is shown in Sec. 3. Section 4 details the deep fea-
tures and handcrafted features we explored. Section 5 gives*Address all correspondence to: Jun He, Email: hejun@bnu.edu.cn

Journal of Electronic Imaging 061407-1 Nov∕Dec 2016 • Vol. 25(6)

Journal of Electronic Imaging 25(6), 061407 (Nov∕Dec 2016)

http://dx.doi.org/10.1117/1.JEI.25.6.061407
http://dx.doi.org/10.1117/1.JEI.25.6.061407
http://dx.doi.org/10.1117/1.JEI.25.6.061407
http://dx.doi.org/10.1117/1.JEI.25.6.061407
http://dx.doi.org/10.1117/1.JEI.25.6.061407
http://dx.doi.org/10.1117/1.JEI.25.6.061407
mailto:hejun@bnu.edu.cn
mailto:hejun@bnu.edu.cn
mailto:hejun@bnu.edu.cn


the definitions of the proposed feature fusion network.
Section 6 gives the experiments we have done, in which
the feature components and the recognition results on three
datasets are available. Then, the final conclusion is given
in Sec. 7.

2 Related Works
There are many researches focusing on recognizing facial
expression. Ekman and Friesen12 defined facial action cod-
ing system action units for manual facial expression analysis.
Zhao and Pietikainen1 proposed a volume local texture fea-
ture LBP-TOP and achieved remarkable facial expression
recognition results in a laboratory. Kahou et al.13 used con-
volutional neural network and deep belief network and got
the top performance in the EmotiW 2013 Challenge. Liu
et al.14 used Grassmannian Manifold to get facial expression
features, then they combined Riemannian Manifold and deep
convolutional neural network in Ref. 15. Yao et al.16 com-
bined the CNN model with facial action unit aware features
and got the state-of-the-art result for facial expression
recognition in videos. Kim et al.17 explored several CNN
architectures and data preprocessing methods. Yu and
Zhang18 used a data disturb method to enhance data. Liu

et al.19 proposed a boosted deep belief network for facial
expression recognition and got promising results on some
laboratory recorded datasets. Ng et al.20 explored transfer
learning for deep models including VGG and AlexNet.21

Since no feature descriptor can handle the problem of
facial expression recognition in the wild alone, the fusion
method can be used to combine multimodal features.
Sikka et al.22 explored the fusion way of general multiple
kernel learning (GMKL) and multi-label multiple kernel
learning. Chen et al.23 used the SimpleMKL method to com-
bine visual and acoustic features. Kim et al.17 proposed a
committee machine method to combine 108 CNN models
in. Kahou et al.24 proposed a voting matrix and used random
search to tune the fusion weight parameters. They used the
multilayer perceptron in Ref. 25 to combine neural networks
at the feature level. Gönen and Alpaydın26 reviewed quite a
few kinds of multiple kernel methods for the common pattern
recognition problem. Bucak et al.27 reviewed the state-of-the-
art for multiple kernel learning (MKL), with the focus on the
applications of object recognition.

3 Face Extraction
We follow the face extraction and tracking method of Sikka
et al.2 and Dhall et al.28 For the continuous facial expression
recognition, the mixture of tree structured part model
(MoPS)4 face detector is used to detect the position of a
face in the first frame of a video. Then, the IntraFace toolkit
used the supervised descent method5 to track 49 facial
landmarks of the rest of the frames in a parameterized
appearance model. All frames of the AFEW dataset are
aligned to a base face through affine transformation and
cut to 128 × 128 pixels.

For the static facial expression recognition, the MoPS and
OpenCV29 detectors are used for SFEW and FER, respec-
tively. Facial landmarks generated by MoPS are used to
align faces for handcrafted features extraction. For deep
CNN features that are robust to the poses of faces, only
coarse face alignment is performed, by keeping the center of
facial landmark points or bounding boxes at the middle of
images. All face images are resized to 48 × 48 pixels for
deep feature learning. For handcrafted features, the image
size is set to 128 × 128. As illumination and brightness
changes appeared frequently in the SFEW dataset, we evaluate
the min–max normalization as image preprocessing method.

Fig. 1 Samples of facial expression data of SFEW. The expressions shown are from the first line left to
second line right, anger, disgust, fear, happiness, neutral, sadness, and surprise. The image data are
quite different in the illumination status and character postures.

Table 1 The number of data for each expression in AFEW, SFEW,
and FER dataset.

