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Abstract. Cytology, a method of estimating cancer or cellular atypia from microscopic images of scraped spec-
imens, is used according to the pathologist’s experience to diagnose cases based on the degree of structural
changes and atypia. Several methods of cell feature quantification, including nuclear size, nuclear shape, cyto-
plasm size, and chromatin texture, have been studied. We focus on chromatin distribution in the cell nucleus and
propose new feature values that indicate the chromatin complexity, spreading, and bias, including convex hull
ratio on multiple binary images, intensity distribution from the gravity center, and tangential component intensity
and texture biases. The characteristics and cellular classification accuracies of the proposed features were veri-
fied through experiments using cervical smear samples, for which clear nuclear morphologic diagnostic criteria
are available. In this experiment, we also used a stepwise support vector machine to create a machine learning
model and a cross-validation algorithm with which to derive identification accuracy. Our results demonstrate the
effectiveness of our proposed feature values. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported

License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.
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1 Introduction
Despite recent improvements in our understanding of molecular
changes in cancer cells, it remains difficult to diagnose cancer
using biologic methods. Some biologic methods, such as fluo-
rescent in situ hybridization (FISH) for detecting chromosomal
translocation and polymerase chain reaction (PCR) for detecting
cell clonality, are sometimes used to assist the cancer diagnosis;
however, cell clonality and chromosomal translocation are not
limited features of the cancer cells.1–4 Cancer is always diag-
nosed by pathologists via light microscopic evaluations of his-
tological or cytological samples. These diagnoses are based on
the degrees of structural and cellular atypia.5 Among the many
morphological changes occurring in cancer cells, nuclear atypia
is one of the most important. Nuclear atypia refers to an abnor-
mal cell nuclear appearance and includes changes in the nuclear
size and shape, numbers and sizes of nucleoli, and chromatin
texture. However, pathological evaluations of nuclear atypia
may display a lack of consistency owing to variability depend-
ing on the cytologists.6 In fact, cytological and histological diag-
nostic reproducibility and accuracy are problematic for some
cell types (e.g., erythroblasts).7 Therefore, quantitative feature
analysis of nuclear atypia can enhance the cytologist’s assess-
ment accuracy.

Conversely, to prevent overlook, cell diagnostic support sys-
tems that continuously process the extraction of cell regions
(segmentation), feature extraction, and cell-type prediction

(classification by a machine learning method) have also been
studied.8–12 Because improvement in the accuracy of the system
is required, addition of new features is effective. With respect to
the feature extraction aspect of the system, several methods have
been proposed, including quantifications of nuclear size, shape,
and brightness;13 Haralick14 or run-length15 analysis of chroma-
tin texture;10,16–18 cell nuclear contour complexity (CC);19 and
radial distribution (RD) value.20 Although the CC value quan-
tified the complexity of chromatin distribution in large areas, it
did not consider chromatin distribution in small areas. In addi-
tion, the RD value focused on the deviation of the chromatin
distribution only in the radial direction.

In this study, we aim to propose useful new features to facili-
tate judgments by cytologists and increase the accuracy of cell
diagnostic support systems. Specifically, we propose three kinds
of new feature values quantified by a complexity value consid-
ering chromatin distribution with small areas, a spreading value
for chromatin distribution, and a tangential bias (TB) value for
chromatin distribution. The proposed feature values include
convex hull ratios on multiple binary images, intensity distribu-
tion from the gravity center, and tangential component intensity
and texture bias. The characteristics of these proposed feature
values are verified through experiments using cervical smear
samples. In particular, the nuclear morphology-based diagnostic
criteria for cervical cytology are clear, and interobserver
differences in assessments are small.7 In these experiments,
we compare our proposed feature values with the annotations
classified by pathologists according to the Bethesda system.21

Thereafter, we examine the effectiveness of our proposed
feature values using an analysis of variance (ANOVA) and a
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cross validation (CV)22 of models generated via a machine
learning method. For machine learning, we use a support vector
machine (SVM)23,24 that is extended to a multiclass classifica-
tion using a one-versus-one method25 and perform variable
selection using a stepwise (floating) method.26

2 Feature Extraction of Cervical Cytology
Image

2.1 Extraction of Cell Nuclear Area

We used cervical smear samples collected at the Department
of Gynecologic Oncology, Saitama Medical University
International Medical Center. These samples were applied to
slides, fixed with 95% alcohol, and subjected to Papanicolaou
staining. Squamous cells in these samples were observed and
imaged at 1000× (10× eyepiece and 100× objective lenses)
magnification with an optical microscope (AXIO imager A1;
Carl Zeiss Ltd., Oberkochen, Germany) attached to a cooled
charge-coupled device camera (256 shades of gray) and three
transmission filters of red, green, and blue. In each shooting,
exposure time and white balance were fixed. In this study,
we targeted squamous cells only.

