5 January 2018 Defogging of road images using gain coefficient-based trilateral filter
Author Affiliations +
J. of Electronic Imaging, 27(1), 013004 (2018). doi:10.1117/1.JEI.27.1.013004
Poor weather conditions are responsible for most of the road accidents year in and year out. Poor weather conditions, such as fog, degrade the visibility of objects. Thus, it becomes difficult for drivers to identify the vehicles in a foggy environment. The dark channel prior (DCP)-based defogging techniques have been found to be an efficient way to remove fog from road images. However, it produces poor results when image objects are inherently similar to airlight and no shadow is cast on them. To eliminate this problem, a modified restoration model-based DCP is developed to remove the fog from road images. The transmission map is also refined by developing a gain coefficient-based trilateral filter. Thus, the proposed technique has an ability to remove fog from road images in an effective manner. The proposed technique is compared with seven well-known defogging techniques on two benchmark foggy images datasets and five real-time foggy images. The experimental results demonstrate that the proposed approach is able to remove the different types of fog from roadside images as well as significantly improve the image’s visibility. It also reveals that the restored image has little or no artifacts.
© 2018 SPIE and IS&T
Dilbag Singh, Vijay Kumar, "Defogging of road images using gain coefficient-based trilateral filter," Journal of Electronic Imaging 27(1), 013004 (5 January 2018). https://doi.org/10.1117/1.JEI.27.1.013004 Submission: Received 22 March 2017; Accepted 12 December 2017
Submission: Received 22 March 2017; Accepted 12 December 2017

Image filtering


Fiber optic gyroscopes


Atmospheric modeling


Visibility through fog

Back to Top