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Abstract. With the advent of fully automated image analysis and modern machine learning methods, there is a
need for very large image datasets having documented segmentations for both computer algorithm training and
evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the
critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually
used in academic studies do not scale to large datasets. This method includes protocols for the documentation of
many regions in very large image datasets; the documentation may be incrementally updated by new image data
and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health
biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer
screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method
has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms
have been developed to achieve over 90% acceptable image segmentation on the complete dataset.©TheAuthors.
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1 Introduction
Fully automated evaluation of image biomarkers offers the pos-
sibility of greatly enhancing the impact of medical imaging by
providing detailed information on a patient’s health status.
Medical images, especially those that are obtained periodically
in the context of screening, provide a rich source of information
for disease detection and health monitoring. The opportunity
exists for automated image analysis to provide a standard set
of quantitative image biomarker values that may be directly
used for patient health assessment. This is similar in concept
to a single blood extraction that can directly provide a set of
quantitative biomarker values through standardized laboratory
assays; however, in this case, only the application of the analysis
software to existing image data is required. As with the blood
test, any findings by an automated image analysis system
require follow-up involving a rigorous review by a physician
of all available data. Therefore, to be clinically useful it is impor-
tant that such systems minimize the number of false positives
while still maintaining high sensitivity.

The large dataset size required for the new deep learning
methods is illustrated in the context of diabetic retinopathy diag-
nosed from eye fundus images in a recent study by Gulshan
et al.1 In this study, the training set consisted of 128,175
cases [two-dimensional (2-D) images]; additionally, two inde-
pendent test sets that involved a total of 11,711 cases were
used. In contrast, a survey of eye-fundus image systems using

traditional image analysis methods2 reported on 26 different
studies on diabetic retinopathy characterization. The number of
cases used in these studies had a range from 20 to 16,770 with
a median of 250.

To achieve the high algorithm robustness necessary for unsu-
pervised computer operation and to meet the modern machine
learning method training requirements, very large documented
image datasets that contain many more cases than what is typical
for current academic studies are needed. In this paper, a method
and process for creating a large documented dataset for the pur-
pose of robust segmentation of quantitative image biomarkers
are described. This method has been used over four annual
cycles to (a) increase the number of documented cases in the
dataset from 364 to 20,749 and (b) improve the robustness of
image analysis algorithms on this large dataset to a greater
than 90% overall success rate on automated quantitative image
biomarker evaluations.

The contributions of this paper are:

1. A method for visually evaluating the segmentation of
image region based on target quantitative image bio-
marker tasks that are scalable to very large image
datasets.

2. A process that minimizes the frequency of visual
inspections to improve scalability and does not require
any manual image annotations.

3. The presentation of a multiorgan segmentation scheme
for the analysis of quantitative image biomarkers in
low-dose chest CT (LDCT) images.
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The outcomes of using this image documentation process in
our academic research lab environment to develop robust auto-
mated image segmentation algorithms are reported.

1.1 Chest Low-Dose CT Image Analysis
Demonstration Application

The methods for dataset documentation are presented in the con-
text of the analysis of LDCT three-dimensional (3-D) images
that are acquired for lung cancer screening (LCS). With the
recent approval of LCS,3 a large at-risk population of over 8
million patients in the United States is eligible to receive annual
LDCT 3-D images. This population is also at high risk for many
other diseases in the chest, and the LCS provides an opportunity
for annual monitoring. The chest health analysis system
(CHAS) system currently evaluates image biomarkers for the
lungs, heart, breast, and major vessels and major bone struc-
tures. Lung cancer screening CT 3-D images are designed
for the detection of pulmonary nodules and have the following
characteristics: coverage of the whole lung region, acquired in a
single breath-hold, low-dose, and thin slice (1.25 mm or less for
current protocols). In LCS, the primary objective is to identify
pulmonary nodules. The high image contrast between these nod-
ules and the surrounding lung parenchyma enables radiologists
to use a low-dose CT protocol that minimizes radiation exposure
to the patient. However, the consequence of using this low-dose
protocol is that the image noise, which is inversely related to
radiation exposure, is much higher than in typical clinical CT
scans; this is especially relevant to nonlung regions of the image.

A database of over 20,000 documented LDCT 3-D images
has been created over the last 5 years to aid the development of
a fully automated CHAS.4,5 This system automatically evaluates
a set of quantitative image biomarkers and involves multiple
region segmentations of LDCT 3-D images. The CHAS was
originally designed to identify pulmonary nodule candidates
to assist the radiologist in the lung cancer-screening task; it
has been extended to report on other diseases and organs that
are imaged by these scans. The current CHAS automatically
identifies over 100-labeled segmented regions in LDCT 3-D
images with a slice thickness of 2.0 mm or less.

1.2 Fully Automated 3-D CT Image Segmentation
Evaluation

Fully automated algorithms must be validated on a very large
number of test cases before they can be approved for general
clinical use. Evaluation cases must well represent the spectrum
of clinical presentations. These requirements are in contrast
to most traditional image biomarker studies reported in the
research literature. Those studies typically involve very small
selected datasets, and, further, they employ semiautomated
computer methods that require physician interaction. We review
here the evaluation methods and number of images employed
for the main studies that are most closely related to our CHAS
demonstration application.

A number of fully automated image segmentation systems
have been reported in the literature. Segmentation performance
is usually reported by subjective post hoc visual evaluation
(VE) or by quantitative comparison to a small number of pre-
established expert manual markings (QE). For QE, two popular
variations that reduce the manual effort required are automated
QE (QEa) in which a semiautomated method with manual cor-
rections is used for image markings and sampled QE (QEs) in

which only a subset of 2-D slices in a 3-D image are marked and
evaluated.

Most work in this area has been performed for a single organ
class and has been validated with a limited number of test cases.
Very few studies of LDCT 3-D images that meet the recent
requirements for LCS have been done.6 Studies that involve
chest and body CT segmentation are listed in Table 1. To be
state-of-the-art, we have included studies that do not conform
to the LCS requirements; and to represent multisegmentation
studies, we have included CT studies for the abdomen.
Studies in other 3-D image modalities typically have similar
characteristics. Our main interest is in thin-slice, low-dose tho-
racic scans that are relevant to LCS; most of the listed studies are
thin-slice but not low-dose. In the column for the number of
cases, we list any variations from our desired protocol. Since
very few studies use LDCT, they are specifically identified; oth-
erwise the study includes regular dose CT 3-D images. The size
in mm when mentioned is the slice thickness of the scans. Some
studies provide QE for a small number of cases only due to the
effort required and VE for a larger number of cases. Only studies
with more than 25 CT scans in the evaluation set have been
included in Table 1.

Most segmentation studies reported in this chest CT literature
are based on less than 100 cases. Other than our own work, VE
studies involve a median of 71 cases (min ¼ 26, max ¼ 1000)
and QE studies involve a median of 55 cases (min ¼ 28,
max ¼ 212). Beyond our own work, only three studies address
the much more challenging problem of segmenting low-dose 3-D
images9,16,34 and only four studies reported significantly more
than 100 cases (Gill et al.10 212, Xu et al.11 400, Haas et al.28

302, and Zhou et al.32 1000). For fully automated algorithm
design and evaluation, much larger datasets are needed.

One approach to comparing algorithms is through the proc-
ess of challenges33 where several algorithms for a task are evalu-
ated on a common dataset. Four of the studies listed in Table 1
are challenges.33–36 The visceral challenge group has, to date,
conducted various organ segmentation challenges using the
QE method. They have recently proposed a method for large
image documentation36,37 based on atlas registration to expert
annotated reference cases and label fusion from multiple algo-
rithms to improve segmentation quality. A recent paper by
Dicente Cid et al.38 involves lung segmentation on a dataset
of 12,414 CT scans using the difference between two lung
segmentation algorithms to identify problem segmentations.
By requiring a 0.95 Dice coefficient agreement between the
two algorithms, they rejected 35% of the 3-D images. While
this approach allowed preliminary results to be obtained on
a large dataset, a large fraction of the data was rejected and
it is unknown how many of the accepted segmentations had
serious issues since no visual review was performed.

