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Abstract. Despite the current rapid advance in technologies for whole slide imaging, there is still no scientific
consensus on the recommended methodology for image quality assessment of digital pathology slides. For
medical images in general, it has been recommended to assess image quality in terms of doctors’ success
rates in performing a specific clinical task while using the images (clinical image quality, clQ). However, digital
pathology is a new modality, and already identifying the appropriate task is difficult. In an alternative common
approach, humans are asked to do a simpler task such as rating overall image quality (perceived image quality,
plQ), but that involves the risk of nonclinically relevant findings due to an unknown relationship between the plQ
and clQ. In this study, we explored three different experimental protocols: (1) conducting a clinical task (detecting
inclusion bodies), (2) rating image similarity and preference, and (3) rating the overall image quality. Additionally,
within protocol 1, overall quality ratings were also collected (task-aware plQ). The experiments were done by
diagnostic veterinary pathologists in the context of evaluating the quality of hematoxylin and eosin-stained digital
pathology slides of animal tissue samples under several common image alterations: additive noise, blurring,
change in gamma, change in color saturation, and JPG compression. While the size of our experiments
was small and prevents drawing strong conclusions, the results suggest the need to define a clinical task.
Importantly, the plQ data collected under protocols 2 and 3 did not always rank the image alterations the
same as their clQ from protocol 1, warning against using conventional plQ to predict clQ. At the same time,
there was a correlation between the clQ and task-aware plQ ratings from protocol 1, suggesting that the clinical
experiment context (set by specifying the clinical task) may affect human visual attention and bring focus to their
criteria of image quality. Further research is needed to assess whether and for which purposes (e.g., preclinical
testing) task-aware plQ ratings could substitute clQ for a given clinical task. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original

publication, including its DOI. [DOI: 10.1117/1.JMI.4.2.021108]
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1 Introduction

Currently, traditional microscopy is undergoing a major trans-
formation driven by the development of automated whole
slide imaging (WSI),! the technology that is expected to
bring critical advancement in pathology diagnostics. The advent
of new WSI systems creates the need for a methodology for
assessing image quality (IQ) for these systems and for adequate
(application-specific) perceptually relevant IQ measures.”
Despite the current booming popularity and the advance in
new technologies for WSL? at this moment, there is still no
standardization nor formal recommendation for validating the
diagnostic quality of digital pathology systems.** In fact, a
recent review by Garcia-Rojo,® which examined international
guidelines for digital pathology published in the last eight
years, found that most technical aspects are well covered by
the guidelines but that they provide limited information regard-
ing 1Q and compression. Furthermore, the necessity for devel-
oping methodology and building consensus on the evaluation of
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digital pathology clinical performance has been acknowledged
by the FDA’s ongoing research program on the Assessment of
Digital Pathology.’

In this paper, the main research question is the optimal meth-
odology for evaluating the quality of digital pathology image
data. We consider two common approaches for assessing 1Q by
human observers, explained next: overall-perception-based and
clinical-task-based. In the most general approach, human rating
of (image) quality is based on a very subjective criterion of the
overall impression of quality for which the thresholds may vary
considerably from one individual to another. We refer to this
kind of quality as perceived overall IQ (pIQ). Alternatively, we
can assess the utility of images, i.e., the success rate of perform-
ing a specific clinical task when using the images; hereafter
clinical IQ (cIQ). Undoubtedly, we expect variability among
performances of individuals in the latter approach as well
(due to variations in experience, age, instructions provided,
and multiple other reasons). However, the clQ criterion—the
level of performance in the task—is not subjective, and it
directly reflects the value (utility) of images for their intended
purpose. At the same time, cIQ experiments imply not only high
costs for recruiting clinical experts as subjects but also

Apr—Jun 2017 « Vol. 4(2)


http://dx.doi.org/10.1117/1.JMI.4.2.021108
http://dx.doi.org/10.1117/1.JMI.4.2.021108
http://dx.doi.org/10.1117/1.JMI.4.2.021108
http://dx.doi.org/10.1117/1.JMI.4.2.021108
http://dx.doi.org/10.1117/1.JMI.4.2.021108
http://dx.doi.org/10.1117/1.JMI.4.2.021108
mailto:ljiljana.platisa@UGent.be
mailto:ljiljana.platisa@UGent.be
mailto:ljiljana.platisa@UGent.be

PlatiSa et al.: Influence of study design on digital pathology image quality evaluation. ..

substantial time and effort investment for preparing the experi-
ment, especially for selecting appropriate test images.®

While the task-based approach to the quality assessment of
medical images has been strongly recommended,’ it has been
meaningfully researched and exploited in a limited number of
applications, primarily for x-ray and magnetic resonance imag-
ing (MRI). The dominant task evaluated in the 1Q literature is
lesion detection, including detection of cancer in breast mam-
mograms or in digital breast tomosynthesis, detection of lung
cancer in chest computed tomography images, and detection
of multiple sclerosis lesions in brain MRI. Imaging modalities
other than x-ray and MRI remain largely ignorant of the task-
specific approach and instead rely on the pIQ,'” while making
the assumption that perceived quality is correlated with clinical
performance. In fact, a number of studies continue to this day
using pIQ, even in x-ray'' and MR imaging."

To date, research and understanding of the relationship
between pIQ and cIQ are very limited, creating high risk in
using perceived quality to predict clinical performance. The
few related studies that have been reported include the work
by Taplin et al.,'* who considered the task of breast cancer detec-
tion in mammography, and by Jiang et al.,'* who examined the
case of bovine liver tumor detection in MRI. They reported con-
verse findings; the former study demonstrated the lack of cor-
relation between cIQ and pIQ whereas the latter study suggested
the presence of correlation between cIQ and plQ. These two
examples illustrate the distinct requirements of individual clini-
cal applications (determined by the clinical task, the anatomy/
tissue type, and the imaging modality) that prevent from making
generalizations about the preferred approach for evaluating IQ.
That is to say, the fact that clinical performance is (not) corre-
lated with perceived quality for one application does not guar-
antee that the same relationship holds for another application.
As Gavrielides et al.'® discussed, pooling even clinical image per-
formance across multiple clinical tasks may be misleading as it
could mask important image limitations specific to specific tasks.
For illustration, even within the context of cancer detection in
mammography, an IQ experiment may focus on the detectability
of masses and microcalcifications separately, as different types of
breast lesions may have different IQ requirements.'

