24 January 2017 Automated detection of coarctation of aorta in neonates from two-dimensional echocardiograms
Author Affiliations +
Abstract
Coarctation of aorta (CoA) is a critical congenital heart defect (CCHD) that requires accurate and immediate diagnosis and treatment. Current newborn screening methods to detect CoA lack both in sensitivity and specificity, and when suspected in a newborn, it must be confirmed using specialized imaging and expert diagnosis, both of which are usually unavailable at tertiary birthing centers. We explore the feasibility of applying machine learning methods to reliably determine the presence of this difficult-to-diagnose cardiac abnormality from ultrasound image data. We propose a framework that uses deep learning-based machine learning methods for fully automated detection of CoA from two-dimensional ultrasound clinical data acquired in the parasternal long axis view, the apical four chamber view, and the suprasternal notch view. On a validation set consisting of 26 CoA and 64 normal patients our algorithm achieved a total error rate of 12.9% (11.5% false-negative error and 13.6% false-positive error) when combining decisions of classifiers over three standard echocardiographic view planes. This compares favorably with published results that combine clinical assessments with pulse oximetry to detect CoA (71% sensitivity).
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
Franklin Pereira, Alejandra Bueno, Andrea Rodriguez, Douglas Perrin, Gerald Marx, Michael Cardinale, Ivan Salgo, Pedro del Nido, "Automated detection of coarctation of aorta in neonates from two-dimensional echocardiograms," Journal of Medical Imaging 4(1), 014502 (24 January 2017). https://doi.org/10.1117/1.JMI.4.1.014502 . Submission: Received: 29 August 2016; Accepted: 20 December 2016
Received: 29 August 2016; Accepted: 20 December 2016; Published: 24 January 2017
JOURNAL ARTICLE
13 PAGES


SHARE
Back to Top