Both the VE and QE approaches suffer from significant
drawbacks; the main drawback is the amount of time required
to review each image. VE may be applied to a large number of
cases, but it is highly subjective and is very costly to repeat
(same cost as first evaluation), which must be done for each
cycle of evaluation (i.e., for each algorithm modification); fur-
ther, repeatability is an issue due to the subjective evaluation.
QE has the advantage of repeatability. Since a target “ideal” seg-
mentation is created, the evaluation is quantitative and may be
automated. However, two issues with this approach are: (a) the
time per image to create the target segmentation manually is
very large and the “ideal” segmentation has built-in human
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variation. Frequently QEa and QEs variants are used to reduce
this time; however, these techniques introduce new errors due to
algorithm bias (QEa) or reduced precision by subsampling the
data (QEs).

The NCI sponsored Lung Image Database Consortium39

(LIDC) created a public image database of 2669 pulmonary
nodules in 1018 chest CT 3-D images. QEa evaluation was
used with four experienced radiologists marking the boundary

Table 1 Anatomical segmentation studies of body regions in CT 3-D images.

First author Year Organ Number of cases Evaluation

Leader7 2003 Lungs 101 (10 mm) QEa

Zheng8 2003 Lungs 55 (7 to 10 mm) QEs

Farag9 2010 Lungs 50 (LDCT) QE

Gill10 2014 Lungs 212 QEa

Xu11 2014 Lungs 400 VE

Zhang12 2006 Lung lobes 29 (7 EBCT: 3 mm) QEs

Lassen13 2013 Lung lobes 75 QEs

Pu14 2009 Lung lobes 65 VE

Kurkure15 2008 Aorta 37 (EBCT: 3 mm) QE

Isgum16 2009 Aorta, heart 29 (LDCT) QEs

Xie17 2013 Aorta 359/60 VE/QEs

Xie18 2014 Heart 400 VE

Xie19 2015 Pulmonary trunk 347/45 VE/QEs

Zhou20 2008 Breast 66 (torso CT) QEa

Liu21 2016 Breast 1270 VE

Liu22 2015 Sternum 351/50 VE/QEs

Lee23 2010 Ribs 115 (LDCT) VE

Yao24 2006 Vertebra 71(5 mm) VE

Naegel25 2007 Vertebra 26 (abdominal CT) VE

Kim26 2009 Vertebra 50 (abdominal CT) VE

Klinder27 2009 Vertebra 64 (CT) QEa

Haas28 2008 Multiorgan 302 (chest CT) + 260 (pelvic CT) VE

Okada29 2012 Multiorgan 28 (abdominal CT) QE

Chu30 2013 Multiorgan 100 (abdominal CT) QEa

Oda31 2012 Multiorgan 100 (abdominal CT) QE

Zhou32 2014 Multiorgan 1000 (torso CT) VE

SLIVER challenge33 2007 Liver 40 (abdominal CT) QEa

EXACT09 challenge34 2009 Airway 40 (LDCT) QEa
10 fully automated methods

LOLA11 challenge35 2011 Lung 55 QE
14 fully automated methods

VISCERAL challenge36 2012 to 2016 Multiorgan 30 (whole body CT) +30 (trunk CT) QE
20 fully automated methods
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of each nodule. The very high intermarker variation40 illustrates
the issues with the QEa method and makes the use of these
markings for precision evaluation of computer algorithms chal-
lenging. A significant fraction of the multimillion dollar project
cost was for the 3-D image marking process, which only
addressed documenting a tiny fraction of the pixels in these
3-D images.

1.3 Image Segmentation Errors

Segmentation errors may be considered to fall into two general
classes: precision errors (EP) and catastrophic errors (EC).
Precision errors occur due to differences in details among algo-
rithms or between algorithms and the variation of manual image
annotations: for this error type the difference among methods for
large organs is typically small. Catastrophic errors occur when
an algorithm incorrectly identifies or includes a significantly
different region with the target region (for example, includes
a nearby vessel as part of a lesion); the size of these errors
may be very large. A catastrophic error Ec is defined for a 3-D
segmentation as a connected incorrect region of a segmenta-
tion that involves less than 50% of the surface area of the
true image region (typically much less than 50%) and causes
a significant change in the overall segmentation volume or spa-
tial extent compared to the true image region. In most studies on
segmentation algorithms, the dataset is usually small (<100
cases) and of carefully selected images such that the majority
of the errors tend to be EP. However, when larger datasets
with a wider range of imaging parameters and presentations
are considered, the likelihood of EC errors is significantly
increased. In a semiautomated environment where the primary
target is image region characterization, EC errors are rarely an
issue since the operator manually corrects them. However, for
a fully automated system, the objective has a focus on abnor-
mality detection rather than characterization and EC errors are
a major consideration since they may cause an unacceptable
large number of false-positive abnormality detections. Similarly,
EC errors may also adversely affect sensitivity if the whole
region is not included in the segmentation. The evaluation
criterion we use for image segmentations in this case primarily
relates to the EC error type.

In the large-scale image documentation method, we intro-
duce the concept of 3-D image visualizations for segmentation
evaluation, which provides a rapid image review that is pri-
marily sensitive to the EC error. We also use a simple two- or
three-level categorical evaluation that is targeted to biomarker
evaluation requirements rather than minimizing EP errors, which
is expected to have high interreader agreement.

Recent studies in large-scale image datasets have had to deal
with the significant number of problem cases in these datasets. In
the study by Gulshan et al.,1 10.1% of the images were excluded
for evaluation by poor quality evaluation; in the study by Dicente
Cid et al.,38 35% of the images were excluded by algorithm com-
parison. In contrast, in our study, less than 0.5% of the cases are
rejected for quality issues. Consequently, we have a significant
number (our target is <10%) of images for which we do not
have acceptable segmentations. One approach would be to use
manual methods to correct the algorithm outcomes; such an
approach has been implemented by Takx et al.41 in which they
established a database with 1749 validated biomarker outcomes.
Experienced physicians manually correct outcome regions for
calcium scoring. Although our system has the capability for
manual correction, we did not adopt this approach due to the

very large burden it would place on human resources for the
large image regions we are concerned with and because such
a process would introduce human variation into the image
documentation.

The image documentation system, presented here, addresses
the main shortcomings outlined above. A simple categorical
grade related to biomarker evaluation is employed to address
the segmentation precision issue. Human variation is addressed
by not using any manual markings. Finally, VE evaluation time
is minimized (a) through the use of customized visualizations
and (b) by minimizing the number of images to review through
the use of automated quantitative preselection criteria. This
documentation method has been used to create a documented
image database with over 20,000 cases and facilitates fully auto-
mated algorithm evaluation on multiple segmentations.

1.4 Image Documentation Implementation

The methods for large dataset documentation presented here
have been implemented and evaluated on the system for
image management and biomarker analysis (SIMBA).5 While
image segmentation studies have been ongoing since 2000,
the first instance of the formal framework presented here was
implemented in 2012. The data documentation system is
updated each year by installing the latest version of our
image analysis software as the reference documentation method
and updating the documentation for all images in the database
with this method. There have been five annual revisions of the
system, with the outcomes of last two (2016 and 2017) reported
here. The SIMBA system5 is a mature web-based image
management platform for research studies including: study
data collection and analysis,42 image-based clinical studies,43

public image databases,44 and image analysis algorithm
development.17,45,46 The concept of SIMBA is to have all
image data and study data in a single web-based management
system. It was first used in the I-ELCAP study for data collec-
tion and analysis starting in 2000. The system has the capability
for full medical image review and annotation and includes the
relevant functions of a PACS system through a web interface.
For the LIDC study;39 it was the only one of the image anno-
tation tools used by the five participating institutions that was
web-based.

