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Abstract. We propose an image analysis method for quality evaluation of human pluripotent stem cells based on
biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem
cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells
exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically deter-
mined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differ-
entiating cellular nuclei. We quantified these features based on experts’ visual inspection of phase contrast
images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed
an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classi-
fication, equivalent to visual inspection by experts, of three iPSC cell lines. © The Authors. Published by SPIE under a
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1 Introduction
Since the discovery of human embryonic stem cells (hESCs) by
Thomson et al.1, researchers have known that hESCs have a spe-
cific morphology that differs from that of differentiated cell
types. On the other hand, human induced pluripotent stem
cells (hiPSCs), established by Takahashi et al.,2 have a morphol-
ogy that is similar to hESCs. Empirically, during the culture
process of human pluripotent stem cells (hPSCs) such as
hESCs and hiPSCs, a quality check for confirming the undiffer-
entiated state of the cells is performed by assessing the specific
morphology of pluripotent stem cells.

The morphological features described in the reports on
hPSCs are shown in Table 1. Yu et al.3 reported that the specific
morphology of ESCs includes a high nucleus:cytoplasm ratio,
prominent nucleoli, and formation of compact colonies.
Takahashi et al.2 also reported features, including formation
of round colonies, flat, dense cells, scant cytoplasm, and
large nucleoli. Additionally, clear and smooth colony edges
and small cells have also been reported.4

During the general process of culturing hPSCs, culture
experts propagate cells while maintaining these morphological
features. In the early passage of cells after reprogramming,
deviation of cells from the undifferentiated state frequently
occurs in the culture due to contamination with cells that
were not reprogrammed correctly. Thus, experts must remove
these inappropriate cells and keep only the cells that were cor-
rectly reprogrammed. When cells deviate from pluripotency
toward a differentiated state, they develop a white space that

looks like a crack in an intercellular space. Then, the cells gradu-
ally develop a dark, flat appearance similar to differentiated
cells, and the distance between the cells expands (Fig. 1).4

Undifferentiated hPSCs have more relaxed chromatin in their
nuclei than do differentiated cells. Because chromatin undergoes
a change in structure to heterochromatin,5 which causes loss of
transparency in nuclei, structures such as nucleoli become
unclear and invisible under phase contrast microscopy during
the differentiation process.

In general, the pluripotency of hPSCs can be maintained with
appropriate quality by checking biological and morphological
features through a visual inspection by stem cell culture experts.
However, because such an inspection by each individual expert
varies, and variation among multiple experts influences the out-
come of visual inspection, industrialization of cell production
requires a cell evaluation method that is independent of individ-
ual expert skills or habits.6–8

Several noninvasive methods based on image analysis have
been proposed to replace visual inspection. Many of these meth-
ods adopt machine learning technology and classify cells into
several quality classes related to visual inspection results with
nonmorphological image features, such as the distribution of
luminance intensity in cell images.9–11 Maddah et al.9 reported
that hiPSCs that are classified visually can be adequately distin-
guished with local binary patterns and an intensity histogram of
induced pluripotent stem cells (iPSCs). Tokunaga et al. also
showed that cells that were correctly reprogrammed can be dis-
tinguished from those that were not using several image features
such as the Zernike moment.10 In addition, Kato et al.11 showed
a relationship between image features and gene expression by
analyzing the expression of hiPSC colonies classified by using
spatial frequency.
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As mentioned above, various image analysis methods have
been studied, and they all depend on nonmorphological image
features. Conventionally, many studies on the culture protocol of
hPSCs have shown its adequacy based on the morphology of the
cells.12–14 Describing the state of cells using their morphological
features enables us to discuss the issues of cell quality and pro-
tocol in terms of cell behavior. However, since methods that use
image features cannot describe the state of cells, biologists and
culture experts cannot easily comprehend problems that arise
with target cells, based on the evaluation results of these meth-
ods. Hence, development of a cell quality evaluation method
employing the morphological features used in the conventional
culture process is necessary, without introducing marked
changes in the culture process used to establish visual inspec-
tion. To achieve this goal, we developed a method for cell qual-
ity evaluation that uses the biological morphology of hiPSCs
that culture experts especially focus on.

