30 November 2017 Holistic segmentation of the lung in cine MRI
Author Affiliations +
Abstract
Duchenne muscular dystrophy (DMD) is a childhood-onset neuromuscular disease that results in the degeneration of muscle, starting in the extremities, before progressing to more vital areas, such as the lungs. Respiratory failure and pneumonia due to respiratory muscle weakness lead to hospitalization and early mortality. However, tracking the disease in this region can be difficult, as current methods are based on breathing tests and are incapable of distinguishing between muscle involvements. Cine MRI scans give insight into respiratory muscle movements, but the images suffer due to low spatial resolution and poor signal-to-noise ratio. Thus, a robust lung segmentation method is required for accurate analysis of the lung and respiratory muscle movement. We deployed a deep learning approach that utilizes sequence-specific prior information to assist the segmentation of lung in cine MRI. More specifically, we adopt a holistically nested network to conduct image-to-image holistic training and prediction. One frame of the cine MRI is used in the training and applied to the remainder of the sequence ( > 200 frames). We applied this method to cine MRIs of the lung in the axial, sagittal, and coronal planes. Characteristic lung motion patterns during the breathing cycle were then derived from the segmentations and used for diagnosis. Our data set consisted of 31 young boys, age 9.6 ± 2.3 years, 15 of whom suffered from DMD. The remaining 16 subjects were age-matched healthy volunteers. For validation, slices from inspiratory and expiratory cycles were manually segmented and compared with results obtained from our method. The Dice similarity coefficient for the deep learning-based method was 97.2 ± 1.3 for the sagittal view, 96.1 ± 3.8 for the axial view, and 96.6 ± 1.7 for the coronal view. The holistic neural network approach was compared with an approach using Demon’s registration and showed superior performance. These results suggest that the deep learning-based method reliably and accurately segments the lung across the breathing cycle.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
William Kovacs, Nathan Hsieh, Holger Roth, Chioma Nnamdi-Emeratom, W. Patricia Bandettini, Andrew Arai, Ami Mankodi, Ronald M. Summers, Jianhua Yao, "Holistic segmentation of the lung in cine MRI," Journal of Medical Imaging 4(4), 041310 (30 November 2017). https://doi.org/10.1117/1.JMI.4.4.041310 . Submission: Received: 9 May 2017; Accepted: 6 November 2017
Received: 9 May 2017; Accepted: 6 November 2017; Published: 30 November 2017
JOURNAL ARTICLE
9 PAGES


SHARE
Back to Top