Cells were estimated from these images by a pathologist and
two cytotechnologists according to the Bethesda system.21 The
classifications are as follows: negative for intraepithelial lesion
or malignancy (NILM), atypical squamous cells of undeter-
mined significance (ASC-US), low-grade squamous intraepithe-
lial lesion (LSIL), high-grade squamous intraepithelial lesion
(HSIL), atypical squamous cells but cannot exclude HSIL
(ASC-H), and squamous cell carcinoma (SCC). ASC-US and
ASC-H, respectively, represent intermediate classifications
between NILM and LSIL and between LSIL and HSIL. In
this paper, we avoided these intermediate classifications and
used only typical cells (NILM, LSIL, HSIL, and SCC). In addi-
tion, we divided NILM cases into three types: normal cell
(NOR), metaplastic cell (MET), and regenerative cell (REG).

MET and REG include reactive nuclear atypia, which is occa-
sionally difficult to discriminate from neoplastic nuclear atypia
[LSIL, HSIL, carcinoma in situ (CIS), and SCC]. Therefore, it is
important to classify these cell types using image-based charac-
terization system. Although several detail studies included the
image-based cell classification system, few were investigated
using the detailed NILM classification.16,20,27 We also divide
SCC cases as CIS and SCC because cytologists usually distin-
guish these two categories. We, therefore, evaluated seven
types of cells: NOR, MET, REG, LSIL, HSIL, CIS, and SCC.
Figure 1(a) shows representative images including CIS cells.

Subsequently, we manually extracted cell nuclear regions
from images to generate masking images and transformed
these from RGB color to gray-scale according to the Y value
in the YCbCr color system. Figures 1(b)–1(h), respectively,
show examples of the gray-scale masking images of NOR,
MET, REG, LSIL, HSIL, CIS, and SCC. Although automatic
methods for extracting cell and cell nuclear regions have
been proposed,8 these are not completely accurate. We, there-
fore, manually extracted the studied cell nuclear regions.

2.2 Conventional Feature Values

Previous studies of the feature quantification of cervical
cytology images have used feature values related to the cell
nuclear size and shape.8,13,20,28 We also use eight feature values
(nuclear area f1, nuclear perimeter f2, nuclear longest diameter
f3, nuclear shortest diameter f4, nuclear convex hull area f5,
nuclear convex hull perimeter f6, nuclear circularity f7, and
nuclear extension f8). In this paper, convex hull refers to a con-
vex line (i.e., shape of a rubber band) surrounding the nuclear
outline. f7 and f8 are represented by the following equations:

EQ-TARGET;temp:intralink-;e001;326;403f7 ¼
4πf1
f22

; (1)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 Examples of cervical cytological images. (a) Original image and (b)–(f) mask extraction image of
each cell nuclei: NOR, MET, REG, LSIL, HSIL, CIS, and SCC, respectively.
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EQ-TARGET;temp:intralink-;e002;63;752f8 ¼
f3
f4

: (2)

Murata et al.16 used other nuclear shape values to evaluate
images of thyroid tumor cytology specimens. These values
can be expressed using the following equations:

EQ-TARGET;temp:intralink-;e003;63;685f9 ¼
πf23
4f1

; (3)

EQ-TARGET;temp:intralink-;e004;63;639f10 ¼
f2
f6

; (4)

where f9 represents the roundness (with numerical value
decreasing with rounded) and f10 represents the convex hull
ratio of the outer shape of the nucleus. These values are calcu-
lated for the cell nuclear regions extracted manually as in
Sec. 2.1.

Feature values have also been proposed for chromatin distri-
bution in the cell nucleus, including the average value, the num-
ber of maximum value, and the number of minimum value of the
image pixel intensities in nuclear regions.8,13,28 In addition, the
RD value20 represents the difference in average intensity
between the center and periphery of the cell nucleus and has
been suggested. Regarding the gray-scale masking images
described in Sec. 2.1, we also use these four chromatin distri-
bution feature values, represented as f11, f12, f13, and f14,
respectively. Murata et al. also used skewness, kurtosis, the coef-
ficient of variation, and the upper 20 percentile ratio of the inten-
sity histogram. The coefficient of variation is defined as the
ratio between the average value and standard deviation. We
also use these values and denote as f15, f16, f17, and f18,
respectively.

Murata et al.10,16–18 used 15 texture feature values, in which
10 are Haralick feature values14 calculated using cooccurrence
matrices and 5 are run-length feature values15 calculated using
run-length matrices. Both matrices are calculated from gray-
scale intensities within cell nuclei. The 10 Haralick feature val-
ues are contrast (f19, contrast of intensity), energy (f20, uni-
formity of intensity and texture), correlation (f21, correlation
of intensity and texture), variance (f22, variance of intensity),
entropy (f23, diversity of intensity and texture), sum variance
(f24, contrast of intensity and texture), sum entropy (f25, diver-
sity of intensity), difference variance (f26, variance of texture),
difference entropy (f27, diversity of texture), and inverse differ-
ence moment (f28, homogeneity). The five run-length feature
values are gray level nonuniformity (f29, ununiformity of inten-
sity), run percentage (f30, ununiformity of intensity and texture),
short run emphasis (f31, magnitude of high frequency), long run
emphasis (f32, magnitude of low frequency), and run-length
nonuniformity (f33, nonuniformity of texture).