2 Methods and Materials

2.1 Cell Lines and Culture

In this study, the three hiPSC cell lines MRC5,15 Edom,16 and
201B7 (Ref. 2) were used. MRC5 and Edom were established in
the National Center for Child Health and Development, whereas
201B7 was established by Takahashi et al. Each cell line was
cultured in iPSellon medium (Cardio, cat. 007001) supple-
mented with 10 ng∕ml basic fibroblast growth factor (Wako,

cat. 068-04544) with mouse embryonic fibroblasts as feeder
cells in a six-well microtiter plate. The medium was changed
every day. All cell lines were cultured for 5 days so that the
confluency of the cells was less than 70%, and therefore, the
cells were not too dense.17

2.2 Cell Imaging Method

The timeline of cell image capturing is shown in Fig. 2(a).
Images of the three cell lines were captured 5 days after passage
using a phase contrast microscope with a 10× objective lens
(Nikon, CFI Plan Fluor DL 10×) and a 3M pixel camera
(1920 × 1440 pixels, Orca 2.8, Hamamatsu Photonics) that
can resolve the shapes of the nucleoli in detail. After parafor-
maldehyde fixation of the same cells, immunofluorescence
staining was performed with NANOG (Reprocell, RCAB003P
rabbit polyclonal) and OCT-3/4 (Santacruz, SC5279 mouse
IgG2b), which are generally used for evaluation of the undiffer-
entiated state. The immunofluorescence images were captured
using a confocal microscopy system (Nikon, Eclipse Ti-E)
with a 10× objective lens (Nikon, Plan Fluor 10×).

2.3 Dataset

The datasets used in this study are shown in Figs. 2(b) and 2(c).
We prepared three datasets for the evaluation of cell quality and
the development of image analysis algorithms.

First, the original 3M pixel images were divided into small
150 × 150 pixel images, and 300 small images for the three cell
lines were selected by one culture expert. Second, the other four
experts evaluated the cell quality of these 900 images and clas-
sified them into three classes: poor, moderate (Mod), and good;
this is called the labeled dataset. The label that most frequently
appeared in the evaluation results of the four experts was defined
as the class label for each image. If multiple label candidates
existed, the one with lowest quality was selected as the class
label.

The second dataset consisted of the training and test images
for automatic detection of the biological features from the cap-
tured microscopic images. The expert who had selected 900
images inspected all the images manually and marked the
three biological features as described below. As a result, 900
masked images were acquired where the locations and regions
of the features were marked; this is called the masked dataset.

The third dataset was for the training and test patch images
for nucleoli detection. The same expert manually created the
nucleoli dataset, in which the size of the patch image was
27 × 27 pixels, and the nucleolus is located in the center of the
patch image. The nucleoli dataset originated from the MRC5
images and differed from the 900 images mentioned above.

Table 1 Morphological features of hPSCs.

Type Morphological feature

Colony features Round

Compact

Flat

Well-defined edge

Smooth edge

Cell features High nucleus:cytoplasm ratio

Prominent nucleoli

Scant cytoplasm

Small

Round

Fig. 1 Typical morphological changes in hPSCs during differentiation.
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Fig. 2 Data acquisition process and datasets. (a) Culture process and image capturing, (b) prepared
datasets, and (c) example images of the datasets. In the poor image shown in (c), few differentiating
cellular nuclei and crack areas are masked.
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3 Results

