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Abstract. This meta-analysis assesses the prognostic value of quantitative dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) performed during neoadjuvant
therapy (NAT) of locally advanced breast cancer. A systematic literature search was conducted to identify stud-
ies of quantitative DCE-MRI and DW-MRI performed during breast cancer NAT that report the sensitivity and
specificity for predicting pathological complete response (pCR). Details of the study population and imaging
parameters were extracted from each study for subsequent meta-analysis. Metaregression analysis, subgroup
analysis, study heterogeneity, and publication bias were assessed. Across 10 studies that met the stringent
inclusion criteria for this meta-analysis (out of 325 initially identified studies), we find that MRI had a pooled
sensitivity of 0.91 [95% confidence interval (CI), 0.80 to 0.96] and specificity of 0.81(95% CI, 0.68 to 0.89)
when adjusted for covariates. Quantitative DCE-MRI exhibits greater specificity for predicting pCR than semi-
quantitative DCE-MRI (p < 0.001). Quantitative DCE-MRI and DW-MRI are able to predict, early in the course of
NAT, the eventual response of breast tumors, with a high level of specificity and sensitivity. However, there is
a high degree of heterogeneity in published studies highlighting the lack of standardization in the field. © The
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1 Introduction
Neoadjuvant therapy (NAT) is widely considered the standard
of care for the treatment of locally advanced breast cancer.1,2

NAT increases the success rate for breast conservation surgery
by reducing tumor burden and provides the opportunity to treat
micrometastases at an earlier time point compared to adjuvant
treatment. Importantly, patients who achieve a pathological
complete response (pCR; i.e., complete absence of viable
tumor cells in the breast or axilla at the time of surgery) in
the neoadjuvant setting have increased survival compared
with patients who have residual disease at the conclusion of
NAT.3–7 If it could be determined—early in the course of

NAT—that a particular therapeutic regimen is unlikely to
achieve a pCR, the treating physician could discontinue an
ineffective treatment and substitute with an alternative regimen
that may be more effective. With the numerous options for
NAT that have become available, development of a method
to predict response early in the course of therapy is especially
needed.

The ability to predict which breast cancer patients will
eventually achieve pCR presents a formidable challenge.
Conventional, tissue-based biomarkers of response require
a biopsy, which can include sampling errors due to tumor
heterogeneity. Conversely, imaging approaches assess the entire
tumor, obviating sampling error. However, imaging protocols
require infusion of a gadolinium contrast agent, which may
be retained in the brain,8 and must be optimized and validated
for predicting tumor response to therapy. Furthermore, the
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optimal timing for image acquisition during NAT must be estab-
lished to maximize the predictive ability of quantitative imaging.

The most commonly used method for quantitatively assess-
ing the response of a tumor to NAT is the response evaluation
criteria in solid tumors (RECIST).9 RECIST tracks regression
in tumor size and has been shown to correlate with survival in
a number of different cancers.10–12 In its current version,
RECIST 1.1 uses imaging to identify, measure, and sum the
longest dimension of up to five lesions prior to treatment.
These dimensions are summed and compared with similar
measurements post-treatment. The resulting change over
time is categorized as complete response (disappearance of
all target lesions), partial response (≥30% decline in sum of
dimensions), progressive disease (≥20% increase in dimen-
sions or appearance of new lesions), or stable disease (none of
the preceding conditions met). However, there are a number of
limitations in both making RECIST measurements accurately
in the setting of irregular and/or indiscernible tumor margins,
as well as in capturing tumor complexity with a single
measurement. Furthermore, standard tumor size-based methods
of evaluating response (including RECIST) lag behind a
tumor’s biological response to treatment, such as cellular
and vascular alterations.13–15 Moreover, size-based techniques
may underestimate early efficacy for targeted agents exhibiting
predominantly cytostatic rather than cytotoxic effects.13,14,16

Fortunately, a number of MRI techniques have matured to the
point where they can offer a quantitative description of tumor
characteristics that have shown the ability to predict the response
of locally advanced breast cancer to NAT.17 In this meta-analysis,
we focus on the two MRI methods that have accumulated
the largest body of data for predicting the response of locally
advanced breast cancer to NAT: dynamic contrast-enhanced
MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI).