The cooccurrence matrix represents the appearance fre-
quency P ½¼ Pði; jÞ� of pixel intensities on a gray-scale
image, where i is the intensity of a pixel of interest A and j
is the intensity of a pixel B near A. We used gray-scale images
of 256 gradations, and the matrix size became 256 × 256.
Multiple cooccurrence matrices can be generated using the
differences in distance values (r) and argument values (θ)
between A and B. We used four types each of r (r ¼ 1, 2, 4,
and 8 pixels) and four types each of θ (θ ¼ 0 deg, 45 deg,
90 deg, and 135 deg), generated 16 cooccurrence matrices,

and used the averages of Haralick feature values calculated
by their 16 matrix as f19 to f28.

The run-length matrix represents the appearance frequencyR
½¼ Rði; lÞ� of run l in the pixel of interest i. Run indicates the
number of consecutive identical intensity values in the scanning
direction θ. The intensity gradient is frequently subjected to
quantization before creating a run-length matrix. We, therefore,
used four types each of θ (θ ¼ 0 deg, 45 deg, 90 deg, and
135 deg) and four type each of quantization values (gradations
256, 16, 4, and 2), generated 16 run-length matrix, and used the
averages of 5 run-length features calculated by their 16 run-
length matrix as f29 to f33.

Furthermore, Kiyuna et al.19 previously quantified the
complexity of chromatin distribution on a nuclear image
from mammary gland cells as a CC value and a fractal feature.
These features are represented as f34 and f35 in the following
equations:

EQ-TARGET;temp:intralink-;e005;326;565f34 ¼
X
i

�
LðiÞ
f2

− 1½LðiÞ > f2�
�
; (5)

EQ-TARGET;temp:intralink-;e006;326;517f35 ¼ maxfDðiÞg: (6)

These values were calculated using a binarization of the cytol-
ogy image, where i represents the intensity threshold for binar-
izing, and LðiÞ and DðiÞ represent the contour perimeter and a
fractal dimension of the image binarized by threshold i, respec-
tively. The values f34 and f35 increase as the chromatin distri-
bution complexity increases. We used the box counting method
to calculate the fractal dimension.

Another four feature values had been proposed by Haralick:
sum average (f36, average of intensity), information measures
of correlation 1 (f37, uniformity of texture), information
measures of correlation 2 (f38, diversity of texture), and maxi-
mal correlation coefficient (f39, uniformity of intensity and tex-
ture). These features can be expressed using the following
equations:

EQ-TARGET;temp:intralink-;e007;326;337f36 ¼
X510
k¼0

�
k
X255
i¼0

X255
j¼0

Pði; jÞðk ¼ iþ jÞ
�
; (7)

EQ-TARGET;temp:intralink-;e008;326;288f37 ¼
MI

−maxfHðPJÞ; HðP⊤JÞg ; (8)

EQ-TARGET;temp:intralink-;e009;326;252f38 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − expf−2½ĤðPJJ⊤PÞ − ĤðPÞ�g

q
; (9)

EQ-TARGET;temp:intralink-;e010;326;217f39 ¼
ffiffiffiffiffiffiffiffiffiffiffi
SðQÞ

p
where Qði; jÞ ¼

X
k

Pði; kÞPðj; kÞ
PJðiÞ · P⊤JðkÞ ; (10)

where MI is the mutual information of P, J is a vector for which
all elements ¼ 1, H is an entropy function, Ĥ is a joint entropy
function, and S is a function used to calculate a second
eigenvalue.

We designed feature values f1–39 as conventional feature (Cf)
values.
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2.3 Proposed Feature Values

2.3.1 Convex hull contour complexity values (Pf.1)

Kiyuna et al.19 quantified the complexity of chromatin distribu-
tion using feature f34. However, this feature is not counted if the
perimeter LðiÞ is less than f2; in other words, f34 does not con-
sider the chromatin complexities in small regions. Therefore, we
previously proposed the following feature value F29

EQ-TARGET;temp:intralink-;e011;63;661F ¼
X
i

�
1

�
LðiÞ
LCðiÞ

≥ 1.2

��
; (11)

where LCðiÞ and LðiÞ
LCðiÞ represent the convex hull perimeter and

convex hull ratio, respectively, of an image binarized using
threshold i, and the expression in Σ represents the indicator
function. F is a variable that counts the number of binarization
threshold values i, in which the convex hull ratio is 1.2 or more.
The value of F increases with chromatin distribution complexity
such that F is counted even in small chromatin regions with suf-
ficient complexity. However, F had a large correlation with f10,
which is the convex hull ratio of the outer shape of the nucleus.