Expression

AFEW SFEW FER

Training Validation Training Validation Training Validation

Anger 118 59 178 77 3995 958

Disgust 72 39 66 23 436 111

Fear 76 44 98 47 4097 1024

Happiness 142 63 198 73 7215 1774

Neutral 129 61 150 86 4965 1233

Sadness 104 59 172 73 4830 1247

Surprise 70 46 96 57 3171 831
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4 Multimodal Texture Features

4.1 Feature Learning
The deep CNN11 is a popular type of model in the commu-
nity of computer vision. We deploy two kinds of CNN archi-
tectures, the AlexNet and regions CNN (RCNN). The
AlexNet21 is a nine-layers deep model designed for object
recognition of ImageNet dataset,30 using rectified linear unit
as activation function. The AlexNet model has five convolu-
tional layers and three fully connection layers. It introduces
data enlarge strategy, local normalization, and dropout
method to avoid over-fitting. The RCNN31 is a type of deep
learning architecture that combines object detection with
object recognition. This model can detect the object in a
scene and then use the CNN feature for classification. These
two models are all pretrained on the ImageNet dataset.

Based on the AlexNet, we design a deep CNN architec-
ture for facial expression recognition. The whole architecture
of our model is shown in Fig. 2. First, the facial images
are cropped from four corners and the center and flipped to
10 patches of 40 × 40. Then, the first convolutional layer
filters the 40 × 40 input patch with 64 kernels of size
5 × 5. The second convolutional layer takes as input the
response-normalized and max-pooled output of the first
convolutional layer and filters it with 64 kernels of size
3 × 3 × 64. The third, fourth, and fifth convolutional layers
are connected to one another without any intervening pool-
ing or normalization layers. The third convolutional layer

has 128 kernels of size 3 × 3 × 64 connected to the (normal-
ized, pooled) outputs of the second convolutional layer. The
fourth and fifth convolutional layers both have 128 kernels of
size 3 × 3 × 128. The fully connected (FC) layers have 1024
neurons each. The rectified linear unit activations are applied
to the output of every convolutional or fully connected layer.
For validation of the training progress, the softmax regres-
sion is used as the output layer. For feature extraction,
we use the last FC layer as the output. In our experiments,
we visualize the activation values of the first convolutional
layers of the AlexNet and our proposed CNN, which are
shown in Fig. 3. We can see that some feature maps of the
AlexNet are not activated in the task of expression recogni-
tion. This is reasonable since the AlexNet is trained on the
ImageNet dataset, which makes its feature contain more
information than human facial expression.

4.2 Handcrafted Features
For images of SFEW dataset, we extract LBP, dense SIFT,
and deep CNN features. For video clips of AFEW dataset,
we extract volume features such as LBP-TOP, LPQ-TOP and
pooling the dense SIFT, HOG and DCNN features through
the image sequences of a video. In addition, we also design
two temporal–spatial features: SIFT-TOP and SIFT-LBP.
The pipeline of extracting these handcrafted features is as
follows: on the face images extracted from a video, align-
ment through facial landmark points and spatial pyramid

Fig. 2 Deep CNN architecture for feature learning.

Fig. 3 Learnt features of the first convolutional layers. The left one (a) belongs to the AlexNet while the
right one (b) belongs to our proposed CNN.
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matching (SPM) are performed, and then features are
encoded after extraction. The pipeline is shown in Fig. 4.

4.2.1 Image descriptors

The LBP descriptor is an efficient representation of facial
image texture, and has been successfully applied to facial
expression recognition.1 It can be represented as follows:

EQ-TARGET;temp:intralink-;e001;63;556d ¼
X
p

Xk
i¼1

2i−1IðOp;NiÞ: (1)

In Eq. (1), IðO;NÞ means the Boolean comparison
between a pixel Op and its neighboring pixels N which
has a total number ofK. The binary labels form a local binary
pattern d over the whole p pixels of an image.

The LPQ9 descriptor is calculated based on computing
short-term Fourier transform on local image window. The
descriptor utilizes phase information computed locally in
a window for every image position. The phases of the four
low-frequency coefficients are decorrelated and uniformly
quantized in an eight-dimensional space.

The HOG10 is implemented by dividing the image win-
dow into small spatial regions, each region accumulating
a local one-dimensional histogram of gradient directions
or edge orientations over the pixels of the region. The com-
bined histogram entries form the representation.