As a result, substantial further experimentation and analysis
are required. This is especially important for new modalities
such as digital pathology, where even only identifying the rep-
resentative diagnostic task for IQ assessment (IQA) is a nontri-
vial problem and requires serious considerations and analysis.
These range from identifying the most representative clinical
problems (abnormalities) to selecting appropriate existing tools
for analyzing the collected data and ensuring a sufficiently large
test dataset with available ground truth (images with known
abnormality), or alternatively developing methods and tools
that do not require ground truth, to developing methods for
objectively identifying candidate patients (tissue samples/cells)
for the IQA study at hand, as argued by Gallas et al.'”

Recently, Platifa et al.'® reported a study that collected
plQ ratings for hematoxylin and eosin (H&E)-stained digital
pathology slides of animal tissue samples that were artificially
altered to reflect some common factors of image acquisition,
management, and display within the WSI system (including
blurring, added noise, and JPG compression). The images were
assessed by three groups of subjects, according to their expertise
profile: expert pathologists, veterinary students, and experts in
image processing. Overall, their results suggested that initial
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criteria for judgment of plQ in digital pathology images are
different for subjects of different expertise profiles, especially
between the two expert observer groups; pathologists were
less critical of pIQ than imaging experts. On that account, the
report concluded that it might be misleading to guide the devel-
opment of any pathology-specific image algorithms or imaging
systems by psychovisual responses of subjects who are not
experts in pathology (the target end-users).

In continuation of that research, this paper concentrates on
the expert pathologists and presents two new experiments: one
that defines a specific clinical task of detecting inclusion bodies
under the H&E staining and the other that specifies no clinical
task. We collected, in the first experiment, the pIQ ratings as
well as the diagnostic performance and, in the second experi-
ment, the ratings of image similarity and image preference.
The participating expert pathologists were exactly the same
as in Ref. 18. The newly collected data are compared with
that of Platia et al.,'® and pros and cons of the different evalu-
ation approaches and protocols are discussed. It is important to
emphasize that the experiments are preliminary and limited in
sample size (12 reference images representing three sample
tissues, as detailed in Sec. 2.1). The main reason behind this
limitation is the large number of experiments that had to be
performed (see further in Sec. 2.4). Instead, the purpose of this
study is to reveal possible interaction between plQ and clQ,
as well as to make recommendations for the design of future-
related studies with human observers. To the authors’ best
knowledge, this is the first study with digital pathology images
to look into the agreement between the plQ and cIQ.

Overall, albeit with a very limited image sample size, our
results suggest that pIQ assessed without a defined clinical
task may not be considered a reliable predictor of cIQ for the
studied task and images. A more reliable alternative could be
pIQ ratings from experiments in which the clinical task has
been specified and used to provide clinical context for the
human observer, i.e., to evoke the observer’s appraisal of the
clinical relevance of the images while they judge the plQ.

The paper continues in Sec. 2 with a review of the method-
ology used for the three human observer experiments (images,
participants, protocols, and data analysis). The results of our
data analysis are presented in Sec. 3 and discussed in Sec. 4.
To conclude, Sec. 5 provides a summary of the main consider-
ations arising from this work.

2 Methodology

Prior to our main study, we conducted a prestudy (one experi-
ment only) with four observers for the purpose of selecting the
appropriate test parameters for image alterations. For brevity,
only the key points of the prestudy are mentioned in this
paper without detailed analysis. Then, our main study comprised
three experiments, each using the test images of the same path-
ology samples and each performed by the exact same six path-
ologists. The images and the observers in the main study were
different from those in the prestudy. The three experiments of
the main study differed in their specific protocols that define
how the images were presented [e.g., single-stimulus (SS) or
double-stimuli (DS)], what experimental questions/tasks were
asked to the observer to answer/perform and in which order,
which rating scales were used, and how/which observer
responses were collected. The details are described in the
following section.

Apr—Jun 2017 « Vol. 4(2)



PlatiSa et al.: Influence of study design on digital pathology image quality evaluation. ..

\\.‘U." V-
SRR
X o e
2. ) FOt e
€ s 5
W, oA\
B3 e, N \;\ \\1\
&
NS s L\
2 3
-
@ o
Q‘i.; ‘ :
AN e
¥ BN
T /
~ ‘» § »
N
B Ly

Fig. 1 Example reference (M-NONE) images of the three considered tissue samples: (a) gastric fundic
glands of a dog, (b) liver of a foal, and (c) gastric fundic glands of a dog. All M-NONE images and their
corresponding artificially altered variants (M-Blur, M-Gamma, M-ColSat, M-Noise, and M-JPG) were

1200 x 750 pixels in size.

2.1 Images and Alterations

The test data set illustrated in Fig. 1 was created from real digital
pathology images of animal pathology samples (two samples of
gastric fundic glands of a dog and one sample of liver of a foal),
each stained with H&E following the same procedure. The
images were acquired at 40X magnification using a BXS50
Olympus microscope, 3CCD color camera (Olympus DP 50) and
saved in TIFF format uncompressed, 24 bit color depth, using
“analySIS” software by Olympus Soft Imaging Solutions.
Neither compression nor any other image preprocessing was
allowed at the acquisition to ensure full control over the extent
of image alterations, which we will introduce in Sec. 2.1.2.

The images were potentially showing pathological condi-
tions characterized by inclusion bodies (hereafter lesions).
This kind of image is used in the daily routine of veterinary path-
ologistis to diagnose epidemiologically and clinically important
viral diseases in dogs and foals based on the presence of char-
acteristic and disease-specific lesions, i.e., the intracytoplasmic
and intranuclear viral inclusions, in the histologic sections.'”
Specifically, in dogs, the etiology of the disease that was on
the pictures was canine distemper virus (CDV), which causes
vasculitis, pneumonia, encephalitis, and death; in horses, the eti-
ology of the disease on the slides was equine herpesvirus 1
(EHV-1), which causes respiratory problems, abortion, still
birth, or neurological disease. Both CDV in dogs®® and EHV-
1 in horses?! remain highly prevalent; hence, their diagnosis
can be considered highly relevant from a clinical and practical
point of view. The pathological features that a pathologist uses
to visually identify the inclusion bodies are basophilic or eosino-
philic globules that are visible with H&E stains and can be found
either intranuclear or intracytoplasmatic in the cells (eosino-
philic or basophilic depends on the virus, likewise for intranu-
clear or intracytoplasmic).