3.1 Distinctive Biological Features for Quality
Classification of Human Induced Pluripotent
Stem Cells

The aim of this study was the establishment of quality classifi-
cation of hiPSC images into three classes (poor, Mod, and good)
by evaluating the biological features used in the visual inspec-
tion. Three features associated with biological structures,
namely, the number of nucleoli, the crack area rate, and the dif-
ferentiating cellular nuclei area rate, were identified by discus-
sion with the experts (Fig. 3). The number of nucleoli is a feature
indicating nondifferentiation. Thus, a cell with many nucleoli is
considered to be good quality. In contrast, the crack area rate and
the differentiating cellular nuclei area rate are indicators of
deviation from nondifferentiation. These morphological charac-
teristics have also been reported as features related to the state of
iPSCs.18 Therefore, the experts considered that these features
should be rarely or never detected in hiPSCs with good status.
For the purpose of confirming the classification capability of the
three features, the distributions of the features for each cell qual-
ity class of a respective cell line were investigated.

3.1.1 Variation in scoring of visual inspection results

Variation in scoring among the experts and the cell line-depen-
dent labeled dataset is described in this section.

The interexpert scoring variation is shown in Fig. 4(a) and
Table 2. The F-measures were distributed within the range of
0.651 and 0.897, depending on the experts and the cell quality
class, the average of which was ∼0.8. The large variation
was mainly caused by the widespread distribution of the Mod
class. For example, expert A evaluated none as good for all
259 Mod images, whereas expert B evaluated 80 images as
good. The Mod class evaluation indicated that the difference
in an individual expert’s scoring classification skill was signifi-
cant for the Mod class compared to the other classes (good and
poor).

The cell line dependency of the scoring accuracy is shown in
Table 3. The expert-averaged F-measures were distributed
widely in the range of 0.630 to 0.826 and 0.664 to 0.892 for

the Mod class and the good class, respectively, whereas the
poor class was within the range of 0.861 and 0.906. The experts
appeared to be able to evaluate the poor class more accurately
than the others, regardless of the cell line.

3.1.2 Effectiveness of the biological features for
classification

The distributions of the features with respect to each cell quality
class [Fig. 4(b)] were investigated in the masked dataset, and
the three hypotheses were significantly different. First, the num-
ber of nucleoli was significantly increased in accordance with
improvement in the cell quality class (p < 0.01). Second, the
crack area rate was significantly higher in the Mod class
(p < 0.01). Third, the differentiating cellular nuclei area rate
was significantly higher in the poor class (p < 0.01). These
observations coincided with the result of discussion with the
expert, and these features were effective for quality evaluation
in the visual inspection.

3.1.3 Classification based on features

Classification based on biological features was investigated. The
features of each cell quality class were located in the specific
region of the feature space [Fig. 4(c)], in which two of the
three appropriate features were selected according to the respec-
tive cell quality class. In this feature space, we reclassified each
labeled dataset image using a machine learning technique. As
shown in Fig. 4(c), the data points distributed on a nonlinear
decision hyperplane, which separated each quality class, and
the distribution appears to be complicated. Moreover, because
the sample size of the labeled dataset is relatively small com-
pared to the size generally used in machine learning applica-
tions, over fitting of the training set was a concern. To
resolve these issues, we employed a nonlinear support vector
machine (SVM) with a radial basis function kernel. This
approach has a high generalization ability even for small and
complicated datasets, because it employs margin maximization
function and a kernel method.19,20

To obtain good classification performance, a grid-search
approach was employed to optimize the SVM model for the
soft margin constant C and the kernel function parameter

Fig. 3 Biological features of hiPSCs.
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gamma (γ). A three-fold cross validation was applied.21–23 As a
result of this grid-search optimization, the F-measures of the
classification performance were 0.843, 0.683, and 0.831 for
the poor, Mod, and good classes, respectively (Table 4), with
C ¼ 7.94, γ ¼ 0.05. Because these numbers are within the
range of the numbers generated by visual inspection by the
experts, classification with these three features is considered
to be sufficiently effective.