2 Rationale and Objectives
This meta-analysis assesses the ability of DCE- and DW-MRI
for predicting, early in the course of NAT, which breast cancer
patients will achieve pCR at the conclusion of NAT. Previous
meta-analyses and systematic reviews evaluating the use of
MRI in the neoadjuvant setting for breast cancer have not
assessed its predictive value. A 2010 meta-analysis, per-
formed by Yuan et al.,18 examined MRI performed following
the completion of NAT. Similarly, a number of systematic
reviews have investigated the ability of MRI to assess the
response of breast cancer either immediately prior to and/
or after the completion of NAT.19–21 This highlights a subtle,
but important, distinction in that the present study focuses on
MRI performed during the course of NAT, rather than the end
of NAT, with the goal of predicting eventual response. A pre-
vious systematic review of MRI performed during NAT did
not perform meta-analysis due to heterogeneity in MRI
parameters and outcome definitions,22 factors that also limited
inclusion in the present study.

For the purpose of this meta-analysis, we have focused on the
techniques of DCE-MRI and DW-MRI for predicting response.
We further subdivide DCE-MRI into semiquantitative measure-
ments, which generate measures lacking direct physiological
correlates, and quantitative measurements, which do have a
direct physiological correlate. The intricacies of these tech-
niques are discussed further below. We also include multipara-
metric studies combining measurements from both DCE-MRI
and DW-MRI.

2.1 Semiquantitative Dynamic Contrast-Enhanced
Magnetic Resonance Imaging

DCE-MRI is an umbrella term used to describe a wide variety of
dynamic MRI techniques and analytic approaches, including
both qualitative and quantitative methods.23 Common to all
approaches is the serial acquisition of heavily T1-weighted
images before and after the injection of the paramagnetic con-
trast agent. In the clinical setting, great emphasis is placed on
obtaining DCE-MRI data at high spatial resolution,24 which
necessitates a lower temporal resolution, resulting in time series
data that can only be analyzed qualitatively or semiquantita-
tively. Semiquantitative analysis involves the extraction of
descriptive parameters describing this time series data, such
as enhancing volume over time, general curve shape features,24

or the ratio between the lesion intensity before and after
contrast.25 Figure 1 displays an example of a semiquantitative
analysis of DCE-MRI data obtained from a patient who
achieved pCR (top row) and a patient who did not achieve
pCR (bottom row) performed before, after the first cycle, and
at the conclusion of all NAT. Application of semiquantitative
DCE-MRI in the NAT setting has demonstrated that the percent-
age of tumor voxels demonstrating progressive (i.e., increasing
signal intensity with time), plateau (steady intensity), or wash-
out (decreasing intensity) kinetics predicts response to therapy.26

Alternately, comparison of early and late enhancement,27 mea-
surements of peak signal enhancement,28 and changes in DCE-
MRI time course shape29 are similarly predictive of pathological
response. Importantly, the parameters derived from semiquanti-
tative DCE-MRI provide predictive indicators of NAT response
that are independent of traditional measures such as tumor
size.30 The prognostic value of DCE-MRI was established in
the I-SPY 1 trial, which showed that multivariate models
incorporating semiquantitative DCE-MRI, histopathology, and
breast cancer subtype were the most predictive of therapeutic
response.31

2.2 Quantitative Dynamic Contrast-Enhanced
Magnetic Resonance Imaging

In order to perform quantitative DCE-MRI, the following mea-
surements are required: a precontrast T1 map, high-temporal res-
olution dynamic T1-weighted data, estimation of the time rate of
change of the concentration of contrast agent in the blood
plasma (i.e., the arterial input function, AIF), and a pharmacoki-
netic model to analyze the resulting data. By fitting the data to
such a model (e.g., the Tofts model32), one can extract rate
constants that reflect the influx of contrast agent into tissue
(Ktrans, the volume transfer constant), efflux of contrast agent
back into plasma (kep), fractional volume of the blood plasma
(vp), and fractional volume of the extracellular extravascular
space (ve). This analysis can be conducted on a voxel-by-
voxel basis allowing the construction of parametric maps. For
example, Fig. 2 illustrates an example of kep map overlaid on
anatomical images of a patient who achieved pCR (top row)
and a patient who did not achieve pCR (bottom row) performed
before, after the first cycle, and at the conclusion of all NAT.
Following only one cycle of NAT, quantitative DCE-MRI
parameters have been shown to be excellent predictors of
pCR, whereas changes in longest dimension as characterized
by RECIST were poor predictors of pCR even at the midpoint
of NAT.33
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2.3 Diffusion-Weighted Magnetic Resonance
Imaging