1.5 Overview

The methods section contains three components: the details of
the large-scale image documentation system, the CHAS demon-
stration application, and the documentation evaluations. Key
aspects of the method are: a new process for image evaluation,
VE with quantitative review (VEQR), and the employment of
customized segmentation visualizations. The documentation
of over 20,000 3-D images with the SIMBA image documen-
tation system is discussed.

2 Methods
The system for image documentation realizes three basic oper-
ations: algorithm evaluation, documentation database revision
as a result of the outcomes of evaluating a new algorithm,
and the addition of new image data. Algorithm evaluation
involves visual review of the differences between an algorithm’s
outcome and the database documentation. Database revision
involves updating the database documentation when a new algo-
rithm provides superior outcomes to the current documentation.
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New image data are documented by visual grading of the out-
comes of reference segmentation algorithms. Some algorithm
outcomes receive an unacceptable segmentation grade, which
means that the associated segmentation is not of sufficient qual-
ity to be used for biomarker evaluation; the images correspond-
ing to these outcomes may be used to construct worst-case test
sets to assist in algorithm development.

Traditional segmentation algorithm development begins with
a classical study involving the order of 100 cases with expert
marking or review. Then, algorithms are further developed on
a development set of 364 cases (available from public image
databases).

The goal of the large-scale image documentation is to facili-
tate the development of highly robust computer algorithms that
rarely fail to provide useful outcomes, including algorithms
based on modern machine learning methods. The image docu-
mentation system organization is discussed in Sec. 2.1; then the
method for VE is presented in Sec. 2.2.

2.1 Image Documentation System Organization

An overview of the SIMBA system for large-scale image docu-
mentation is illustrated in Fig. 1. The database within the system
comprises two main components: the image database in which
the raw DICOM format images are stored and the data docu-
mentation. The data documentation has two components for
each image entity: a label map, which contains a label (a unique
segment identifier) for every pixel in the corresponding raw
image, and a label score set, which contains a categorical
grade for every label that has been identified for that image.

The four main framework operations are (a) addition and
evaluation of new image data, (b) automated algorithm evalu-
ation, (c) data documentation updating, and (d) the selection
of datasets for algorithm development. The key components
of the framework include:

1. Documented image database: This database comprises
three main storage components: raw DICOM images,
region label maps for each image, and a set of grades
for each label region.

2. Reference method: This is a well-tested algorithm or
set of algorithms that does a fully automated segmen-
tation of the image data and produces a label map
containing a unique label value for each pixel. This
algorithm is used to establish the initial baseline docu-
mentation for new images.

3. Full visual review: One or more experienced reviewers
observe the customized visualizations for the different
segmentations and, possibly, the original image data
with the segmentation. Each main segmentation is
given a visual grade, which is stored with the corre-
sponding label map in the image documentation.

4. Quantitative performance evaluation: The segmenta-
tion produced by an algorithm being evaluated is com-
pared to the corresponding segmentation in the image
documentation and the outcome for a set of test images
is recorded.

5. Selective comparative visual review is used to update
the image documentation. New segmentations pro-
duced by the test algorithm that meet the matching
criteria are presented to the expert reviewer as side-
by-side customized visualizations. The reviewer
determines if an update to the region and the grade in
the image documentation is to be made.

6. The development data selection accesses the image
documentation and selects image cohort lists that are
used for the development, evaluation, and validation of

Fig. 1 The SIMBA framework for segmentation algorithm development and evaluation on large medical
image datasets.
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new segmentation algorithms. Any partitioning of
images, for example for testing and training sets etc.,
are managed by this component.

The detailed operations are as follows:

a. Addition of new image data: New image data are
added directly to the image database; in addition,
the image is segmented by the reference method.
The outcome is visually reviewed and graded.
The segmentations and their grades are recorded
in the image documentation.

b. Automated algorithm performance evaluation: A
segmentation algorithm (or set of algorithms) to
be evaluated is applied to a list of images, and
the outcomes are compared to the image documen-
tation. The results for all test images are collected
for statistical analysis. Information to be reported
depends on the application; options include: over-
all performance scores, e.g., numbers of good and
acceptable segmentations; DC values for each
case; and, for development, the images and corre-
sponding segmentations for selected cases. If the
image documentation is updated from the out-
comes of the test algorithm by comparative visual
review, then the performance evaluation should be
considered a second time with the updated image
documentation.

c. Image documentation updating: When a new algo-
rithm is evaluated, if the outcomes are significantly
different from the current image documentation,
then these differences may be evaluated by visual
inspection and the image documentation may be
updated (see the dashed arrows in Fig. 1). The
automated performance evaluation and image
documentation updating are also used to facilitate
periodic updates to the reference method.

d. Identification of development datasets: By searching
the grades in the image documentation, it is possible
to identify subsets of images for which either seg-
mentation is not yet known or for which the grade is
not high. These cases make ideal worst-case exam-
ples for the development of improved algorithms.

2.1.1 Segmentation visual quality grading

In the fully automated context, each segmentation is visually cat-
egorized into one of two primary categories of “good” and “un-
acceptable;” the unacceptable category is caused by an EC error.
In some cases, we have also defined a third category of “accept-
able.” The quality grading is based on the suitability of the seg-
mentation to be used for the evaluation of quantitative image
biomarkers. The three grade categories are defined as follows:

1. Good: The segmentation has no major visible errors.

2. Acceptable: The segmentation has visible defects, but
these are not expected to impact the resulting quanti-
tative image biomarker values.

3. Unacceptable: The segmentation is inadequate for a
reliable evaluation of the corresponding quantitative
image biomarker.

Segmentation “truth” is signified by regions with good and
acceptable grades. The unacceptable grade identifies cases for
which algorithm development is required. Not all segmentation
algorithms have an “acceptable” grade. For example, for lung
segmentation, the segmentation quality must be good to evaluate
whole lung biomarkers such as lung volume and emphysema
index. In contrast, in coronary calcium scouring, the heart region
may “leak” a little into the surrounding region if the correct
calcifications within that region can still be reliably identified.

In our documentation method, there are two instances where
visual inspection occurs. In the first full image review, the
reviewer simply assigns a segmentation grade. In the side-by-
side, selective comparative visual review comparing a new seg-
mentation to the current database version, the reviewer grades
the new segmentation and selects the better of the two segmen-
tations even if the grade is not changed from acceptable to good.

The details of this approach are described in the next section.

2.1.2 Validation by visual evaluation and quantitative
revision

The VEQR1 method is employed to address the evaluation of
segmentation algorithms. The VEQR method is described
with respect to the VEQR database D and its associated oper-
ations. In general, customized visualizations are also used to
optimize the visual review efficiency.

The validation database D consists of the following four
components:

1. Image set I

EQ-TARGET;temp:intralink-;sec2.1.2;326;426I ¼fiji is an image to be segmented and analyzedg

2. Label map set L

EQ-TARGET;temp:intralink-;sec2.1.2;326;373L ¼ flðiÞj ∀ i ∈ Ig;

where lðiÞ is a label map of the same dimensions as
image i and the value of each lðiÞ voxel represents
the label value that indicates to which segmented
region the corresponding voxel belongs. For instance,
a label value of LungR indicates that the respective
voxels in image i belong to the right lung region,
and a label value of LungL indicates that the respective
voxels belong to the left lung region, where both of
the labels are assigned by the lung segmentation
algorithm.