We, therefore, use the following LrðiÞ, which is a chromatin
distribution complexity divided by f10, and propose following
new feature values f40 to f43

EQ-TARGET;temp:intralink-;e012;63;479LrðiÞ ¼
LðiÞ

LCðiÞ · f10
; (12)

EQ-TARGET;temp:intralink-;e013;63;434f40 ¼
X
i

fLrðiÞ − 1½LrðiÞ ≥ 1�g; (13)

EQ-TARGET;temp:intralink-;e014;63;395f41 ¼
X
i

f1½LrðiÞ ≥ 1.1�g; (14)

EQ-TARGET;temp:intralink-;e015;63;357f42 ¼
X
i

f1½LrðiÞ ≥ 1.2�g; (15)

EQ-TARGET;temp:intralink-;e016;63;319f43 ¼
X
i

f1½LrðiÞ ≥ 1.3�g: (16)

f40 is shown as the fill area in Fig. 2 for which the horizontal
axis is the intensity threshold for binarization and the vertical
axis is LrðiÞ. f41, f42, and f43 are shown as intensity widths
of the graph when LrðiÞ ≥ 1.1, 1.2, and 1.3 in Fig. 2. For a
more detailed representation of the shape of the graph shown
in Fig. 2, multiple feature values are used. We name values
of f41, f42, and f43 as convex hull (CH) CC, convex hull inten-
sity-width 1.1 (CW1.1), CW1.2, and CW1.3, respectively. We
designed these four features f40–43 as proposal feature values
1 (Pf.1).

2.3.2 Chromatin distribution spreading value (Pf.2)

We also propose a method for quantifying the chromatin distri-
bution spreading (CDS) value. First, we create an intensity
histogram using the gray-scale intensity set from the cell nucleus
on the input image and obtain a threshold Th via a linear dis-
criminant analysis30 of the histogram. Th is the threshold used to
distinguish dark-stained (i.e., assumed chromatin) and light-
stained regions (i.e., nonchromatin). Here, a coordinate on

the input image is designed as Z (Z ¼ ½x; y�), and the 256-
level gray-scale intensity of Z is designated as IðZÞ. Next, a
chromatin image is generated by replacing the IðZÞ of all pixels
in the image with I 0ðZÞ, calculated using the following
equation:

EQ-TARGET;temp:intralink-;e017;326;507I 0ðZÞ ¼
�
255 − IðZÞ − Th; ½IðZÞ þ Th < 255�
0; ðotherwiseÞ : (17)

I 0ðZÞ is a value obtained by inverting the image negative and
positive [255 − IðZÞ] and subtracting the bias value Th. As a
result, high-density stained pixels such as nucleoli and chroma-
tin appear as high values. Figures 3(a) and 3(b) show represen-
tative chromatin images based on those in Figs. 1(c) and 1(h),
respectively, and show at fivefold intensity to enhance
visualization.

Next, the center of a gravity of the chromatin region G is
obtained using the following equation:

EQ-TARGET;temp:intralink-;e018;326;363G ¼
�P

x

P
y xI

0ðZÞP
x

P
y
I 0ðZÞ ;

P
x

P
y yI

0ðZÞP
x

P
y
I 0ðZÞ

�
: (18)

Finally, we used G to obtain the CDS value, denoted as f44 in
the following equation:

EQ-TARGET;temp:intralink-;e019;326;287f44 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f1

X
x

X
y

�				G − Z
f3

				2I 0ðZÞ
�s
: (19)

We designed this feature f44 as Pf.2.

2.3.3 Tangential bias values of chromatin distribution
(Pf.3)

Cytologically, a biased chromatin texture distribution is an
important atypical cell nuclear feature. Jingu et al.20 proposed
the RD value, which represents radial bias in the intensity of
chromatin distribution but did not consider the tangential direc-
tion. Therefore, we previously proposed a feature value E cal-
culated by the following process and Eq. (20):31

i. Extraction of the outer shape of the cell nucleus and fit-
ting to an ellipse.

ii. Calculation of the center, short axis, and long axis of the
ellipse.

Fig. 2 Convex hull contour complexity values.
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iii. Euclidean transformation of the input nuclear image
such that the short axis, long axis, and center of the
ellipse become the new X-axis, Y-axis, and origin,
respectively.

iv. Creation of four images by cutting the transformed
image at the X- and Y-axes.

v. Calculation of some chromatin distribution feature val-
ues ftðt ∈ f11; 12; and 18 to 44g) on each of the four
images to yield ft;1; ft;2; ft;3, and, ft;4

EQ-TARGET;temp:intralink-;e020;63;421E ¼ SDðft;1; ft;2; ft;3; ft;4Þ; (20)

where SD is a function used to calculate the standard deviation.
However, since the standard deviation is easily influenced by the
magnitude of each feature values, we use coefficient of variation
instead of the standard deviation as shown in the following equa-
tion:

EQ-TARGET;temp:intralink-;e021;63;335gt ¼
				 SDðft;1; ft;2; ft;3; ft;4Þ
meanðft;1; ft;2; ft;3; ft;4Þ

				; (21)

where mean is a function used to calculate the mean.
In this paper, we propose TB values f45 and f46 of chromatin

distribution using gt. TB values, denoted as f45 and f46, are
determined experimentally in Sec. 3.

