4 June 2014 Automatic nuclear cataract grading using image gradients
Author Affiliations +
Abstract
This paper deals with automatic grading of nuclear cataract (NC) from slit-lamp images in order to reduce the efforts in traditional manual grading. Existing works on this topic have mostly used brightness and color of the eye lens for the task but not the visibility of lens parts. The main contribution of this paper is in utilizing the visibility cue by proposing gray level image gradient-based features for automatic grading of NC. Gradients are important for the task because in a healthy eye, clear visibility of lens parts leads to distinct edges in the lens region, but these edges fade as severity of cataract increases. Experiments performed on a large dataset of over 5000 slit-lamp images reveal that the proposed features perform better than the state-of-the-art features in terms of both speed and accuracy. Moreover, fusion of the proposed features with the prior ones gives results better than any of the two used alone.
© 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Ruchir Srivastava, Ruchir Srivastava, Xinting Gao, Xinting Gao, Fengshou Yin, Fengshou Yin, Damon W. Wong, Damon W. Wong, Jiang Liu, Jiang Liu, Carol Y. Cheung, Carol Y. Cheung, Tien Yin Wong, Tien Yin Wong, } "Automatic nuclear cataract grading using image gradients," Journal of Medical Imaging 1(1), 014502 (4 June 2014). https://doi.org/10.1117/1.JMI.1.1.014502 . Submission:
JOURNAL ARTICLE
11 PAGES


SHARE
Back to Top