3. Label assessment set A

EQ-TARGET;temp:intralink-;sec2.1.2;326;210A ¼ faði; sÞj∀ i ∈ I; ∀ s ∈ Sg;

where aði; sÞ is the quality grade determined by the
visual assessment for a specific segmented region s
in image i; S is the set of regions that can be seg-
mented; for instance in the CHAS application,
S = {lung, airway, rib, vertebra, skin, cardiac region,
and breast}. The quality grade must have at least two
values: acceptable and unacceptable. For the CHAS
application, three values are used aði; sÞ ∈ {good,
acceptable, and unacceptable}.
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Note that the set of segmented regions, S, is not
equivalent to the set of segmentation labels in the label
map. In general, several subregions with distinct label
values constitute a single segmented region. For
example, the segmented region rib corresponds to
24 subregion labels (ribL1; ribL2; : : : ; ribL12, ribR1;
ribR2; : : : ; ribR12) in the label map; the segmented
cardiac region corresponds to three labels (heart, aorta,
or pulmonary trunk) in the label map. The grade aði; sÞ
is determined according to the overall quality of the
segmented region s. If the region contains subregions,
then each subregion is graded individually and the
overall grade is set to the lowest subregion grade.

4. Reference algorithm set R

EQ-TARGET;temp:intralink-;sec2.1.2;63;585R ¼ frðsÞj ∀ s ∈ Sg;

where rðsÞ is an algorithm that segments target region
s and it is applied to any new images added to the
database to establish the initial label map and label
assessment; S is the set of segmented regions as
described above.

The validation database supports three main functions: algo-
rithm evaluation, new image addition, and database revision.

1. Algorithm evaluation is a fully automated operation
that provides quantitative performance measurement
of a new algorithm by comparing its outcome to the
reference segmentation saved in the label map.
Consider a target region s and a new algorithm nðsÞ
for the segmentation of s; the aggregate performance
score for nðsÞ is determined on the evaluation on
a subset IEV of the image set I, where IEV =
{ij ∀ i ∈ I and aði; sÞ = good or acceptable}, i.e.,
only images with good or acceptable reference seg-
mentation of s are used to evaluate the new algorithm.
Given an image i ∈ IEV, if we let lSðiÞ denote the
reference segmentation of s, which can be extracted
from label image lðiÞ, and let lns ðiÞ denote the segmen-
tation generated by the new algorithm nðsÞ, then the
Dice coefficient (DC) can be computed as follows to
serve as the quantitative comparison measurement of
the two segmented regions:

EQ-TARGET;temp:intralink-;sec2.1.2;63;252DC½lSðiÞ; lns ðiÞ� ¼
2jlsðiÞ ∩ lns ðiÞj
jlsðiÞj þ jlns ðiÞj

:

The DC values are averaged among all images in
IEV to serve as an aggregate performance score for
the new algorithm nðsÞ. In future evaluations, we plan
to use a locally sensitive measure such as the Hausdorff
distance in addition to the DC measure to provide addi-
tional sensitivity to small local errors.

2. Database revision is an update to the database docu-
mentation based on the outcomes of a new algorithm
nðsÞ that provides superior segmentation outcomes
for some images compared to the current reference
segmentation. Given an image i ∈ I and a target seg-
mentation region s, the segmentation outcome lns ðiÞ

generated by the new algorithm is first compared
with the reference segmentation lSðiÞ by computing
the DC½lSðiÞ; lns ðiÞ� as defined above. Then, the data-
base revision is conducted as follows:

a. If i ∈ IEV and the DC is less than a preset level
TDClow, then the new segmentation for that image is
considered to be inferior to the reference segmenta-
tion; thereby, no update is made.

b. If i ∈ IEV and the DC is greater than a preset level
TDChigh, then the new segmentation is not considered
as a significant improvement over the reference seg-
mentation; thereby, no update is made.

c. For the remainder of the cases, visual inspection is
required. If the new segmentation lns ðiÞ is considered
to be superior to the reference segmentation lSðiÞ,
then the label map lðiÞ is updated by replacing the
respective segmented region with the outcomes of
the new algorithm. Any improvement in grade is also
recorded.

3. New image addition: When a new image in is added to
the database, each algorithm from the reference algo-
rithm set R is applied to in and the outcomes are
visually evaluated. The database D is then updated
correspondingly by adding the new image in to the
image set I, the label image lðinÞ to the label image
set L, and the quality grade aðin; sÞ for each seg-
mented region s to the label assessment set A,
respectively.

For the most precise results for a new algorithm evaluation,
the database should first be revised by that algorithm before it is
evaluated; however, that involves a cycle of visual inspection,
and other algorithms would need to be evaluated on the new
database for performance comparisons. The algorithm perfor-
mance is then rated as the fraction of positive evaluations in
the database to the total number of images in the database,
including those without successful region documentations.
For algorithm development, it may be useful to select a subset
of the database for evaluation; typically this subset is made of
cases for which the segmentation is rated as acceptable or unac-
ceptable. It is possible to sequester a partition of the database for
blind algorithm evaluations if necessary.

2.1.3 Customized visualization for segmentation grading

Customized 3-D visualizations are used to minimize the time
required for VE. Algorithm outcomes are graded for a score
aði; sÞ by a two-stage VE process. A 3-D image is first evaluated
by a 3-D customized visualization, and, for additional review
when necessary, a more traditional 2-D image slice viewing
is provided. Efficient VE is especially important for 3-D
image modalities since the traditional approach of examining
a region on each 2-D slice through the 3-D image is very
labor intensive. The 3-D visualization is developed in concert
with the early development of the corresponding segmentation
algorithm. The visualization web page is developed with expe-
rience gained from observation of the most common segmenta-
tion errors. A snapshot for the customized 3-D visualization of
the breast region in chest CT 3-D images is shown in Fig. 2.
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Fig. 2 Snapshot from SIMBA of a 3-D visualization of a breast region segmentation.

Fig. 3 SIMBA snapshot of a traditional 2-D image slice review with segmentation map.

Journal of Medical Imaging 024505-8 Apr–Jun 2017 • Vol. 4(2)

Reeves, Xie, and Liu: Large-scale image region documentation for fully automated image. . .



In this study, the custom visualizations were developed by
the computer algorithm developers following the initial valida-
tion of the algorithm by clinical experts. Thus, the 3-D visual-
izations and accompanying selected 2-D image views were
designed to be sensitive to known-algorithm errors. The 3-D
visualizations were developed using the custom visualization
tools in the V4 VisionX software system47 that uses the
Visualization Toolkit48 for image rendering.

In addition to the 3-D visualization of the breast and the
fibroglandular tissue, there are 9 additional 2-D image slices
with regions marked as shown on the right side of Fig. 2;
these have been found to be useful for resolving many potential
issues observed on 3-D visualization. If the reviewer is not sat-
isfied with the first level 3-D review, then a second traditional
review is available as shown in the snapshot in Fig. 3. This
review permits standard windowing and zooming etc. for a
side-by-side comparison of the original 2-D image slices and
2-D image segmentations.

In the current VEQRmethod, a region segmented by an algo-
rithm is evaluated by VE into three categories: good (G), accept-
able (A), and unacceptable (U). The criterion for acceptable is
that, although there is some visible defect in the segmentation,
the quality is sufficient for evaluation of related biomarker mea-
surements. An example of an unacceptable segmentation for the
lungs is shown in Fig. 4. This is clearly visible in the 3-D visu-
alization alone. (The problem for this case is also visible in the
2-D review, but this is not needed for database documentation).

It is interesting to note that our segmentation and an external
segmentation algorithm49 had very similar segmentations for
this case (DSC ¼ 0.98), which illustrates an issue of relying
on a method such as label fusion to improve confidence in
a segmentation without visual review.