3 Evaluation of the Tangential Bias Values for
(Pf.3)

To experimentally examine TB in the chromatin distribution, we
created 633 masking images from 633 cervical smear samples
according to the method described in Sec. 2.1. Table 1 shows the
numbers of cell nuclei, slides, and patients for each cell classi-
fication. We prepared one slide per patient and took images of a
single cell type for each slide. These samples included 164, 86,
74, 36, 155, 84, and 34 cases of NOR, MET, REG, LSIL, HSIL,
CIS, and SCC, respectively. We then calculated the gt of each
masking image as described in Sec. 2.3.3. Thereafter, the gt
values were linearly normalized as g 0

t , thus converting the maxi-
mum and minimum values of each gt to 1 and 0. Accordingly, g 0

t
can be represented as follows:

EQ-TARGET;temp:intralink-;e022;326;544g 0
t ¼

gt
maxðgtÞ −minðgtÞ

: (22)

Figure 4 shows an experimental result from a calculation using
75% tiles, median values, and 25% tiles of the g 0

t for each cell
type. The horizontal axis indicates the feature number, and col-
ors indicate the types of cells annotated by pathologists. The
circles in Fig. 4 indicate the feature values related to intensity,
which had notably high values (g 0

11, g
0
18, g

0
24, g

0
36) in SCC. The

squares in Fig. 4 indicate the run-length feature values, which
are included among the texture features; here, g 0

29 to g 0
32 were

explicitly high for both CIS and SCC. These values could, there-
fore, be useful for cellular classification.

We, therefore, propose two TB values f45 and f46, as shown
in the following equations:

EQ-TARGET;temp:intralink-;e023;326;379f45 ¼
g11 þ g18 þ g24 þ g36

4
; (23)

EQ-TARGET;temp:intralink-;e024;326;340f46 ¼
g29 þ g30 þ g31 þ g32

4
; (24)

where f45 and f46 represent the biases of intensity distribution
and texture distribution, respectively. We designed these two
features f45 and f46 as Pf.3. In addition, we designed the entire
set of features f1–46 as proposal feature values of all (Pf.A).

To minimize the variability of staining, we used the same
staining machine and protocol and omitted poor samples
(such as dried samples). To minimize the influence of intensity
fluctuation during scanning, we photographed each slide with
fixed exposure time and white balance. However, small varia-
tions in staining due to the different conditions of the samples
cannot be excluded. Feature values related to intensity

(a) (b)

Fig. 3 Chromatin image. (a) and (b) Image calculated from Fig. 1(c) and 1(h), respectively.

Table 1 Numbers of cell nuclei, slides, and patients.

NOR MET REG LSIL HSIL CIS SCC Total

Cell nuclei 164 86 74 36 155 84 34 633

Slides 6 6 6 3 3 5 3 32

Patients 6 6 6 3 3 5 3 32
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(f11;18;24;36) may be influenced by these effects to a substantially
greater degree than feature values related to shape and texture.
Note that f45 is a feature value derived from other intensity-
related feature values; however, the effects of sample condition
are smaller than on other intensity-related feature values
(f11;18;24;36), because f45 uses the coefficient of variation.

4 Verification of the Characteristics of the
Proposed Feature Values

4.1 Comparative Experimental Results and
Discussion Between Cell Types

To verify the characteristics of our proposed feature values, we
calculated feature values f1–46 from 633 masking images of cer-
vical smear samples described in Sec. 3. Thereafter, features
f1–46 were linearly normalized to yield f 0

1–46 such that the maxi-
mum and minimum values of each feature became 1 and 0.
Figure 5 shows an experimental result calculated using the
75% tiles, median values, and 25% tiles of features f 0

1–46 for

each cell types. However, we note that some Cf values were
omitted.

Figure 5 shows many differences in feature values among
NOR, NET, and REG, which we classified as NILM. In particu-
lar, REG had a large area (f 0

1 was high), and MET exhibited
high texture homogeneity (f 0

28 and f 0
39 were high, whereas

f 0
23 and f 0

27 were low). All proposed value f 0
40–46 were small

for NOR and large for SCC. In particular, f 0
44 and f 0

46 were
also large for CIS. Cancer cells possess a chromatin structure
that differs from the normal structure.5 These results suggest
that our proposed method represents the features of this chro-
matin structure.

In addition, we calculated the absolute jρi;jj values of the cor-
relation coefficients between f 0

i and f 0
j (i ∈ f1; 2; : : : ; 46g,

j ∈ f1; 2; : : : ; 46g) using SPSS software (IBM Corporation,
Armonk, NewYork). ρi;j is expressed by the following equation:

EQ-TARGET;temp:intralink-;e025;326;335ρi;j ¼
covðf 0

i ; f
0
jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðf 0
i Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðf 0

jÞ
q ; (25)

Fig. 4 Feature bias values g 0
t .

Fig. 5 Experimental results from a feature value analysis of seven cell types.
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where cov and var represent functions for calculating the sample
covariance and variance, respectively.