2.1.1 Reference images

First, from the original 5 mega pixel images (2776 x 2074), we
cropped nonoverlapping regions of 1200 X 750 pixels in size to
fit the image presentation requirements (described in Sec. 2.3).
The cropped images were considered reference images
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(hereafter denoted “M-NONE”); see Fig. 2. In total, 24 M-
NONE images were used in the main study experiments
(eight from each of the three tissue samples); details are
in Sec. 2.4.

2.1.2 Image alterations

We were interested in studying the following common factors of
image acquisition, management, and display within the WSI
system: blurring (possibly caused by thick or folded tissue,
incorrect focus, or vibrations during scanning), color, and
gamma parameters (typically controlled by the parameters of
the display system but also substantial color variation could
be due to the process of slide staining or caused by scanning
devices), noise (possibly lower for live tissue and higher for
dead tissue samples; increasing when the microscope approaches
the resolution limit), and image compression (necessary for
storage and especially transmission of the very large sizes of
digital pathology images).

Region of correct
localization

Lesion
marked
bya
senior
expert

Gend ~

Fig. 2 Location-level mark classification. A mark is accepted as
“TP” if it belongs to the acceptance region around the actual lesion;
otherwise, it is classified as “FP.” The acceptance region is a manually
delineated rectangular area determined by the largest width
(Xmax — Xmin) @nd height (Vmax — ¥min) Of the actual lesion in the refer-
ence image. The actual lesions are the lesions marked by the senior
expert with confidence rating above 60%.
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Table 1 Six categories of image alterations considered in the main
study.

Table 2 Distribution of the observers according to gender, age, and
experience in diagnostic pathology.

Image category Image alteration Parameter value Parameter Value
M-NONE None — Total observers 6
M-blur Added Gaussian blur op =3 Male observers 1
M-gamma Decreased gamma Approx. —5% Female observers 5
M-ColSat Decreased color saturation Approx. =5% Minimum age 25
M-noise Added white Gaussian noise on =10 Maximum age 40
M-JPG JPG compression libjpeg quality 50 Median age 29.5
Mean years of experience 6.2

For the purpose of studying these effects, the reference
images were artificially altered by the following nine methods:
adding Gaussian blur (¢, = 3), unsharp masking, decreasing/
increasing gamma (approx. —5%/ + 5%), decreasing/increas-
ing color saturation (approx. —5%/ + 5%), adding low/high-
frequency white Gaussian noise (¢, = 1.5/0, = 10), and JPG
compression (libjpeg? quality 50). The alterations were applied
on each reference image and always one at a time. We were not
specifically interested in evaluating the levels of the different
alterations; therefore, only one level was considered for each
alteration adjusted to yield approximately equivalent predicted
perceived difference relative to the corresponding reference
image—subtle yet noticeable. The degree of predicted percep-
tual difference was measured in the grayscale (luminance)
domain using the high dynamic range visible difference predic-
tor (HDR-VDP).?

In a prestudy experiment (see Sec. 2.3), five out of the afore-
mentioned nine image alterations were selected because they
had the most prominent effect on the plQ; these are listed in
Table 1. Further in the text, the corresponding five categories
of altered (manipulated) images are denoted by an “M-" prefix;
for example, we write “M-Blur” to denote an image that was
altered by adding Gaussian blur of ¢, = 3. Also, we write
“M-NONE” to denote a reference image and “M-Any” to refer
to any test image but the M-NONE (when the exact type of
alteration is not of interest). Thus, there were a total of six
images within each reference image (the M-NONE image and
its five altered variants).

Note that the noncolor-aware HDR-VDP mechanism was
suboptimal for selecting the levels of alteration in the case of
M-ColSat and M-Gamma images, and, therefore, the corre-
sponding results require additional considerations not directly
related to the main line of argument in this paper. For example,
pathologists are used to some extent of color variation due to
staining and tissue age, and the related typical parameters differ
among different labs, all of which could lead to larger variation
in pathologists’ individual preferences and judgments of the
quality of image color. To not distract the reader’s attention,
the interpretation and discussion later in the paper will leave
out these two image categories. For completeness, the results
are shown for all image categories in Table 1.

2.2 Participants

A total of six practicing diagnostic veterinary pathologists par-
ticipated in the main study. Details about their gender, age, and
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experience distribution are summarized in Table 2. These were
different from the four human subjects in the prestudy (one diag-
nostic pathologist, one veterinary student, and two researchers in
image processing). All observers were screened for color vision
deficiencies using the Farnsworth Panel D15 test,* and they
were all found to not be color blind. The participants were
paid for their participation, and they signed a privacy statement
that the collected data would be used only in a deidentified form
and only for research purposes.

2.3 Reading Protocols

The three experiments of the main study followed three different
protocols for evaluating (reading) images, as summarized in
Table 3. Under each protocol, one experiment trial consisted
of the observer viewing a given image (pair) and answering
all of the questions (observer’s tasks) using their corresponding
reporting scales; unanswered questions were not allowed. The
methodology for analysis of the collected data is described in
Sec. 2.5.

The protocol named free-response receiver operating charac-
teristic (FROC, see the top section of Table 3) was the only one
including a specific clinical task. After giving their rating of the
overall quality of a given image (task-aware plQ), the observer
was asked to mark and rate all suspected color abnormalities
(lesions of inclusion bodies), knowing that any number of
them is possible, including zero lesions (also called a lesion-
free or a normal image). In particular, the observer was asked
to mark every suspected location that they considered worthy
of mention?” and rate their confidence of abnormality using
a continuous scale from 0% (low confidence) to 100% (high
confidence). The ground truth was determined through image
annotations by an experienced senior expert in diagnostic
veterinary pathology (see further in Sec. 2.5 and Fig. 2).