The criteria for grading are based on the ability to precisely
compute the quantitative image biomarkers associated with the
segmentation. An example of unacceptable and acceptable
grades for the same case with two different algorithms is
shown in Fig. 5.

In Fig. 5(a), the left lung has leaked into the bowel. This is
sufficient to modify the values for the lung quantitative bio-
markers for the left lung: lung volume [2124 mL for (a) and
1972 mL for (b)] and emphysema index [2.33% for (a) and
1.41% for (b)].

For a new 3-D image region or quantitative image biomarker,
the development of the 3-D visualization follows the traditional
validation of the new algorithm. Then, the 364 images of our
development set with this visualization are very carefully
reviewed by two experienced graders. The image biomarkers
computed from these segmentations are also reviewed.

2.2 Chest Health Analysis System

The CHAS consists of a number of interdependent anatomy
function modules as outlined in Table 2. The models and
their dependencies are also shown in Fig. 6. The main anatomy
segmentation labels that are managed by each module are also
listed in Table 2. The CHAS system employs a divide and con-
quer approach to the image labeling process in which the most
robust labeling algorithms are applied first and subsequent algo-
rithms depend on the existing framework and labeled regions
established by earlier algorithms. This approach is appropriate
for the LDCT scans in which the high degree of noise makes soft
tissue segmentation very challenging.

In addition to pulmonary nodule detection (usually the pri-
mary reason for obtaining the scan), the system also evaluates a
number of other organs that are imaged; these evaluations
include, for example, coronary artery calcium (CAC) scoring,18

emphysema measurement,59 and breast density.58

2.2.1 CHAS algorithms

The image analysis begins with the image quality module,
which assesses image noise56 outside the body as well as various
image acquisition parameters (see Fig. 1 and Table 2). This sets
the image acquisition and quality profile so that other modules
can compensate for specific scan parameters that affect image
quality such as the image reconstruction kernel. The region of
the image that is outside the reconstruction space is set to the
“no-data” label.

For lung health, airways are first labeled52 and then the
individual lung regions46 are identified. From the lung seg-
mentation, the nodule module identifies pulmonary nodule
candidates46 and the emphysema module computes emphysema
indices. The growth rate analysis of pulmonary nodules is cur-
rently managed by a semiautomated system with physician
interaction and review.

The skin surface segmentation56 provides a separation of the
body from other objects in the scanner field of view such as the
scanner table. For bone analysis, significant calcified structures
are first identified, then ribs23,57 and vertebra45,57 are labeled;
finally, the sternum22,57 is labeled, as it is used in the breast
analysis.21,58 The cardiac analysis17,18 depends on both the
bone and lung segmentations. The aorta is segmented17 using cyl-
inder tracking, and its profile is measured from the segmented
volume. The heart region is localized, and different calcifications
(mitral valve, aortic valve, and coronary artery) are identified in
this region so that a robust CAC score can be obtained.18 In more

Fig. 4 Example unacceptable lung segmentation (a) segmentation
shown in 3-D, (b) segmentation shown in 2-D, and (c) intensity CT
image of the same axial slice.

Fig. 5 (a) Unacceptable segmentation and (b) acceptable
segmentation.
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recent work, the vertebral bodies are segmented45 to identify
osteoporosis and compression fractures, and the breast region
is segmented21,58 to evaluate breast density and identify any breast
abnormalities. The current system embodies 110 individual pixel
labels plus a set of group labels. This number is rapidly increasing
as new algorithms are developed.

2.2.2 CHAS quantitative image biomarkers and
the analysis report

Once segmentation has been completed, an analysis report that
contains quantitative measurements based on the segmented

regions is generated; for example, an emphysema score based
on the left and right lung segments is generated. Standard estab-
lished measures we report include: airway dimension (diameter
and wall thickness), emphysema score, cardiac calcium and fat
content, and breast density. In addition, we continue to research
and report more recently defined biomarkers. The reported image
biomarkers are listed in Table 3 together with the segmentation
module that must successfully complete for their evaluation.

The customized visualization and grades criteria are
described in detail below for the regions associated with image
biomarkers listed in Table 3: airway, lungs, vertebra, cardiac
region, and breast region.

Table 2 Chest analysis functions: module names, descriptions, and their associated main labels.

Module Description Main labels

Image quality Measure calibration and noise in the air outside body and compute profile.
Set no data region (outside scan reconstruction circle).

No-data

Airway Identify lumen of trachea and main bronchi using cylinder tracking.50–52 Trachea, main bronchi

Lung Left and right lung segmentations: lung regions identified from airway then
separated.46

Left lung, right lung

Nodules Nodule analysis, nodule candidates queued for radiologist review.53–55 Nodule candidates

Skin surface Skin surface, body scan boundary determination Skin, scan body boundary

Fat Noise-sensitive fat segmentation.56 Fat

Aorta Aorta segmentation using cylinder tracking and surface refinement.17 Aorta: aortic calcium

Heart The general heart soft tissue region constrained by adjacent anatomical
structures.18

Heart region: cardiac fat
and CAC

Pulmonary artery Pulmonary artery region between bifurcation and heart surface.19 Pulmonary artery

Bone Bone (calcification) segmentation through intensity thresholding. Bone

Ribs Spinal canal tracking. Spinal canal

Rib identification and individual labeling by proximity to spinal canal.23 Ribs (24 labels)

Vertebra Spine segmentation, individual vertebra separation, and closed surface
segmentation of each vertebral body.45,57

Vertebra (15 labels)

Sternum Sternum segmentation through tracking in cranial and caudal directions.22,57 Sternum

Breast Whole breast segmentation and glandular tissues analysis: left and right
breast regions are separated based on the sternum location.21,58

Left breast, right breast,
gland: tissue

Fig. 6 CHAS modules and their dependencies organization. The associated biomarkers are also listed.
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2.2.3 Evaluation criteria and customized visualizations

Airway. The airway tree is segmented using a cylinder
tracking and 3-D region growing-based method.52 A coronal
view of the segmented airway (see Fig. 7) is used for the
VEQR, where the trachea and the remainder of the airway
tree are shown in different colors, thereby enabling the valida-
tion of the location of carina at the same time. Airway bio-
markers are the airway diameter and wall thickness evaluated
for each detectable segment. The grading criteria for the airway
algorithm are: G: no visible errors; A: correct trachea and two
main bronchi but unable to segment sufficient peripheral
branches; and U: visible leakage.

Lungs. The left and right lungs are segmented using 3-D
image filtering, intensity thresholding, and morphological
operations.66 The left and right lungs are partitioned with a mini-
mum distance path-cutting algorithm. The customized visuali-
zation is a 3-D rendering of the two lungs as shown in
Fig. 5. Lung region biomarker evaluations include the detection
of pulmonary nodules and the measurement of lung health

indicators such as the emphysema index. The grading criteria
for the lung algorithm are: G: no visible errors and U: major
errors, e.g., another region mistaken as lung.

Individual vertebra. The whole spine is first segmented by
thresholding and connected component analysis; it is then fur-
ther divided into individual vertebra by fitting separating planes
in the 3-D space. VEQR of the individual vertebra segmentation
is performed on the sagittal view of the 3-D segmentation (see
Fig. 8), where different colors are used to indicate individual
vertebra for the purpose of validating the vertebra labeling.
Vertebra biomarker evaluations include the measurement of
bone mineral density and the prediction of compression fracture.
The grading criteria for the vertebra algorithm are: G: no visible
errors: A: minor oversegmentation; and U: major errors includ-
ing mislabeling or failure to separate vertebra.

Table 3 Image biomarkers by CHAS.