Table 2 shows a list of feature numbers (k) with high corre-
lation coefficients (jρi;jj ≥ 0.95 or 0.95 > jρi;jj ≥ 0.90) with
other features. There were strong correlations between size
and shape features f 0

1–6 and the run-length features f 0
30;33.

There were also strong correlations among intensity-related fea-
tures f 0

11;18;24;36, all of which are Cfs. In contrast, proposed fea-
tures f 0

40–46 did not show strong correlations with any other
features; therefore, our proposed features are highly original.
These various feature values are useful for improving the accu-
racy of machine-learning-based cellular classification, which we
will discuss further in Sec. 5.

Furthermore, we used SPSS software to perform a one-
dimensional ANOVA of the cellular classification corresponding
to each feature value. Accordingly, all values (f 0

40–46) differed sig-
nificantly (significance level: 1.0%) among the cellular classifica-
tions, and therefore, any proposed or Cf values could potentially
improve the accuracy of cellular classification accuracy.

Next, we used a t-test to evaluate whether each feature
value differed significantly with respect to reactive (MET and
REG) and neoplastic nuclear atypia (LSIL, HSIL, CIS, and
SCC). The results are shown in Fig. 5(upper): here, the * and
** symbols indicate that the corresponding feature values had sig-
nificant differences at respective significance levels of 5.0% and
1.0%. This test revealed significant differences in many feature
values related to chromatin distribution, including the proposed
values f 0

44–46. These could, therefore, be considered useful for
distinguishing between reactive and neoplastic nuclear atypia.

4.2 Verification of Experimental Results and
Discussion of Representative Images

We next calculated some of the normalized feature values
f 0
1;34;35;40–46 corresponding to the representative images in

Figs. 1(b)–1(f). Figure 6 shows the results, with feature numbers
indicated on the horizontal axis.

In Fig. 6, many values in area f 0
1, the conventional complex-

ity values f 0
34–35, and the proposed complexity values f 0

40–44
exhibited similar tendencies; however, in the representative
image of SCC, f 0

34–35 were moderate, whereas f 0
40–44 were high.

In addition, the proposed value f 0
45 was also high. Although

these findings are subjective, the chromatin distribution in
Fig. 1(h) appears to be complex and widely spread. We consider
that our proposed method reflects this trend.

5 Machine Learning Validation of Proposed
Methods

5.1 Validation Method

Next, we verified the cellular classification accuracy using
machine learning and a CV method.22 These verifications were

Table 2 List of feature numbers i and j with high correlation coefficient.

i j when jρi ;j j ≥ 0.95 j when 0.95 > jρi ;j j ≥ 0.90 i j when jρi ;j j ≥ 0.95 j when 0.95 > jρi ;j j ≥ 0.90

1 2, 4, 5, 6, 30, 33 3, 12, 29 22 20

2 1, 3, 4, 5, 6, 30, 33 23 25

3 2, 6 1, 5, 30, 33 24 11, 18, 36

4 1, 2, 5, 6 30, 33 25 23

5 1, 2, 4, 6, 30, 33 3, 12, 29 26 20

6 1, 2, 3, 4, 5, 30 33 27 28

8 9 28 27

9 8 29 1, 5, 33

11 18, 24, 36 30 1, 2, 5, 6, 33 3, 4

12 13 1, 5 33 1, 2, 5, 30 3, 4, 6, 29

13 12 36 11, 18, 24

18 11, 24, 36 37 38

20 26 22 38 37

Fig. 6 Feature values of the images in Fig. 1.
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compared among eight different models, a conventional model
(Cf) and seven models combining Cf with models including our
proposed values: Cf + Pf.1, Cf + Pf.2, Cf + Pf.3, Cf + Pf.1 +
Pf.2, Cf + Pf.1 + Pf.3, Cf + Pf.2 + Pf.3, and Pf.A (= Cf +Pf.1 +
Pf.2 + Pf.3).

For machine learning, we used the SVM;23,24 however, we
note that this method is intended for two-class classification.
We, therefore, implemented a one-versus-one method25 to
expand the classification from two-class to multiclass using a
round-robin method of classes. In addition, we selected varia-
bles for SVM using a stepwise (floating) method.26 In Sec. 4.1,
some of the Cfs showed high correlation coefficients. If we use
all of these features directly to create a model of the SVM, the
accuracy of identification may decrease due to over-learning.32

The stepwise method we use can mitigate the reduced classifi-
cation accuracy caused by over-learning, because the possibility
of simultaneously selecting features exhibiting high correlation
coefficients in the method is low.

Two methods could be used to combine multiclass classifi-
cation and variable selection. The first involves selecting the
same type of features for each comparison, and the second
involves selecting different types of features for each compari-
son. In this paper, we used the second method, which is capable
of more detailed feature selection.