Under the DS protocol (midsection of Table 3), the observer
was presented with two images simultaneously: one image on
the left side and another image on the right side of the screen.
The pairs included a comparison of a reference to its corre-
sponding altered image, a comparison of two different altera-
tions of the same reference images, and a comparison of an
image (reference or altered) to itself. For each pair of images,
there were two rating tasks for the observer: rate the similarity
of the two images (in terms of IQ) and rate the preference
between the two images. The similarity was rated using a
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Table 3 Three different protocols used in the human observer experiments. Within each protocol, an observer answers the experimental question
Q; using its corresponding reporting scale S;.

Protocol name

FROC

Stimuli

Visualization

Questions

Reporting scale

Data analysis

Reference image and all corresponding altered images (one image per trail)
One image viewed individually

Q4: How would you judge overall quality of the image?

Q,: Mark all inclusion bodies in the image and assign them a confidence rating
S;: Continuous [0, 100] [low quality, high quality]

S,: Continuous [0, 100] [low confidence, high confidence]

Q;: MdnOS and Kruskal-Wallis analysis

Q,: JAFROC analysis®2

Protocol name

DS

Stimuli

Visualization

Questions

Reporting scale

Data analysis

All pairwise combinations (including self-pairs) of a given reference image and its corresponding
altered images (one pair per trail)

Two images viewed simultaneously

Q;: How similar are the images?

Q,: Which image do you prefer for overall quality?

S;: Discrete [0, 5] [not similar at all, the same]

S,: Discrete [—3,3] [left image, right image]; includes 0O (no preference)

Median and IQR (per question)

Protocol name

SS

Stimuli
Visualization

Questions

Reporting scale

Data analysis

Reference image and all corresponding altered images (one image per trail)
One image viewed individually

Q;: How would you judge overall quality of the image?

Q,: How would you judge the level of noise?

Q3: How would you judge the level of blur?

Q,4: How would you judge the level of contrast?

Qs: How would you judge the color saturation?

S;: Discrete [0,5] [very low quality, very high quality]

S,: Discrete [0,5] [very disturbing noise, not disturbing at all]

S3: Discrete [0,5] [very disturbing blur, not disturbing at all]

S,: Discrete [0,5] [very poor contrast, very good contrast]

Ss: Discrete [0,5] [very poor color saturation, very good color saturation]

MdnOS and Kruskal-Wallis analysis (per question)

six-point discrete scale from 0 (not similar at all) to 5 (the same) Finally, the SS trials with hidden reference 28 as described
while the preference rating was done on a seven-point discrete in ITU-R Recommendation BT.500-13%° displayed a single
scale from —3 (prefer left image) to +3 (prefer right image), randomly chosen image at a time (bottom section of Table 3).
allowing also a zero (0) response value (no preference). For each image, the observer performed five tasks rating
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different 1Q attributes: plQ, perceived blur disturbance, per-
ceived quality of contrast, perceived noise disturbance, and
perceived quality of color saturation. Each attribute was rated
using a six-point absolute category rating scale® ranging from
0 to 5. The better (less disturbing) the perceived attribute, the
higher the score. Note that in this paper only the pIQ data will
be of interest; the data collected under Q, to Qs have been
presented in another publication by Platia et al.,'® which has
already been referred to in Sec. 1.

2.4 Experiments

The experiments reported in this work are summarized in
Table 4. The prestudy was performed in the pilot experiment
following the SS protocol in which four observers viewed
50 images (5 reference and their 5X9 artificially altered
images), and the goal was to select five (out of nine) image
alterations with the most dominant perceptual effects. The three
experiments of the main study each followed one of the three
aforementioned protocols: expl, FROC protocol; exp2, DS
protocol; and exp3, SS protocol. They were designed to each
answer a specific research question with respect to the quality
of color digital pathology images:

e Expl: What is the effect of image alterations on clinical
performance?

o Exp2: How sensitive are pathologists to image alterations,
i.e., which alterations are perceptually salient for them?

o Exp3: How do pathologists judge 1Q and its attributes?

The same six observers performed all three main study
experiments, always in the same order: expl, exp2, and
exp3. The intention was to first allow the pathologists to do
what they are trained for and most familiar with (the diagnostic
task in expl), then ask them to judge images according to their
personal criteria (image similarity and preference in exp2), and
only at the end introduce them to some more technical terminol-
ogy (noise, blur, contrast, and color saturation) and ask them to
rate the specific attributes of IQ (in exp3). All experiments used
a fully crossed study design, i.e., all observers viewed all
images/pairs. Since in exp1 the observers were asked to perform
a clinically relevant task, this experiment has a very obvious
“clinical” context. In the other two experiments, however, the
observers’ tasks were exclusively about the quality of the
images, and, except for the image content itself (pathology tis-
sues), there was no mention of the clinical context whatsoever;
we refer to this context as “technical.” The notion of context

will be of interest later when we discuss the results of our
experiments.

The images used in these experiments were as follows:
(expl) 12 reference images (4 crops from each of the three tissue
samples) and their 12 x 5 artificially altered images, (exp2) 3
out of the 12 reference images from expl (1 crop from each
of the 3 samples, as shown in Fig. 1) and their
3 x5 artificially altered images, and (exp3) a separate set of
12 reference images (4 different crops from each of the 3 sam-
ples) and their 12 X 5 artificially altered images. Thus, the exp2
dataset was a subset of the expl dataset, whereas the dataset of
exp3 was different. This is because the investigation originally
included only expl and exp2 and participants naive to diagnos-
tic pathology. Later on, diagnostic pathologists were involved.
To allow comparison with the previous results, the datasets for
expl and exp2 were kept the same. However, since the main
purpose of recruiting pathologists was to conduct task-based
image assessment, the images for exp3 were selected to fit
the requirements of an FROC experimental paradigm.
As described in Sec. 2.1, all 24 reference images represent
the same three pathology samples (8 reference images from
each of the three samples). Presentation of the (pairs of) images
was randomized for all experiments.

The images were displayed on a 3MP medical color LCD
display (MDCC-3120-DL, Barco N.V., Kortrijk, Belgium)
with the color management set to fidelity. No image adjustment
(zoom or window level) was allowed. The observers were seated
at 50 cm from the display and were allowed to lean back and
forth. The experiments were conducted in a controlled viewing
environment to ensure consistent experimental conditions: low
surface reflectance and approximately constant ambient light.
There was no time limitation.