Image biomarker Item Segmentation dependency

Airway lumen diameter50 Average diameter (mm) for each detected segment Airway

Airway wall thickness50,51 Average distance (mm) Airway

Pulmonary nodule detection53–55 Location ðx; y; zÞ and size (mm) Lung

Pulmonary nodule measurement46 Size (volume mm3) Lung

Pulmonary nodule pair measurement46,60 Growth rate (volumetric growth index) Lung

Pulmonary nodule characterization60–63 Status (malignancy probability) Lung

Emphysema measurement59 Emphysema index lung volume (ml) Lung

CAC18 Agatston, volume, and mass score Aorta, heart

Aortic calcium64 Agatston, volume, and mass score Aorta, heart

Pulmonary artery trunk19 Pulmonary trunk diameter, pulmonary trunk to ascending
aorta diameter ratio

Pulmonary artery

Cardiac visceral fat65 Cardiac visceral fat volume and its ratio to heart region volume Heart, fat

Breast density58 Glandular tissue volume to whole breast volume ratio Breast

Fig. 7 Customized visualization for airway tree segmentation: trachea
to carina, red; bronchi, green. (a) Good segmentation, (b) acceptable
segmentation, and (c) unacceptable segmentation.

Fig. 8 Customized visualization for segmentation of individual verte-
bra: individual vertebra colored differently. (a) Good segmentation,
(b) acceptable segmentation, and (c) unacceptable segmentation.
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Cardiac region. Cardiac region segmentation includes the
segmentation of aorta, heart region, and pulmonary trunk
using anatomical constraint-based methods.17–19 VEQR of the
cardiac region consists of the evaluation of coronal and sagittal
views of the segmented aorta, heart region, and pulmonary trunk
in different colors (see Fig. 9). Cardiac region primary bio-
markers are CAC and aorta diameter profile. The grading criteria
for the cardiac algorithm are: G: no visible errors in any of the
three regions; A: visible errors but usable for measurement of
biomarkers; and U: major errors and not usable for biomarker
measurements.

Breast. The whole breast region as well as the fibroglandular
tissue and fat tissue contained in the breast region are segmented
using an anatomy-oriented algorithm21 that separates the pec-
toral muscles from fibroglandular tissue through the propagation
of muscle front along the vertical direction. A coronal view of
the breast segmentation as shown in Fig. 10 is used for the
VEQR, where the whole breast region and the fibroglandular
tissue are shown in different colors. Breast biomarkers are breast
density assessment and breast mass detection (ongoing project).
The grading criteria for the breast algorithm are: G: no visible
errors; A: minor segmentation issue, such as insignificant under-
segmentation of fibroglandular tissue or inclusion of muscle into
the breast region, which will not influence further biomarker
analysis including density assessment and breast mass detection;
and U: segmentation errors that may influence further biomarker
analysis.

2.3 Large-Scale Image Annotation System
Implementation and Evaluation

The large-scale image documentation method has been devel-
oped in conjunction with the chest health system application
over the last 5 years with the dual goals of improving the robust-
ness of the algorithms and creating a large documented dataset
that may be used for the training and evaluation of other com-
puter algorithms. We have used the current CHAS algorithms as
the reference algorithm for the image documentation system and
have conducted annual updates of first the CHAS algorithms
and then the database image documentation. That is, each
year algorithms are updated to address issues that caused
some of the unacceptable segmentations, then the database is
revised using the new CHAS algorithm set, and the reference
algorithm used for new image data is set to the new CHAS algo-
rithm set.

Several system parameters for use with the CHAS algorithms
were empirically derived. For a visual inspection update to
occur, the Dice coefficient difference between the new and refer-
ence segmentations must be between 0.75 and 0.95; that is,
TDClow ¼ 0.75 and TDChigh ¼ 0.95. A two-stage process was
used for the introduction of new algorithms/biomarker tasks
to the system. First the algorithms were carefully evaluated
on a development dataset of 364 3-D images from public data-
sets, and the customized 3-D review was carefully reviewed.
Further, a minimum performance level of 90% acceptable seg-
mentations was required by the new algorithm before it was

Fig. 9 Customized visualization for cardiac region segmentation: aorta, red; heart, green; pulmonary
trunk, blue. (a) Good segmentation, (b) acceptable segmentation, and (c) unacceptable segmentation.

Fig. 10 Customized visualization for breast segmentation: whole breast region (light green), fibrogland-
ular tissue (solid green), and sternum (gray). (a) Good segmentation, (b) acceptable segmentation, and
(c) unacceptable segmentation.

Journal of Medical Imaging 024505-12 Apr–Jun 2017 • Vol. 4(2)

Reeves, Xie, and Liu: Large-scale image region documentation for fully automated image. . .



applied to the full dataset to prevent the generation of too many
review events.

2.3.1 Image cohorts

Six different cohorts of 3-D images from research studies were
used for evaluation as outlined in Table 4. The image inclusion
criteria are that the image parameters are consistent with
LCS; that is, they are low-dose, thin-slice, noncontrast, supine
position, and cover the whole lung region. The majority of
the scans have been acquired with the I-ELCAP LCS protocol67

and have acquisition parameters: 120 kVp, <100 mA and
slice thickness <¼ 2 mm. Some of the LIDC cases used for
algorithm development (179) exceed the low-dose requirement,
some have 140 kVp, and the current has a range of 100 to
560 mA.

The six validation cohorts consist of (a) the VIA-ELCAP68,69

public dataset; (b) the LIDC39 public dataset and private research
cohorts associated with the I-ELCAP study;69 (c) a nuclear
energy workers dataset (NEW); (d) a never-smoker LCS dataset
from a Flight Attendants Medical Research Institute (FAMRI)

project; (e) a high-risk LCS cohort (LC); and (f) a research
World Trade Center workers dataset (WTC). The public
LIDC database contains over 1000 3-D images; however,
only 328 3-D images met our inclusion criteria. The target
slice thickness was 1.25 mm or less, with the only exception
being the NEW cohort (2.0 mm). A single model SIEMENS
scanner was used for the NEW cohort, a single model GE scan-
ner was used for the ELCAP cohort, and all other cohorts
involved multiple scanners. Several cohorts had multiple 3-D
images per case; all 3-D images available were used for valida-
tion. A small fraction of the 3-D images were excluded from
evaluation because of severe image artifacts caused by implants.
The data cohorts that were available in 2016 are listed in Table 4.
For 2017, we acquired additional data for the NEW, FAMRI,
and LC datasets. The updated data cohort’s description is
given in Table 5.

2.3.2 Image documentation system evaluations

The overall performance of the system is indicated by number
of documented 3-D images and the robustness (fraction of

Table 4 System evaluation data cohorts 2016.

Cases Images Images (include) Images (exclude) Slice thickness range (mm)

ELCAP 50 50 46 4 (8%) 1.25

LIDC 328 328 318 10 (3%) <¼ 1.25

NEW 1887 1892 1887 5 (0.3%) 2

WTC 1458 3795 3767 28 (0.7%) < ¼ 1.5 (3763)

2 (4)

FAMRI 710 1422 1422 0 (0%) < ¼ 1.25

LC 2169 6764 6752 12 (0.2%) < ¼ 1.25 (6733)

1.5 to 2 (19)

Total 6602 14,251 14,192 59 (0.4%) < ¼ 2

Table 5 System evaluation data cohorts 2017.

Cases Images Images (include) Images (exclude) Slice thickness range (mm)

ELCAP 50 50 46 4 (8%) 1.25

LIDC 328 328 318 10 (3%) < ¼ 1.25

NEW 1888 4678 4672 6 (0.1%) 2

WTC 1458 3795 3766 29 (0.8%) < ¼ 1.5 (3762)

2 (4)

FAMRI 932 2137 2137 0 (0%) < ¼ 1.25

LC 2985 9820 9810 10 (0.2%) < ¼ 1.25 (9804)

1.5 to 2 (6)

Total 7641 20,808 20,749 59 (0.3%) < ¼ 2
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acceptable segmentations) by the CHAS algorithms. The main
hypothesis is that the large-scale image documentation will
facilitate the documentation of 1000’s of 3-D images with a suc-
cess rate of acceptable segmentations of over 90% for each
region type in a multiregion segmentation task. This implies
a 90% success rate for the fully automated reference algorithm
used to document the 3-D images. We present results for the last
two (of five) cycles of operation of the system comprising of
14,192 and 20,749 3-D images, respectively.