A machine learning protocol based on these methods is
depicted in Fig. 7(a) as stepwise SVM (SSVM). Before perform-
ing the procedure described in Fig. 7(a), we calculated the nor-
malized feature values of f 0

1 to f 0
m for all 633 cervical smear

samples described in Sec. 4 (NOR for 164, MET for 86, REG
for 74, LSIL for 36, HSIL for 155, CIS for 84, and SCC for 34).
They were a number of imbalanced samples, which can cause
incorrect answer rates. We, therefore, virtually matched the

sample number of each class using a oversampling method
“adaptive synthetic sampling approach for imbalanced
learning”33 to increase the number of each class up to 200
(for a total of 1400 samples) and assumed the value sets to
be the feature vectors f 01−m, where m represents the number
of features types used for calculation. For example, m becomes
39 when calculating the machine learning model Cf.

In (1) of Fig. 7(a), the order of the normalized feature
values f 01−m changed randomly with the initialization of some
variables. We assumed the changed values to be feature vectors
F1−m. Here, C is a set representing the round-robin selection
of seven classes, W is a set representing the kernel functions
and cost parameters among the SVM parameters, Ej ¼
fEj;1; : : : ;Ej;i; : : : g is a set of feature vectors F1−m selected
for model Cj, Vj is the SVM parameter selected for model
Cj, CVðEj; Cj; VjÞ is a function used to calculate the accuracy
rate from the CVof the SVM, AM is the maximum accuracy rate
calculated by the CV, and u is an updated flag of the maximum
accuracy rate. In addition, LIN, RBF, and the numeric values of
the elements of W in Fig. 7(a), respectively, represent a linear
function of the kernel, a radial basis function of the kernel, and
the cost parameters included among the SVM parameters. In this
paper, we used 10-fold as the number of CV divisions.

In Fig. 7(a), (2), (3), and (4), respectively, represent proce-
dures involving forward feature selection, backward feature
selection, and SVM parameter optimization. These values
were calculated based on the CV of the SVM. Here, AC is an
accuracy rate calculated by the CV, E is a power set of Ej,
and V is a power set of Vj. Feature selection was implemented
by calculating these procedures until the maximum accuracy
rate was no longer updated, and SSVM was implemented by

Fig. 7 Flowchart of the (a) SSVM and (b) accuracy evaluation.
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calculating procedures using the round-robin selection of seven
classes.

Figure 7(b) shows an accuracy evaluation procedure based
on the SSVM, where Uk is a set of E and V, SSVM is a function
used to calculate the procedure in Fig. 7(a), MCV is a function
used to calculate the accuracy rate from the multiclass CV
according to the one-versus-one method, Bk;h is an accuracy
rate obtained from the MCV, Mk is a mean accuracy rate
obtained by repeatedly (50×) calculating the MCV, M is a
set of Mk obtained by repeating these procedures, and d is
an index number of the maximum value of M. SSVM is likely
to fall into a local solution, and Uk is not necessarily the opti-
mum value when obtained from the calculation of a single
SSVM. In other words, the selected features and accuracy may
be affected by the order of the initial data set. We, therefore,
randomly exchanged data sets and extracted the optimum
value by repeating the SSVM from k ¼ 1 to 40 to eliminate
the fall into a local solution as much as possible.

Finally, the optimum accuracy rate set Bd ¼ fBd;1; : : : ;
Bd;k; : : : ; Bd;50g and parameter set Ud were outputted, and the
results of eight classification models (Cf, Cf + Pf.1, Cf +
Pf.2, Cf + Pf.3, Cf + Pf.1 + Pf.2, Cf + Pf.1 + Pf.3, Cf +
Pf.2 + Pf.3, and Pf.A) were compared.

5.2 Validation Results and Discussion

We calculated the averages (Ave.) and standard deviations (SD.)
of the accuracy rate set Bd of the eight classification models,
using the validation method shown in Sec. 5.1. Table 3 presents
the results of a comparison of these values, as well as the
Dunnett’s test (D-test) results for each model. Here, D-test 1
represents the D-test results of comparisons between each mod-
els and Cf, D-test 2 represents the D-test results of comparisons
between each model and Pf.A, and ** indicates a significant
difference (significance level = 5.0%). D-test is a multiple com-
parison, many-to-one procedure (i.e., compares each of many
treatment groups with one control group) and is used to verify

differences between the average values from each group.34,35 We
used SPSS software to perform this procedure.

The average accuracy rates of all proposed models except Cf
+ Pf.2 were higher than the conventional model (Cf) and exhib-
ited statistically significant differences from Cf by the D-test.
Therefore, our proposed models Pf.1 and Pf.3 (features
f40–43;45–46) are useful features for cervical cell classification
by machine learning. Although there was no significant differ-
ence between Cf + Pf.2 and Cf, there was a significant difference
between Pf.A and Cf + Pf.1 + Pf.3. Therefore, our Pf.2 (feature
f44) is also a useful feature for cervical cell classification. These
results show the usefulness of incorporating our features into the
diagnostic support system of the cytology. In addition, these
results indicate that our features are different from the Cfs; there-
fore, our features have the possibility to be useful features in cell
diagnosis by the cytologist.