Prior to the experiments, participants were asked to fill out a
profile questionnaire concerning their age, gender, profession,
and experience. Each experiment was conducted in a separate
session, often split by a few days. The session started with
a brief written introduction to the purpose of the experiment
and explanation of the protocol. Prior to the experiment,
there was a brief training without feedback including 5 to 10
trials to clarify the procedures, to familiarize the participants
with the user interface, and to ascertain that the rating scale
was properly understood. The images used in the training
trials were different from the images in the experiment trials.
At any point before the first experiment trial, observers could
ask questions. After completing the last trial, there was a short
questionnaire about the experience with the experiment.

Table 4 Overview of the experiments performed in the prestudy (pilot) and in the main study (exp1, exp2, and exp3).

Name  Protocol Context No. observers and observer experience Image data Trials per observer
Pilot SS Technical ~ One diagn. pathologist, one veterinary 5 reference images and their 5 x 9 50
student, and two imaging experts altered versions
Exp1 FROC Clinical Six diagn. pathologists 12 reference images and their 12 x5 72
altered versions
Exp2 DS Technical  Six diagn. pathologists 21 pairwise combinations with repetition 63
within three reference images
Exp3 SS Technical  Six diagn. pathologists 12 reference images and their 12 x5 72

altered versions
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2.5 Data Analysis

The main method of data analysis used with each protocol is
indicated in Table 3. The analysis was performed based on
the pooled measurements for all test images within a given
experiment.

Overall, the categorical data were analyzed with median
and interquartile range (IQR) and Kruskal-Wallis testing for
the statistical significance. By comparing the collected data of
individual observers among each other through visual inspection
of scatter plots, no inconsistent observers were identified. Then,
given the non-Gaussian descriptive statistics of our collected
data, we have chosen to use the median opinion score (MdnOS)
and the (25%, 75%) IQR to evaluate observer ratings. To test
for differences among MdnOSs, we perform the Kruskal-Wallis
nonparametric one-way analysis of variance. We note that the
data in our experiments do not always comply with the condi-
tion of data independency that is required for the Kruskal-Wallis
analysis, i.e., the altered images in our experiments are manip-
ulated variants of the reference images, and thus M-Any images
are related to M-NONE images. Nevertheless, for simplicity
reasons and given the preliminary character of the study, we
will consider the images of different M-groups (approximately)
independent. We also perform posthoc pairwise comparisons at
a significance level a = 0.05.

In the case of FROC protocol in expl, the collected human
data consist of an arbitrary number of mark-rating pairs per
image. Under the FROC paradigm, a marked (suspected) loca-
tion is classified as a correct lesion localization (true positive,
TP) if the mark falls within an acceptance region of the actual
lesion; otherwise, it is a wrong lesion localization (false positive,
FP). In our study, the acceptance region was defined as a rec-
tangular area determined by the largest width and height of the
actual lesion in the reference image (annotated by an experi-
enced senior expert in diagnostic veterinary pathology); for
illustration, see Fig. 2.

Table 5 Parameters of the JAFROC experiment.

Name Value
No. readers 6
No. treatments 6
No. normal cases 5
No. abnormal cases 7
Fraction normal cases 0.417
Min lesions per image 1
Max lesions per image 2
Mean lesions per image 1.286
Total lesions 9
Mean nonlesion localization marks per reader on 2.667

normal images

Mean nonlesion localization marks per reader on 1.091
abnormal images

Mean lesion localization marks per reader 0.722

For computing the FROC figure of merit (FOM), we used the
jackknife AFROC (JAFROC) method proposed by Chakraborty
and Berbaum® and later refined by Chakraborty.”® The FOM
takes values in the range 0 to 1, where FOM = 1 corresponds to
a prefect observer who marked every true lesion (TP) and did
not mark any normal image (number of FPs is zero). The data
were analyzed using the freely available JAFROC software.*

3 Results

We present here the results of data analysis in terms of the fol-
lowing: (1) pathologists’ performance in localized lesion detec-
tion (Q, from expl), (2) pathologists’ subjective judgment of
image similarity and preference (exp2), and (3) pathologists’
subjective judgment of the overall IQ (Q; from expl and Q,
from exp3). As explained at the end of Sec. 2.1.2, the results
are presented for all image categories listed in Table 1 while
the interpretation and discussion leave out the M-ColSat and
M-Gamma images.

3.1 Clinical Image Quality

Table 5 reviews the parameters of the diagnostic task performed
by the observers within Q, from expl. Using the terminology
of FROC studies, the observers are referred to as readers, the
test images as cases, and the six different categories of image
alteration (reference included) as treatments.

The results of the JAFROC analysis are summarized in
Table 6 and graphically represented in Fig. 3. Overall, the null

Table 6 Difference in FOM between all pairings of image alterations
(including M-NONE) and the corresponding 95% confidence intervals
(Cls). The asterisk symbols indicate statistically significant differences
in FOMs.

Difference

Compared image alterations in FOM 95% ClI
M-Blur versus M-Gamma 0.05000 [-0.03106,0.13106]
M-Blur versus M-ColSat -0.10926  [-0.19032, —0.02820]*
M-Blur versus M-Noise 0.00556  [-0.07550, 0.08661]
M-Blur versus M-JPG 0.03333  [-0.04773,0.11439]
M-Blur versus M-NONE —0.07037  [-0.15143,0.01069]
M-Gamma versus M-ColSat -0.15926  [-0.24032, —0.07820]*
M-Gamma versus M-Noise —0.04444  [-0.12550,0.03661]
M-Gamma versus M-JPG —0.01667 [-0.09773,0.06439]
M-Gamma versus M-NONE —-0.12037  [-0.20143,-0.03931}*
M-ColSat versus M-Noise 0.11481  [0.03376,0.19587]*
M-ColSat versus M-JPG 0.14259  [0.06153,0.22365]*
M-ColSat versus M-NONE 0.03889  [-0.04217,0.11995]
M-Noise versus M-JPG 0.02778  [-0.05328,0.10884]
M-Noise versus M-NONE —0.07593  [-0.15698,0.00513]
M-JPG versus M-NONE —-0.10370  [-0.18476, -0.02265]"
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Fig. 3 JAFROC FOM for all considered types of image alteration
(including M-NONE). The FOM is averaged over observers and the
error bars correspond to 95% ClI.