Three additional aspects of the system were evaluated. First,
the time for image evaluation of each 3-D image and the number
of evaluation events triggered for an update are important cost
factors in creating the image documentation. High-speed VE is
important for constructing large-scale databases, the hypothesis
is that for this documentation method the review time per scan
will be only a few seconds rather than minutes and that the num-
ber of scans to be rereviewed for database updates will be a
small fraction of the total. The time to document a dataset sam-
ple of 200 new sequential cases was monitored for all biomarker
modules to identify the new data cost. For the updates time, two
cohorts with 364 development cases, which had had several pre-
vious update reviews, and the 1422 FAMRI cases, for its first
update review, were monitored for all biomarker-related mod-
ules. Second, the interreader variation was evaluated for two
readers on the development dataset of 364 3-D images. High
reader agreement is important for a high-quality image docu-
mentation. Using the 3-D visualization methods with well-
defined categorical scores, the hypothesis is that there will
be a very high interreader agreement for region evaluations.
Finally, to evaluate on algorithms other than the CAHS algo-
rithms, an external segmentation algorithm from the chest im-
aging platform (CIP)49 was evaluated on a subset of 7173
images. The documented dataset is designed for the efficient
evaluation of computer algorithms. The hypothesis is that
only a small fraction of images will require visual review
when a new algorithm is evaluated with the documented dataset.

3 Results
Results on CHAS application evaluated by the SIMBA frame-
work are presented as follows: (1) VE outcomes of each seg-
mentation algorithm for years 2016 and 2017; (2) time
estimates for the VE process; (3) interreader variation on the
development dataset; and (4) comparison with an external
lung segmentation algorithm.

3.1 Algorithm Evaluation Results

The VEQR results in the year 2016 to 2017 are given in
Tables 6–9. Table 6 shows the VEQR results for the develop-
ment dataset (364 CT 3-D images, agreement between two
reviewers). Table 7 shows the combined VEQR results for

the full 2016 dataset of 7440 cases (the additional 7076 CT
3-D images were reviewed by a single reviewer). In the 2016
year, the breast analysis algorithm was added to the CHAS sys-
tem and a new cohort LC was added to the database. The results
for the breast algorithm are also included in Tables 6 and 7.
Table 8 shows the performance of the new cohort (LC, 6752
3-D images). After adding the additional 6557 3-D images in
2017, the complete result is reported in Table 9. For complete-
ness, the results for the review of the two modules without spe-
cific biomarker objectives are also included as these were
evaluated; they are ribs (24 labels) and skin surface (3 labels).

3.2 VE Timing Results

Table 8 shows the time cost for the VE procedure assessed on
200 sequentially selected 3-D images. With regard to the two-
level viewing protocol, less than 2% of the module reviews
required further inspection beyond the primary 3-D visualiza-
tion. The second level 2-D visualization for these cases was
∼60 s. This time is included in the average times reported in
Table 10.

The comparative update review for the development dataset
of 364 3-D images required evaluation of 2548 module out-
comes. With the current acceptance thresholds, 26 module out-
comes (1%) required side-by-side VE and six module outcomes
(0.2%) resulted in database updates. For the FAMRI dataset of
1422 3-D images (9954 module outcomes), 187 (19%) of the
module outcomes from 185 3-D images required side-by-side
VE and 99 module outcomes (1%) resulted in database updates.
The side-by-side comparison between reference segmentation
and new segmentation for all 187 FAMRI dataset reviews
required 21 min; that is an average of 6.7 s per module outcome
review.

3.3 Interreader Variation

Two readers visually reviewed the development dataset of 364
3-D images independently. The same grading criteria were used
for each segmentation, and the differences between the readers
are summarized in Table 11. A difference occurs if one reader
has assigned a grade of G or A while the other reader has
assigned a grade of U to the same segmentation.

3.4 Evaluation Results for the External Lung
Segmentation Algorithm

An external lung segmentation algorithm as part of the CIP,49

which is an open-source library for quantitative image analysis
on lung and airway,70 was evaluated through the presented
SIMBA system with a subset of 7173 CT scans from the
full database. Visual inspection was triggered on 74 scans,
including 26 scans in which the DC between the external

Table 6 VEQR results for VIA-ELCAP and LIDC 364 development 3-D images (2016/17, development dataset).

Grade Airway Lung Ribs Vertebra Skin surface Cardiac region Breast

G 364 (100%) 364 (98%) 347 (95%) 300 (82%) 363 (99.7%) 333 (91%) 348 (96%)

A 0 (0%) 0 (0%) 10 (3%) 56 (15%) 0 (0%) 26 (7%) 5 (1%)

U 0 (0%) 0 (0%) 7 (2%) 8 (2%) 1 (0.3%) 5 (1%) 11 (3%)
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algorithm and the reference algorithm were in the range
½TDClow; TDChigh�, with TDClow ¼ 0.75 and TDChigh ¼ 0.95,
and 48 scans for which the reference algorithm had failed
to produce acceptable segmentation. No visual inspection
was needed for 7099 scans, including 12 scans in which the
DC were below TDClow and 7087 scans in which the DC
were above TDChigh. The unacceptable reference segmentations
for 37 scans (0.52% of the total evaluated) were replaced by
the new algorithm acceptable outcomes.

4 Discussion
The large-scale image documentation method has been used to
document over 20,000 3-D images with over 100 labeled
regions. We note that far fewer regions are currently used for
biomarker evaluation: lung (2 regions), airway (2 regions),

vertebra (15 regions), cardiac (3 regions), and breast (6 regions).
Depending on the region, from 88% to 99% of these 3-D images
have acceptable region segmentations as shown in Table 9.

4.1 CHAS Segmentation Algorithm Performance

The results on the development dataset in Table 6 show very
high success rates (98% to 100%) acceptable for the more
mature modules that have received several cycles of revision
compared to the more recent modules. Even the new breast mod-
ule has 97% acceptable. These modules’ development have all
benefited from some extreme cases extracted from the larger full
dataset in addition to the public development dataset. In Table 7,
the results for the full 2016 dataset of 7440 3-D images show
that the acceptable rate is from 93% to 99%, which is within our
initial target of at least 90%.

Table 8 VEQR results for the new LC dataset of 6752 3-D images (2016 new dataset).

Grade Airway Lung Ribs Vertebra Skin surface Cardiac region Breast

G 5554 (82%) 6675 (99%) 5389 (80%) 4616 (68%) 6736 (99.8%) 5202 (77%) 6141 (91%)

A 516 (8%) 0 (0%) 121 (2%) 674 (10%) 0 (0%) 444 (7%) 378 (6%)

U 682 (10%) 77 (1%) 1242 (18%) 1462 (22%) 16 (0.2%) 1106 (16%) 233 (3%)

Table 9 VEQR results for all datasets, 20,749 3-D images (2017, full dataset).

Grade Airway Lung Ribs Vertebra Skin surface Cardiac region Breast

G 18,312 (88%) 20,443 (99%) 17,826 (86%) 15,423 (74%) 20,726 (99.9%) 17,673 (85%) 18,737 (90%)

A 908 (4%) 0 (0%) 884 (4%) 2828 (14%) 0 (0%) 1372 (7%) 894 (4%)

U 1529 (7%) 306 (1%) 2039 (10%) 2498 (12%) 23 (0.1%) 1704 (8%) 1118 (5%)

Table 10 Average time cost per 3-D image for VE on each module.