3.2 Development of the Image Analysis Method

3.2.1 Image analysis framework

As explained in the previous section, the three cell quality
classes can be distinguished by measuring the three features
that experts use in visual inspection. In this section, the image
analysis method for iPSC quality evaluation for replacement of
the visual inspection process by culture experts is shown, and

Fig. 4 Results of visual inspection of hiPSCs. (a) Interobserver difference for quality classification, (b) the
distribution of the features of each cell line and the quality class, and (c) two-dimensional distribution of
the features. In (b), each feature was significantly different among the quality classes (p < 0.01, with
Tukey HSD test).
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Table 2 Visual inspection performance for cell quality evaluation of
the F -measures varied in the range of 0.651 to 0.897 depending on
the quality class and the expert. Classification performance for Mod
class was worse than the other classes.

Class Number F -measure

Average of the experts Poor 401 0.874

Mod 259 0.731

Good 240 0.810

Expert A Poor 401 0.897

Mod 259 0.747

Good 240 0.730

Expert B Poor 401 0.834

Mod 259 0.651

Good 240 0.799

Expert C Poor 401 0.872

Mod 259 0.771

Good 240 0.850

Expert D Poor 401 0.893

Mod 259 0.757

Good 240 0.861

Table 4 Classification performance using the masked dataset. The
performance of the classification using the masked data was equiv-
alent to the average performance of the experts.

Class

Three cell lines

Number Accuracy Precision Recall F -measure

Automatic
classification
with mask

Poor 401 0.864 0.872 0.815 0.843

Mod 259 0.827 0.721 0.649 0.683

Good 240 0.900 0.757 0.921 0.831

Table 3 Cell line dependency of visual inspection performance. The F -measure difference of the poor class was smaller than that of the other classes.

MRC5 Edom 201B7

Class Number F -measure Number F -measure Number F -measure

Average of the experts Poor 106 0.906 159 0.864 136 0.861

Mod 117 0.826 84 0.679 58 0.630

Good 77 0.792 57 0.664 106 0.892

Expert A Poor 106 0.851 159 0.889 136 0.947

Mod 117 0.730 84 0.783 58 0.729

Good 77 0.649 57 0.459 106 0.884

Expert B Poor 106 0.926 159 0.827 136 0.764

Mod 117 0.796 84 0.582 58 0.507

Good 77 0.785 57 0.717 106 0.867

Expert C Poor 106 0.925 159 0.857 136 0.847

Mod 117 0.900 84 0.706 58 0.633

Good 77 0.880 57 0.694 106 0.905

Expert D Poor 106 0.922 159 0.882 136 0.885

Mod 117 0.878 84 0.646 58 0.649

Good 77 0.852 57 0.785 106 0.912

Fig. 5 Overview of the proposed method for quality control in the cul-
tivation of hiPSCs.
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the flow is described in Fig. 5. The three feature detectors and
the cell quality classifier, the inputs of which are the outputs of
the detectors, compose the image analysis method, in which the
feature detectors and the classifier are applied to each of the
regions of interest (150 pixels, 50 μm) for a phase contrast
image.

3.2.2 Feature detectors and cell quality classifiers

The details of the feature detectors and the cell quality classifiers
are described in this section. For machine learning of the nucle-
olus detectors, the nucleoli dataset was used as training data.
The crack detector and the differentiating cellular nuclei detector

were tuned with the masked dataset. The cell quality classifier
was developed with the labeled dataset.

The nucleoli detector detects significant, prominent nucleoli
in undifferentiated hPSCs. Nucleoli observed in undifferentiated
cells are nearly oval-shaped, 3- to 6-μm in diameter, and appear
black under phase contrast microscopy. To obtain the robustness
of the shape variation of the nucleoli, the nucleolus detector was
implemented with the nonlinear SVM classifier,24,25 which
classifies a black blob-like region in an image with features
such as size and roundness, where the gauss kernel was applied,
and then the parameters were optimized with the grid-search
technique.