The dense SIFT feature32 is to perform SIFT descriptor on
a dense gird of locations at a fixed scale and orientation. The
SIFT descriptor associates to the gird a signature that iden-
tifies its appearance compactly and robustly. The dense SIFT
feature characterizing appearance information is often used
for categorization task.

4.2.2 Feature encoding and pyramid matching

For LBP and LPQ descriptor, histograms of all binary code-
words are formed to encode the final image features. Take
note that only the statistics of 59 uniform local binary
patterns1 are considered. For dense SIFT descriptor, the bag
of words model has shown remarkable performance on

facial expression recognition.22 First, we extract multiscale
dense SIFT descriptors32 from 100 randomly picked image
samples. Then, 800 clustering centers are constructed using
approximate K-means clustering algorithm. The number
800 is chosen throughout the experiments. Then, the whole
data sets’ dense SIFT descriptors are encoded using the
locality-constrained linear coding (LLC),33 which can guar-
antee the sparsity and locality of the coded words.

In our experiments, we tried spatial pyramid matching34

for the handcrafted descriptors. Experimental results show
that spatial pyramid matching can add recognition accuracy
by providing more spatial information to the final features.
The number of layers of LBP, LPQ, and dense SIFT are 4, 4,
and 5, respectively.

4.3 Temporal–Spatial Representation
For continuous facial expression recognition, the image fea-
ture has to be extended to temporal–spatial area. After get-
ting the image features of all image frames of a video clip,
max pooling is usually used to aggregate all frame features
into one video feature. Though this is still decent perfor-
mance, it actually loses much detailed temporal information
of a video. Based on deep analysis on our experiments, we
add temporal information through extracting LBP descrip-
tors on the XT and YT planes (in which T stands for the
time domain) of a video, and combine it with the dense-
SIFT feature of XY plane (i.e., the image space) (SIFT-LBP),
shown as Fig. 5. LBP descriptors of XT and YT frames are
encoded to XT histogram and YT histogram, after spatial
pyramid matching. Bag of multiscale dense SIFT feature
is extracted from every XY frame following the pipeline
described in Sec. 4.2.2. We also explore how to directly
extract dense SIFT feature on the three orthogonal planes
of XY, XT, and YT (SIFT-TOP). Our experiment shows
that the new temporal–spatial descriptor, namely SIFT-LBP,
has better performance. We also explore how to use a deep
learnt feature for temporal–spatial representation, which is
accomplished by taking the maximum pooling value of the
CNN feature vectors over all frames. Unfortunately, the
recognition result is uncompromising on the AFEW dataset.

Fig. 4 Pipeline of handcrafted features extraction. The dashed box means that the temporal–spatial
representation is only used for AFEW dataset.

Fig. 5 Our proposed SIFT-LBP temporal–spatial representation for video.
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5 Fusion Classification

5.1 Classifiers
5.1.1 Support vector machine

The features we extract are all linearly separable under
ideal conditions. So, we use linear support vector machine
(SVM) as basic classifiers. Given a training set of L data
points (xi; yi), i ¼ 1; : : : ; l, xi ∈ Rn, yi ∈ f−1;þ1g, the sup-
port vector classifier solves the following unconstrained opti-
mization problem:35

EQ-TARGET;temp:intralink-;e002;63;637 min
1

2
θTθ þ C

X
i

ξðθ; θi; yiÞ; (2)

where C is the penalty parameter and ξðθ; θi; yiÞ ¼
max ð1 − yiθTxi; 0Þ2 is the loss function. For testing data
x, SVM predicts it as positive if θTx > 0, and negative
otherwise. Here, we use the SVM decision value DSVM ¼
θTx as the input for the next fusion process. As SVM is a
binary classifier, we follow one-versus-rest strategy, which
classifies the data points between one category and the
rest one at a time.

5.1.2 Partial least squares regression

Partial least squares (PLS) regression is a statistical method
that bears some relation to principal components regression;
instead of finding hyperplanes of minimum variance between
the response and independent variables, it finds a linear
regression model by projecting the predicted variables and
the observable variables to a new space. According to
Ref. 14 given a feature set X ∈ Rn with label Y, the PLS
classifier decomposes these variables into:

EQ-TARGET;temp:intralink-;sec5.1.2;63;390X ¼ UxVT
x þ rx;

EQ-TARGET;temp:intralink-;e003;63;358Y ¼ UyVT
y þ ry; (3)

whereUx andUy contain the extracted score vectors, Vx and
Vy are orthogonal loading matrices, and rx and ry are resid-
uals. PLS tries to find the optimal weights wx and wy to get
the maximum covariance such that

EQ-TARGET;temp:intralink-;e004;63;286½covðux; uyÞ�2 ¼ max
jwj¼jvj¼1

½covðXwx þ YwyÞ�2: (4)

Then, we can get the regression coefficients β as

EQ-TARGET;temp:intralink-;e005;63;240β ¼ XTUyðUT
xXXTUxÞ−1UT

xY: (5)

The PLS decision value can be estimated by DPLS ¼ Xβ.
Like in Sec. 5.1, we follow one- versus-rest strategy for the
multiclass classification.