Module Airway Lung Ribs Vertebra Skin surface Cardiac region Breast

Time (s) 4.3 2.7 4.0 5.3 2.2 3.5 2.8

Table 11 Difference between two readers (364 development 3-D images).

Module Airway Lung Ribs Vertebra Skin surface Cardiac region Breast

Differences (images) 0 0 0 1 1 2 2

Table 7 VEQR results for all datasets, 7440 3-D images (2016, baseline dataset).

Grade Airway Lung Ribs Vertebra Skin surface Cardiac region Breast

G 7069 (95%) 7298 (98%) 6443 (87%) 6025 (81%) 7436 (99.9%) 6007 (81%) 6764 (91%)

A 88 (1%) 0 (0%) 489 (6%) 893 (12%) 0 (0%) 967 (13%) 361 (5%)

U 283 (4%) 142 (2%) 508 (7%) 522 (7%) 4 (0.1%) 466 (6%) 315 (4%)
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Table 7 shows the initial results on the newly added 6752 3-D
images. The ribs and vertebrae modules have an acceptance rate
of 82% and 78%, respectively, which is below our 90% target
for new algorithms and resulted in low success rates for other
modules. Review of a subset of these cases showed that this
cohort had scanner parameters that resulted in different noise
statistics than our previous cohorts and that the effect was to
cause our bone segmentation algorithms to give poor results.
After revision, our algorithms now detect this noise character-
istic in the image quality analysis module (Fig. 6), and filter
the image data prior to bone segmentation. The results for
the upgraded system and algorithms for 2017 are shown in
Table 9, in which an additional 6557 3-D images were added
to the database. The results for 2017 indicate that the perfor-
mance of the updated CHAS has improved even with the addi-
tional image and with only one module (vertebra, 88%) not
achieving the 90% target.

4.2 Visual Image Evaluation Effort

Results given in Table 10 show that the per 3-D image evalu-
ation time for the initial VE is about 25 s. The time for just nod-
ule review by a radiologist for these scans without CAD has
been shown to be in the order of 10 min.71,72 Therefore, the
time for initial segmentation review with the SIMBA framework
is a tiny fraction (<5%) of the time required for a traditional
clinical review of the 3-D image. In addition, update reviews
are required when the outcomes from new algorithms are con-
sidered. Currently, we are observing about 1% to 2% module
reviews that require a review time of about 7 s. This total
cost of updating is linearly related to the size of the database;
however, as the algorithms mature, it is anticipated that the frac-
tion of triggered events will significantly diminish; note the
lower frequency of trigger events for the development dataset
compared to more recent FAMRI dataset.

The more mature algorithm modules in CHAS have now
received several cycles of updates. For example, when our
standard lung module was applied to the LIDC 318 cases,
the initial performance was about 70%. With several cycles
of algorithm refinements, the performance on that dataset is
now 97% to 100%, and attention is directed to failures in
the other cohorts.

4.3 Interreader Variation

The limited study on interreader variation indicated that there
were a total of only six 3-D image evaluations out of 2548
(seven algorithms for 364 3-D images), i.e., about 0.24%.
Further, the six 3-D images in question were considered to
be close to the border of acceptable. This is in line with our
design goal of rating the segmentation for the relevant task bio-
marker evaluation rather than traditional boundary precision.
A down side to this approach is that if a new quantitative bio-
marker is added that requires new segmentation characteristics,
then the entire database may need to be re-evaluated.

4.4 Algorithm Evaluation

The evaluation of the CIP lung segmentation algorithm49 dem-
onstrates that the documented database may be used for evalu-
ating different algorithms. Visual review was only required on
74 cases; that is 1.03% of the testing dataset. Although the
system does not support the cloud-based approach used by

Visceral36 for algorithm evaluation, it is simple to include an
external algorithm module in the SIMBA system; further, it
is possible to export images for testing and import the resulting
segmentations for evaluation.

4.5 Limitations of Study

The large-scale image documentation method has been demon-
strated with a single application and a single validation method
(visual inspection with grading into three categories and no
manual marking). There are many alternative strategies that
could be used with this framework. For example, a cohort of
phantom images with a priori known truth can easily be
added to the system. A second possibility is to increase inclu-
siveness by using other methods, such as manual marking to
provide good segmentations for the cases graded unacceptable.
The tradeoff for this approach is a much higher cost in documen-
tation effort combined with the introduction of human variation
into the image documentation. Adding manual documentation
for difficult cases may be very useful, especially in scenarios
where the database is to be used directly for algorithm training.
In addition to the multiregion application discussed here, the
framework has also been successfully used on other research
projects involving just one or two regions.

Currently, there are some image quality checks within the
algorithm modules that indicate algorithm failure and prevent
dependent algorithms from executing. In future work, we
plan to enhance outcome quality checks such that, for many
cases, an automatic unacceptable evaluation grade will be
given when a problem is detected. This mechanism will further
reduce the number of images that require VE for both new image
data and for database updates.

In this work, we have not established that the chosen VE is
equivalent or superior to other evaluation methods. A major
challenge in evaluating the quality of computer segmentations
for medical imaging is that, in general, the true value is
unknown and that comparison must be made by either QE
or VE methods. Traditionally, radiologists view and evaluate
3-D images by a sequence of 2-D image slices extracted
along the axial dimension. More recently with the advent of
electronic image viewing systems, other views including
sagittal, coronal, MIP projections, and 3-D visualizations are
becoming more common. In this work, we take advantage of a
well-defined anatomical region possibly being more rapidly
evaluated using primarily several 3-D visualizations rather
than reviewing every axial 2-D image slice. We have not
established any specific precision advantage for any of these
approaches; however, we conjecture that different methods
may provide acceptable outcomes.

4.6 Demonstration SIMBA Web System

The image documentation system images and segmentation
visualizations have been made available on a demonstration
web system.5 This allows for access to the ELCAP-VIA public
image database of 50 LDCT chest 3-D images and the resulting
CHAS image segmentations. In addition, the web system sup-
ports interactive viewing of CT 3-D images and the associated
customized visualizations for both the initial image review and
for the side-by-side update image review for CHAS database
documentation.
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5 Conclusion
A large-scale image documentation method facilitates the effi-
cient segmentation image documentation by incorporating the
VEQR method and customized visualizations. The efficacy of
this method has been demonstrated with the documentation
of seven main regions and over 100 subregions in over
20,000 3-D images for the CHAS image analysis system. For
the main regions, the success rate varied from 88% to 99.8%
(median 93%).

The key concept for realizing a practical documentation
system is minimizing the VE time; this has been accomplished
by a focus on image segmentation and two main methods:
(a) customized biomarker-inspired image visualization and
(b) the VEQR protocol. Further, this approach avoids both the
high cost and inherent error through human variation incurred
using manual marking methods. This method has the potential
to be used for the documentation of extremely large image
databases.

This image documentation method addresses a pressing need
for the documentation of very large image databases needed
for (a) computer algorithm development, (b) the training of
emerging machine learning methods, and (c) supporting clinical
research (both to understand natural disease history and to sup-
port clinical studies) by facilitating the collection of biomarker
statistics on large population cohorts. The timing results for seg-
mentation VE of a few seconds for each organ indicate that
building validated image databases can be achieved at a very
small incremental cost of effort compared to that of a traditional
clinical image read by a radiologist.

Performance results for the CHAS application indicate that a
high proportion of segmentation success (93% acceptable seg-
mentations in over 20,000 cases) is achievable on LDCT 3-D
images; further, the review of segmentation quality only requires
a few seconds of effort. This suggests that automated evaluation
of several important lung health measures with visualizations for
rapid review may be useful for clinical practice in a LCS setting.
Future plans include applying this method to an LCS registry
that includes image data.
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