As shown in 5.1, to extend the SVM to a multiclass classi-
fication of seven classes, we performed the SVM 21 times in the
round-robin selection format; in other words, we obtained 21
selected feature sets E (E ⊂ Ud) to create a single machine
learning model. We, therefore, extracted the 21 selected feature
sets E of Pf.A, which had the highest accuracy rate and calcu-
lated the frequencies as shown in Fig. 8 (cumulative bar chart).
Red, magenta, blue, cyan, green, brown, and black colors indi-
cate selected features from comparisons related to NOR, MET,
REG, LSIL, HSIL, CIS, and SCC, respectively. Based on Fig. 8,
the selection of all proposal features indicates that all contrib-
uted to improve the classification accuracy.

6 Conclusion
Although cytology is a useful diagnostic tool for cervical and
other conditions, it is generally used empirically. In this paper,
we aimed to quantify the cell nuclear morphologies often used in
cytologic analyses and proposed three new types of feature val-
ues: Pf.1, Pf.2, and Pf.3. Pf.1 includes CH CC values that re-
present the complexity of chromatin distribution within the
cell nucleus. Pf.2 is the CDS, which represent intensity spread-
ing from the gravity center in the chromatin region. Pf.3 is the

Table 3 Experimental accuracy rates for each model.

Cf Cf + Pf.1 Cf + Pf.2 Cf + Pf.3 Cf + Pf.1+ Pf.2 Cf + Pf.1+ Pf.3 Cf + Pf.2+ Pf.3 Pf.A

Avg. (%) 86.80 87.52 86.81 87.25 87.74 88.22 87.46 88.44

SD. (%) 0.88 0.96 1.02 1.02 0.89 0.88 0.87 1.05

D-test 1 — ** ** ** ** ** **

D-test 2 ** ** ** ** ** ** ** —

Ave. and SD., respectively, represent the average and standard deviation of the accuracy rate setBd for each of eight classifications. D-tests 1 and
2 represent comparisons with Cf and Pf.A, respectively. ** represents a significant difference at a level of 5.0%.

Fig. 8 Frequency of selected features in the Pf.A model.
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TB values of chromatin distribution, which were calculated
using the coefficient of variation for the intensities and run-
length texture values of nuclear images that had been divided
into four images based on the center of a fitted ellipse.

We used three methods to verify these proposal feature val-
ues. All methods used 633 images of nuclei obtained from the
cervical cytology specimens of 32 patients and cell type infor-
mation (NOR, MET, REG, LSIL, HSIL, CIS, or SCC) that had
been annotated by a pathologist and two cytotechnologists.

The first method used an ANOVA to determine whether the
proposal feature values differed among the seven classes. We
found that all proposal values differed significantly at a 1.0%
significance level, indicating the usefulness of these proposed
feature values for cervical cytology. The second method used
the t-test to determine differences in our proposed feature values
between reactive (MET and REG) and neoplastic nuclear atypia
(LSIL, HSIL, CIS, and SCC). We found that our proposed val-
ues CH, CW1.1, and CW1.2 differed at a 5.0% significance
level, indicating their usefulness as distinguishing factors.

The third method determined whether the classification accu-
racy among the seven classes improved when multiple sets of
feature values were combined through SSVM and a machine
learning technique with a variable selection function. We calcu-
lated the accuracy of these finding using the CV method, calcu-
lated accuracy distribution using several repeats, and verified
effectiveness using D-tests. We used eight different models,
the conventional model (Cf) and seven models combining Cf
with proposed models: Cf + Pf.1, Cf + Pf.2, Cf + Pf.3, Cf +
Pf.1 + Pf.2, Cf + Pf.1 + Pf.3, Cf + Pf.2 + Pf.3, and Pf.A (=
Cf + Pf.1 + Pf.2 + Pf.3). Accordingly, average accuracy rates
of all proposed models except Cf + Pf.2 were higher than
the conventional model (Cf) and exhibited statistically signifi-
cant differences from Cf by D-test. This indicates that Pf.1 and
Pf.3 are useful for cervical cell classification by machine learn-
ing. Although there was no significant difference between
Cf + Pf.2 and Cf, there was a significant difference between
Pf.A and Cf + Pf.1 + Pf.3; therefore, Pf.2 is also useful for cer-
vical cell classification. The model created via SSVM selected
all proposed feature values, and the results indicated that all pro-
posed features contributed to the improved classification
accuracy.

We proposed features reflecting the complexity, spreading,
and bias of the chromatin distribution and showed that classi-
fication accuracy rates were increased by combining our
features with Cfs. These results show the usefulness of incorpo-
rating our features into a diagnostic support system for cytology.
In addition, these results indicate that our features are different
from the Cfs; therefore, our features have the possibility to be
useful features in cell diagnosis by the cytologist.

Meanwhile, since the evaluation of the usefulness of individ-
ual feature values in actual clinical diagnosis was not conducted,
continuing studies are necessary to evaluate the usefulness in
clinical practice. In addition, although we focused on the cell
nucleus, the cytoplasm is also an important indicator. In the
future, we aim to quantify the features of the cell cytoplasm
and continue studies to evaluate the usefulness in clinical
practice.
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