The crack detector detects crack regions that occur between
cells during the differentiation process. In many cases, dead cells

Fig. 6 Performance of the developed feature detectors. (a) Correlation between the detectors and the
visual inspection results with respect to the cell lines and (b) examples of the detection results. In (b), the
red area indicates the area detected by the expert and the detectors. The differences in the manual and
detector images are due to errors by the detectors.
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and stacked regions appear with high luminance intensity in the
cell images, appear similar to cracks, and are difficult to distin-
guish from cracks. On the other hand, because cracks are linear-
shaped and different from the shapes of dead cells and stacked
regions, a crack region can be detected by extracting a linear-
shaped area with high luminance intensity. In this study, the
Gabor filter method,26 which is frequently used for detecting
linear-shaped structures such as blood vessels, was introduced
into the crack detector.

In the differentiating cellular nuclei detection process, the
nuclear region, which becomes darker after the chromatin
structure has changed due to differentiation, is detected.
Differentiating cellular nuclei are mostly oval and ∼10-μm in
diameter. In this study, the detector detected a differentiating cel-
lular nuclei region by selecting round, black blobs of the indi-
cated sizes after extracting the blobs by the GrabCut method,27

which assumes dark and highlighted areas as the source and
sink, respectively.

Finally, we trained the cell quality classifier on the nonlinear
SVM model with the labeled dataset, in which the SVM kernel
was the Gaussian kernel, as shown in Sec. 3.1.3. The kernel
parameters C and γ were also optimized by a grid search and
we obtained C ¼ 0.631, γ ¼ 0.126. The labeled dataset was di-
vided into two sets, in which 600 images were for training and
the rest were for the cross-validation test.

3.3 Image Analysis Performance

As confirmed in Sec. 3.1.3, cell quality classification that is
equivalent to visual inspection performance can be achieved
if the detector results correlate with the feature detection results
of the visual inspection. Therefore, in this section, we investi-
gated the correlation between the feature detectors and the visual
inspection results, adding to the performance of the cell quality
classifier. Furthermore, the classification performance with
respect to each cell line was evaluated and compared with
the visual inspection.

3.3.1 Correlation between the detectors and the visual
inspection results

The correlation between the outputs of the detectors and the vis-
ual inspection results of the experts was investigated [Fig. 6(a)].
The correlation between the detectors was R2 ¼ 0.83, 0.82, and
0.72 for the nucleoli detector, the cracks, and the differentiating
cellular nuclei, respectively. The performance of the nucleoli
detector on the nucleoli dataset was F-measure ¼ 0.985 and
0.982 for training and testing, respectively.

3.3.2 Performance of the cell quality classifier

The performance of the cell quality classifier was evaluated with
300 test images of the labeled dataset (Table 5). The F-measures
calculated with data from the three cell lines were 0.820, 0.686,
and 0.812 for poor, Mod, and good classes, respectively. These
measures performed close to the result of expert B and the result
when using the manually masked data mentioned in Sec. 3.1.3.

3.3.3 Cell line dependencies of the cell quality classifier

The difference in discrimination performance for each cell
line was investigated and compared with the visual inspection
results. Calculating the F-measures after reclassifying Sec. 3.3.2
result with respect to each cell line, the F-measures were

0.816, 0.845, and 0.792 for the three quality classes of
MRC5, 0.787, 0.576, and 0.723 for Edom, and 0.854, 0.564,
and 0.892 for 201B7, respectively. The performance of the
cell quality classifier was close to the range of the results of
the four experts. A difference in performance was noted among
the cell lines, similar to the visual inspection results.

4 Discussion
As described above, our method achieved accuracy for cell qual-
ity classification that was equivalent to visual inspection with
respect to the three hiPSC cell lines, and thus replacing the con-
ventional visual inspection process with the image analysis
method was possible.

One issue to be addressed before replacement is the cell line
dependency of the performance of the cell quality classification.
The difference in the feature distribution among the cell lines
that caused these dependencies is shown in Fig. 4(b). For robust
and highly accurate evaluation that is independent of cell lines,
the evaluation method may require feature normalization for
each cell line to correct the difference between cell lines.
This is because the order of the quality classes was observed
in one cell line, but their quality value distributions changed
from cell line to cell line.