5.2 Fusion Network
As different features have different discriminative abilities on
specific emotions,36 we propose a fusion network as shown
in Fig. 6 to combine the results of each classifier.

Given m features and n classes, the SVM or PLS classi-
fiers generate m × n decision values, which can be denoted
as aðj;kÞ ¼ θTjkxj, j ¼ 1; : : : ; m, k ¼ 1; : : : ; n. Then, they are
used as the input for the fusion network. For input a, we use
a hypothesis function hwðaÞ

EQ-TARGET;temp:intralink-;e006;326;479

hwðaðiÞÞ ¼

2
666664

pðyðiÞ ¼ 1jaðiÞ;WÞ
pðyðiÞ ¼ 2jaðiÞ;WÞ

..

.

pðyðiÞ ¼ njaðiÞ;WÞ

3
777775

¼ 1P
n
k¼1 e

P
m
j¼1

WT
kja

ðiÞ

2
666664

e
P

m
j¼1

WT
j1a

ðiÞ
j1

e
P

m
j¼1

WT
j2a

ðiÞ
j2

..

.

e
P

m
j¼1

WT
jna

ðiÞ
jn

3
777775

(6)

to estimate Pðy ¼ kjaÞ, which represents the probability of
the class label y taking on each of the n different possible
values. Here,W means m × n weights. Thus, the final output
is an n dimensional vector, which represents n probabilities.
The final prediction is using a max-win strategy to choose
the most likely label.

We use a loss function JðWÞ for optimization. The gra-
dient descent method is applied to get the optimized values
of W by updating W to W − ∇WJðWÞ at every iteration

EQ-TARGET;temp:intralink-;e007;326;226

JðWÞ ¼ −
1

L

�XL
i¼1

Xm
k¼1

1fyðiÞ ¼ kg log e
P

m
j¼1

WT
jka

ðiÞ
jk

P
n
k¼1 e

P
m
j¼1

WT
jka

ðiÞ
jk

�

þ λ

2

Xm
j¼1

Xn
k¼1

W2
jk; (7)

EQ-TARGET;temp:intralink-;e008;326;130

∇Wk
JðWÞ

¼ −
1

L

XL
i¼1

½xðiÞð1fyðiÞ ¼ kg− pðyðiÞ ¼ kjaðiÞ;WÞÞ� þ λWk;

(8)

Fig. 6 Layers of proposed fusion network.

Journal of Electronic Imaging 061407-5 Nov∕Dec 2016 • Vol. 25(6)

Sun et al.: Facial expression recognition in the wild based on multimodal texture features



where L is the number of training examples, λ is the L2-norm
parameter, 1f·g is the indicator function, which means
1fa true statementg ¼ 1, and 1fa false statementg ¼ 0.

In experiments, we try to fuse the decision values of SVM
and PLS classifiers. We find that this kind of fusion network
performs better than the SVM-only fusion network.

6 Experiments

6.1 Deep Feature Learning of Color and
Gray Images

For deep feature learning, we employ the Caffe37 implemen-
tation, which is commonly used in several recent works.
To pretrain the CNN model according to our proposed archi-
tecture, we use expression images from the FER dataset. The
base learning rate is set to 0.005, which will be divided by 10
after every 10,000 iterations. In each iteration, 256 samples
are used for stochastic gradient optimization. After 200
epoch’s training, our proposed CNN gets 67.82% on the
FER validation set. Then, we fine-tune the model on the
SFEW set. The base learning rate is changed to 0.001.
After 300 epoch’s fine-tuning, the validation accuracy is
converged. The experiment results are shown in Table 2.
We can see that the RGB color CNN model with min–max
normalization can achieve slightly better recognition result.