hypothesis that the six categories of image alterations yield
equivalent performance in the considered diagnostic task
(joint detection and localization of lesions) is rejected at a @ =
0.05 significance level [F(5,25) = 4.95, p = 0.0028]. In gen-
eral, JAFROC suggests using at least 50 image samples
(cases) for the findings to be generalizable to the population
of images (random-case analysis) and more than three observers
to generalize to the population of observers (random-observer
analysis). Otherwise, the analysis is valid only for the specific
images/observers used in the study (fixed-case/fixed-observer
analysis). Given the very low number of test cases in our

experiment (12 cases per treatment, see Table 5), we did not
attempt to generalize to cases and we reported random-reader
fixed-case analysis only. Based on our experimental data,
JAFROC predicted that (minimum) 53 cases would be required
to conduct random-case analysis [assuming six readers, signifi-
cance level a = 0.05, effect size 0.05, desired statistical
power (1 —4) =0.8].

As seen from Table 6, statistically significant differences
among the levels of task performance were found only for
M-NONE to M-JPG comparison (marked in bold in the table);
other five comparisons involve either M-ColSat or M-Gamma
images and will not be discussed further.

3.2 Similarity and Preference Judgments

The similarity judgments collected under question Q from exp2
are summarized in Table 7, and the preference data of Q, are
shown in Table 8. Both tables present the median values com-
puted over pooled ratings by all observers for all image pairings
within a given category of alterations (M-NONE, M-Blur, and
so on). As an indicator of variance, we show the corresponding
IQR, the difference between the first and the third quartiles.
First, looking at the diagonal elements of Tables 7 and 8, we
note that most pairs of identical images (self-pairs) are correctly
judged (the highest similarity scores 5 or 4, and the neutral
preference scores around 0), which suggests that the observers
correctly understood their tasks and were mainly doing the right
thing. Then, we turn to the intercategory image comparisons.
Again correctly, for all image pairs rated high in similarity,

Table 7 Summary statistics of image similarity ratings collected in exp2 under question “How similar are the images?” while using a six-point
Likert-type scale from “not similar at all” (0) to “the same” (5). For each image-pairing, the median and the IQR of the similarity ratings are shown.

M-Gamma

M-ColSat M-Noise M-JPG

M-NONE M-Blur
M-NONE 5.00 [4.00,5.00]

M-Blur 3.00 [1.25,3.75] 4.00 [4.00,5.00]
M-Gamma 4.00 [4.00,4.75] 2.00 [1.00,3.75]
M-ColSat 1.00 [0.25,2.00] 1.00 [0,2.50]
M-Noise 5.00 [4.00,5.00] 4.00 [2.00,4.00]
M-JPG 4.50 [4.00,5.00] 3.50 [2.00,4.00]

1.00 [0,1.75]
4.00 [3.00,5.00]

4.00 [4.00,4.75]

5.00 [4.00,5.00]

5.00 [4.25,5.00]

1.00 [0.25,1.00] 4.50 [4.00,5.00]

1.00 [0.25,1.75] 4.00 [4.00,5.00] 5.00 [4.00,5.00]

Table 8 Summary statistics of image preference ratings collected in exp2 under question “Which image do you prefer for overall quality?” while
using a seven-point Likert-type scale from “leftimage” (—3) to “right image” (+3). In the table, the leftimage side corresponds to the columns and the
right image side is represented in the rows. For each image-pairing, the median and the IQR of the preference ratings are shown.

M-NONE M-Blur M-Gamma M-ColSat M-Noise M-JPG
M-NONE 0 [0,0]
M-Blur 2.50 [2.00,3.00] 0 [-0.75,0.75]
M-Gamma 0 [-1.00, 1.00] —2.00 [-3.00, -2.00] 01[0,0]
M-ColSat 2.00 [-1.00,2.00] -1.50 [-3.00,1.00] 2.00 [-1.00, 3.00] 01[0,0]
M-Noise 0 [0,0.75] —2.50 [-3.00, -1.00] 0[0,1.00] 0 [-2.00,2.00] 0 [0,0.75]
M-JPG 01[0,0.75] —2.00 [-3.00, —1.25] 0 [-1.00, 1.00] —0.50 [-2.00,2.00] 0 [-1.00,0] 01[0,0]
Journal of Medical Imaging 021108-8 Apr—Jun 2017 « Vol. 4(2)
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Fig. 4 Overall IQ ratings by diagnostic pathologists: (a) results from exp1 (task-aware plQ), continuous
rating scale from 0% to 100% and (b) results from exp3 (conventional plQ), discrete six-point rating scale
from 0 to 5. For both experiments, a higher rating score corresponds to higher plQ. In both plots, the
x-axis represents the type of image alteration (M-NONE, M-Blur, M-Gamma, M-ColSat, M-Noise, and
M-JPG). Each box in the plot indicates the median, the IQR, the 1.5 IQR interval (whiskers); no “outliers”
(measured points outside of the whisker range) have been identified.

the preference ratings remained close to 0 (no preference
between the two images). The only exception is the compari-
son between M-Blur and M-Noise rated high in similarity
(median [IQR] = 4[2,4]) but with preference for M-Noise
(=2.5[-3, —1]). Excluding M-ColSat and M-Gamma images,
some dissimilarity was perceived only with M-Blur images,
judged less preferred compared to M-NONE (3[1.25, 3.75])
and M-JPG images (3.5[2, 4]).

3.3 Perceived Overall Image Quality

Figure 4(a) shows the task-aware plQ ratings collected under Q,
from expl (continuous scale 0 to 100, clinical context), and
Fig. 4(b) represents the conventional plQ ratings from Q,
from exp3 (absolute category scale from O to 5, technical con-
text). Note that, overall, the ratings from expl fall in the lower
range of the rating scale (lower part of the y-axis) compared to
the ratings from exp3. Based on the data collected in expl,
pathologists found JPG-compressed images to be significantly
different from all other treatments (Kruskal-Wallis test,
p <0.001); all other pairwise comparisons among treatments
(alterations) were not significant. In exp3, however, all treat-
ments were equivalent except M-Blur was found significantly
different from M-Gamma (Kruskal-Wallis test, p < 0.01). The
results are further discussed in Sec. 4.