Another issue regarding the actual culture process is that
immunostaining with nondifferentiation markers is generally
used for the final inspection, whereas visual inspection is con-
ducted daily for quality check. Similarly, combining our method

Table 5 Performance of the cell quality classifier. The performance of
the cell quality classifier was close to that of the experts. In addition,
the performance for Edom was lower than that for the other cell lines
because of the cell line dependency.

Class

Three cell lines

Number Accuracy Precision Recall F -measure

Training
(three cell
lines)

Poor 266 0.810 0.768 0.820 0.793

Mod 172 0.810 0.693 0.605 0.646

Good 162 0.870 0.753 0.772 0.762

Test (three
cell lines)

Poor 135 0.840 0.832 0.807 0.820

Mod 87 0.823 0.707 0.667 0.686

Good 78 0.897 0.770 0.859 0.812

Test (MRC5) Poor 36 0.860 0.775 0.861 0.816

Mod 39 0.890 0.938 0.769 0.845

Good 25 0.890 0.750 0.840 0.792

Test (Edom) Poor 53 0.800 0.902 0.698 0.787

Mod 28 0.750 0.548 0.607 0.576

Good 19 0.870 0.607 0.895 0.723

Test (201B7) Poor 46 0.860 0.820 0.891 0.854

Mod 20 0.830 0.579 0.550 0.564

Good 34 0.930 0.935 0.853 0.892
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Fig. 7 Comparison between the image evaluation result and the immunostaining result. (a) Input phase
contrast image, (b) images following immunostaining with OCT-3/4 and NANOG, which are markers of
nondifferentiation, and (c) the image evaluation result, and a closed-up comparison of each result. The
image evaluation result and the immunostaining result correspond to poor and good regions, respec-
tively, except for the area in which cells were stacked (center of the images).
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with immunostaining inspection would be preferred, because
the image evaluation method, whether using the image analysis
method or visual inspection, does not always correspond to the
immunostaining result regarding the nondifferentiation state.
Examples of images analyzed with both methods are shown
in Fig. 7. In Figs. 7(a) and 7(b), the undifferentiated cells
appeared to be distributed in a donut-like shape, because the
marker emission was weak in the colony periphery and center
where the cells were stacked. The result shown in Fig. 7(c) was
acquired by evaluating this image by scanning a region of inter-
est every 50 pixels. The colony periphery where the markers
emitted weaker signals tended to be evaluated as poor, whereas
the donut-like area where the markers emitted strong signals
tended to be evaluated as good. The image evaluation result
appeared to correspond to the result of the undifferentiated
immunostaining in good and poor images.

However, the colony center and the upper right areas, which
were mostly evaluated as Mod, emitted strong and weak signals,
respectively. The Mod areas did not correspond to marker emis-
sion. Thus, the image evaluation method did not necessarily cor-
respond to the immunostaining inspection result for identifying
undifferentiated cells, and replacing inspection after immunos-
taining with the image evaluation method appears difficult.
Therefore, use of the image evaluation method together with
the immunostaining inspection method will be necessary to
obtain results similar to the conventional method. Other biologi-
cal features, such as the features described in Table 1, need to
be added to represent the immunostaining result. In addition, it
is also important to identify the biological mechanisms respon-
sible for imparting the visible morphological characteristics to
the cells.

5 Conclusion
In this study, we developed a method for the evaluation of cell
quality that focused on the biological features of hiPSCs.
According to discussion with culture experts, the three biologi-
cal features that the experts used in the visual inspection process
were specific, and then the relationship between the features and
the results of cell quality evaluation was investigated. We also
developed feature detectors and a cell quality classifier and
found that our evaluation method accurately evaluated cells
with a result that was equivalent to visual inspection (F-measure
∼0.80). To achieve complete image analysis evaluation, further
research on new biological features is necessary to analyze vari-
ous markers of nondifferentiation and differentiation for use in
inspection following immunostaining.
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