6.2 Results of Monomial Feature
We extract the features listed in Sec. 4 and apply the SVM
and PLS classifiers. Results are shown in Tables 3 and 4. On
the SFEW dataset, through comparison experiments, we
extract the last pooling layer’s activation value as the feature
of AlexNet and RCNN. For our proposed CNN, the last fully
connected layer’s output is extracted. We can see that using
the SVM and PLS classifier can further improve the recog-
nition result of the CNN model. On the AFEW dataset,
as each frame produces a CNN, a dense SIFT and a HOG
feature vector, information from all frames of a video are
combined using pooling strategy, which is accomplished
by taking the maximum or mean value of all feature vectors
over all frames. By experiment, max pooling has better
results for dense SIFT and HOG. The SVM classifiers all
use linear kernels. Classification models are trained on train-
ing set and parameters are tuned on validation set through
a fivefold cross validation in the range from 2−10 to 210.
Results show that our proposed CNN feature and SIFT-
LBP feature performs well on the SFEWand AFEW dataset,
respectively.

For AFEW and SFEW datasets, we use four-Layer SPM
for LBP and LPQ features. Each image is partitioned into
2l × 2l segments at multiple scales l ¼ 1;2; 4, and 8. For
example, the dimension of SPM-LBPTOP is 15,045. Too
much SPM layers mean lager dimension and it would be
harder to be optimized for classification. While as dense
SIFT uses LLC coding, five-layer SPM can achieve the
best performance.

6.3 Fusion Results of Multimodal Features
Then, our proposed fusion network is performed to combine
the classification results of these features. We train the fusion

Table 2 Comparison results of proposed CNN model, on color and
gray image data.

Channel Preprocessing
Accuracy (%)

on FER
Accuracy (%)
on SFEW

Gray Raw 67.79 48.00

RGB Raw N/A 47.31

Gray Min–max norm 68.16 50.54

RGB Min–max norm N/A 50.59

Table 3 Recognition accuracies on SFEW, C is the cost parameter
of SVM, n is the PLS dimension. P represents the activation value of
last pooling layer while FCmeans the activation value of last FC layer.

Feature

SVM PLS

Accuracy (%) C Accuracy (%) n

Baseline 35.96 N/A N/A N/A

LPQ 28.08 64 26.22 5

PHOG 31.79 256 34.57 4

Dense SIFT 43.33 1 42.86 3

AlexNet (P) 37.00 0.5 40.75 3

AlexNet (FC) 32.32 32 37.00 16

RCNN (P) 43.09 0.5 44.50 5

RCNN (FC) 32.32 0.125 35.83 6

Proposed CNN (P) 48.24 0.25 41.45 4

Proposed CNN (FC) 51.76 0.002 43.09 3

Table 4 Recognition accuracies on AFEW.

Feature

SVM PLS

Accuracy (%) C Accuracy (%) n

Baseline (LBPTOP) 36.08 N/A N/A N/A

HOG 34.23 0.125 35.85 3

SPM-LBPTOP 43.67 1 42.05 4

LPQTOP 42.59 4 43.13 4

SPM-LPQTOP 44.47 1 45.82 6

SPM-dense SIFT 46.09 1 44.47 16

SIFT-TOP 46.45 1 N/A N/A

SIFT-LBP 49.33 1 47.98 17

AlexNet 35.69 0.125 N/A N/A
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network on the validation set. The L2-norm parameter λ is
chosen through a cross validation on the validation set.
Fusion results are shown in Tables 5 and 6. Results show
that our proposed method is better both on the validation
set and testing set. We compare the fusion network with
GMKL,38 SimpleMKL,39 and three other researcher’s
work17,18,20 on the SFEW set. We can see that our fusion net-
work outperforms other methods on the validation set. As the
test labels of the AFEW and SFEW datasets are not publicly
opened, we do not get final test results for all our methods.
Despite that we can see that our proposed fusion network
performs well and robust through cross validation. Note that
some features perform better when classified by PLS, so the
fusion network combining PLS and SVM together can
achieve better results than using only SVM.

7 Conclusions and Future Work
In this paper, we design some texture features for automatic
human facial expression recognition in the real world. For
each feature, we train individual SVM and PLS classifiers
that have different discriminative ability for facial expres-
sions classification. We propose a fusion network to utilize
these feature characteristics. The method is evaluated on
the AFEW and SFEW datasets and gains very promising
achievement. In the future, we will try to deduce more
kinds of temporal–spatial representation methods to further
improve the continuous facial expression recognition result

and investigate the use of component analysis methods to
decrease the feature dimensions.
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