4 Discussion

Pathologists’ responses collected in the clinical-related experi-
ment of our study (Q, in expl) suggest that the diagnostic
FROC performance (cIQ) is significantly lower for the images
with the lossy JPG compression (introducing some typical arti-
facts such as blockiness) compared to the considered reference
images. The fact that compressing images could cause degrada-
tion in the diagnostic performance (due to often lower confi-
dence ratings of the marked abnormalities) suggests that this
level of JPG compression may not be acceptable for clinical dig-
ital pathology, that is, in particular, for the diagnosis of inclusion
bodies under the H&E staining. Clearly, this indication should
be verified with a more extensive study (more observers, more
images of specific tissues, and additional especially lower levels
of JPG compression) before any final conclusions can be made.
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Previously, Marcelo et al.*! found no statistically significant
difference between the diagnostic accuracy of noncompressed
and that of JPG-compressed images in telepathology. The
same was concluded by Seidenari et al.,*> although they noted
the intraobserver reproducibility in the diagnostic judgment to
be lower for compressed images. In the domain of image analy-
sis, Nicolosi et al.>* concluded that JPG compression does not
seem to significantly compromise the accuracy of angiogenesis
quantification in ovarian epithelial tumors. In contrast, Lpez
et al.** studied the effects of image compression on automatic
quantification of immunohistochemical nuclear markers and
found it to be dependent on the image content (number of
cells per field and number/size of clusters)—the effect was
small for low-complexity images (>100 cells per field, without
clusters or with small/area clusters) and substantial for high-
complexity images (<35 to 50 cells/field). Overall, it is impor-
tant to note that these reports largely differ in their content of
images, characteristics of lesions, and diagnostic tasks under
study (detection or quantification of lesions), as well as in the
range of compression ratio/quality. This confirms again the
importance of conducting application-specific IQA instead of
making (under investigated) assumptions or generalizations
from one case to another, as asserted in the introduction.

Next, we look at the M-JPG-related data across our experi-
mental setups. Those rankings of image alterations do not always
agree. First, staying within the same expl, the pIQ ratings from
Q; suggest significantly lower quality of M-JPG images com-
pared to the reference M-NONE images [see Fig. 4(a)]. Thus,
within expl, the findings concerning M-JPG are in agreement
between the two experimental tasks/questions, that is, cIQ ratings
are in agreement with pIQ ratings. However, the findings of exp2
and exp3 about M-JPG are no longer in agreement. The similarity
ratings from exp2 indicate high similarity between M-JPG and
M-NONE (median [IQR] = 4.5[4,5], see Table 7), suggesting
that pathologists were not (much) noticing the JPG artifacts.
Likewise, the pIQ ratings from Q; from exp3 rank M-JPG no
different than M-NONE. In other words, there was something
that the observers saw under expl (pIQ of M-JPG ranked lower
than pIQ of M-NONE) but which they were missing under exp3
(no difference in pIQ of M-JPG and M-NONE) and even with
exp2 (little dissimilarity between M-JPG and M-NONE).
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That being so, it appears from our results that the patholo-
gists’ answers to the question of “How would you judge the
overall quality of the image?”’ were not always the same (see
Fig. 4). The following two factors could be contributing to
this effect: the observer’s instructions and the experiment con-
text. First, we recall that in exp1 the pathologists were instructed
to judge the overall quality of the images according to their own
personal criteria, while in exp3 the observers received some
training about the attributes of IQ (blur, noise, contrast, and
color saturation). Therefore, it is possible that the training
they received in exp3 led the pathologists to focus on some spe-
cific types of image impairments (artifacts), but, because they
were otherwise little familiar with them, the task might have
been distracting and/or confusing. Previously, Platifa et al.'®
reported that in the exact same experiment setup performed
by image-processing researchers, the pIQ was always ranked
lower for M-JPG compared to M-NONE. Therefore, while
JPG artifacts were obvious to the trained eye of the imaging
expert, the pathologist seemed to lack the necessary skills to
recognize the JPG as such but rather became aware of the
degradation in quality only at the point where the diagnostic
task was at stake (clinical experiment context in expl). So
could it be that the context (created by the actual clinical
task) is affecting (helping) the overall IQ judgment? In light
of the latest findings of the significant differences in viewing
behavior (gaze response) in the task of rating quality versus
free-looking at an image (no goal/task specified),?*-*® the factor
of the experimental context could be a perfectly valid candidate
for future investigation. It could be that the context of the
experiment deserves more research attention than it has been
granted so far.

On the other hand, from the range of the rating scales that the
pathologists used for pIQ (see Fig. 4), it seems that they were
more critical of IQ in the clinical context when the true clinical
need was at stake (pIQ ratings were largely in the lower half of
the scale) unlike in the technical context when nothing “prac-
tical” was really gained or lost (pIQ ratings fall toward the
mid and upper parts of the scale). Additionally, perhaps this
less conservative use of the rating scale in exp3 was caused
by seemingly better understanding of the concept of IQ (after
the training in IQ and its attributes) compared to that in expl
(no such training). Of course, we also note that the two rating
scales differ in their nature—discrete in exp3 versus continuous
in expl1. This in itself could be the topic for further discussion,*’
yet it is beyond the scope of our consideration here.

Finally, the variation in the ratings of a single individual
when judging the same image on multiple occasions (reproduc-
ibility) could be attributed to the well-known and much-studied
effect of “intraobserver” variability. However, albeit a limited
number of observers, the effect of a single observer can hardly
explain the difference in the average performance of multiple
observers, which occurs in our study.

Importantly, the data of our study suggest the necessity to
define a clinical task and conduct task-based observer experi-
ments (as in expl) to assess clQ of digital pathology data.
Other considered experiment setups could disguise some of
the diagnostic/clinical effects of the images and thus cannot
be fully trusted as a means of assessing clinical image utility.
Alternatively, in the cases where it may not be possible to
involve actual conducting of a clinical task in the experiment,
it is important to at least create the clinical context for the experi-
ment to stimulate the observer’s awareness of the critical factors
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in the actual clinical environment (e.g., risk of misdiagnosis and
risk of under/overtreatment.).

At the end of this section, we acknowledge the limitations of
our study and highlight the key lessons learned; we then suggest
some recommendations for similar studies in the future. The
main limitation of our experiments is the small test image
sample size (12 reference images) as well as the dependency
between the reference and their corresponding altered images.
As indicated in Sec. 3, the required number of cases for doing
JAFROC random-case analysis would be above 50. Another
related point for improvement is the variation in the test image
content. Our current report does not investigate the effect of
image content (tissue type) while that could play an important
role in drawing conclusions,'® and thus it should be considered
in future research. The measurements of exp3 grouped by tissue
type can be found in Ref. 18.

In our experiments, only one level of each type of image
alteration was selected based on the visual differences predicted
by HDR-VDP?® measure. One major limitation of this approach
is that at the time of our experiment the measure was not
adjusted for color images; hence, the extent of our color-related
alterations could be different from those of the spatial-related
alterations (e.g., added noise and blur filtering). For future
experiments with humans, we recommend replacing or amend-
ing the process of selecting the levels of image alterations in a
pilot study with humans, following, for example, the method
presented by Kumcu et al.*® Additionally, before any conclu-
sions could be made about the (positive or negative) effect of
a given type of image alteration on the quality of images, it
will be necessary to include in the experiments multiple levels
of a given type of image alteration.

Concerning image compression, next to the JPG considered
in our experiments, it is also necessary to refer to JPEG2000,
especially at higher compression ratios. Supplement 145 of
the DICOM standards® states the following concerning image
data compression: “Because of their large size, WSI data are
often compressed. Depending on the application, lossless or
lossy compression techniques may be used. Lossless compres-
sion typically yields a 3X-5X reduction in size. The most
frequently used lossy compression techniques are JPEG and
JPEG2000. For most applications, pathologists have found
that there is no loss of diagnostic information when JPEG
[at 15X-20X reduction] or JPEG2000 [at 30X-50X reduction]
compression is used. Lossy compression is therefore often
used in present-day WSI applications. JPEG2000 yields higher
compression and fewer image artifacts than JPEG; however,
JPEG2000 is compute-intensive.”** Similar to the studies of
JPG compression, current literature reporting the effects of
JPEG2000,*'*? albeit limited, suggest the need for future
investigations to be directed at specific applications (anatomy,
diagnostic task, and compression ratios of interest).

Related to the diagnostic task of detecting inclusion bodies, it
is important to note that the FROC setup from our experiment is
not used routinely in daily practice. Instead, in daily routine,
solely the presence or absence (not actual number) of inclusion
bodies is noted in the context of a range of other degenerative
cell lesions and inflammatory lesions, supporting the histopa-
thologic diagnostic conclusion. The FROC setup was chosen
as an acceptable surrogate for the real clinical procedure with
existing statistical tools for data analysis. For future studies
involving the diagnostic task, it will be of interest to replicate
the actual diagnostic routine as closely as possible to maximize
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experimental realism and to properly use pathologists’ skills in
the process of image evaluation.

Finally, the work presented in this paper identifies several
points of interest for further research. In particular, it would
be important to better understand the role of the experimental
context in the human observer studies. Next to guiding the
design of future studies with humans, this might also give
important insights for the future effort in developing numerical
measures of 1Q. For example, when collecting human data for
the purpose of developing numerical IQ measures, it might be of
interest to tie the questions about different quality attributes to
the task of interest, perhaps by asking the observers to perform
the clinical task and evaluate the quality of the data within the
same context, similar to what was done in our expl. In current
research practice, these two types of questions—clinical task
versus quality ratings—are commonly asked in different con-
texts (during separate experimental sessions). In fact, most
often, only one type of question is considered, either a clinical
task or the plQ-attribute ratings. It would be of interest to see
whether, by ensuring a clinical context for the experiment, the
true clinical task could be replaced by simpler nonclinical tasks
and still lead to the same conclusions. A related open question is
the best experimental setup for leading the observers to consider
the clinical relevance of the images without actually conducting
a clinical task. Last, while exploring the effect of the context and
the task/question, the rating scales for the same questions should
be kept the same to allow proper comparison.

5 Conclusions

The aim of our study was to investigate the optimal methodol-
ogy for IQA of digital pathology images and, more specifically,
to examine possible interaction between the two common
approaches of plQ and clIQ. To the authors’ best knowledge,
no literature reports to date have evaluated this relationship.
Our experimental data were collected in three image reading
experiments conducted to assess the impact of various image
manipulations on the quality of digital veterinary pathology
slides under the H&E staining as judged by veterinary pathol-
ogists. Expl was framed in a clinical context; it specified the
task of detection and localization of inclusion bodies in the
images, and it measured cIQ by means of observers’ FROC per-
formance as well as task-aware plQ through observers’ ratings
of overall 1Q. Exp2 asked the observers to rate pairs of images
for their similarity and preference, and Exp3 again collected
ratings of pIQ but in a nonclinical context.

Based on the data from expl, the diagnostic performance
as well as the ratings of overall IQ for the reference images
decreased after the JPG compression was applied. Thus, when
there was a specific clinical task defined, the pIQ and cIQ
were in correlation. Nevertheless, the pIQ data that came from
exp2 and exp3, which had no clinical task defined, did not
always rank the image alterations the same as their diagnostic
performance did.

The main contribution of our work is in presenting prelimi-
nary evidence that, for digital pathology images under study and
for the considered clinical task, the results of two leading exper-
imental strategies for IQA disagree, namely plQ is not always
correlated with cIQ. Moreover, we introduced a concept of task-
aware plQ. In that approach, the observers are rating the plQ
within a clinical context provided by specifying the target clini-
cal task that evokes observers’ appraisal of the clinical relevance
of the images but without conducting the task. Based on our
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results, this strategy appears to be a promising surrogate for per-
forming the actual clinical task. Further research is needed to
assess whether and for which purposes (e.g., preclinical testing)
task-aware plQ ratings could substitute cIQ for a given clinical
task.
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