The rate of water diffusion in cellular tissues can be described by
an “apparent diffusion coefficient” (ADC), which depends, to

a great extent, on the number and separation of barriers that
a diffusing water molecule encounters. MRI methods have been
developed to map the ADC and test–retest studies indicate
that the ADC is highly repeatable and reproducible.34 Similar
to DCE-MRI parametric mapping, the ADC can be computed

Fig. 2 An example of quantitative analysis of DCE-MRI data of a patient achieving pCR (top row) and
a patient not achieving pCR (bottom row) before (first column), after the first cycle (second column), and
at conclusion of all NAT (third column). The parametric map of kep overlaid on a high resolution
anatomical MRI scan is shown. Note the diminution of kep exhibited in the patient achieving pCR after
one cycle of NAT, but the enhanced kep in the patient not achieving pCR.

Fig. 1 An example of semiquantitative DCE-MRI of a patient achieving pCR (top row) and a patient not
achieving pCR (bottom row) before (first column), after the first cycle (second column), and at conclusion
of all NAT (third column). The signal enhancement ratio (SER) overlaid on a high resolution anatomical
MRI scan is shown. The high intensity regions-of-interest indicate gross tumor burden. The patient who
ultimately achieved pCR demonstrates reduced tumor burden after one cycle of NAT.

Journal of Medical Imaging 011011-3 Jan–Mar 2018 • Vol. 5(1)

Virostko et al.: Dynamic contrast-enhanced magnetic resonance imaging. . .



on a voxel-by-voxel basis, yielding ADC parametric maps; for
example, Fig. 3 presents representative ADC maps overlaid on
anatomical images of a patient who achieved pCR (top row) and
a patient who did not achieve pCR (bottom row) performed
before and after the first cycle of NAT. As with DCE-MRI,
DW-MRI has demonstrated the ability to predict response to
therapy when performed during the course of NAT.35,36 Many
publications have since appeared, validating the ability of
DW-MRI to predict response in breast cancer. In particular,
DW-MRI performed after the first cycle of NAT demonstrates
that ADC increases in responders but not nonresponders
and that changes in ADC correlate with decrease in tumor
volume.37 Furthermore, changes in ADC may outperform mea-
surements of tumor size for predicting tumor response to NAT.38

A multisite trial has confirmed that changes in ADC early during
NAT are predictive of response with an area under the receiver
operating curve of 0.825.34

2.4 Multiparametric DCE-MRI and DW-MRI

DCE-MRI and DW-MRI have separately demonstrated clear
prognostic value in breast cancer NAT, but their greatest predic-
tive value may result from combining the two techniques.
Multiparametric methods that combine quantitative parameters
from both DCE- and DW-MRI outperform metrics derived from
either technique individually for predicting pCR either early in
the course of NAT39 or following the completion of NAT.40 One
study of integrated DCE- and DW-MRI indicated that Ktrans and
ADC are the most sensitive metrics to changes in the tumor
occurring between initiation of NAT and surgery,36 although
the optimal combination of multiparametric measurements is
under investigation. Other studies have included results from
not only DCE- and DW-MRI but also added magnetic resonance
spectroscopy (MRS)41 or susceptibility-weighted MRI.42

We have included multiparametric studies comprising both
DCE-MRI and DW-MRI in this meta-analysis in order to

assess the benefit of combining DCE-MRI and DW-MRI
measurements.

3 Methods

3.1 Identification of Eligible Studies

Thismeta-analysiswasprospectively registered in thePROSPERO
registry with the registration number CRD42016038770. The
preferred reporting items for systematic reviews and meta-
analyses checklist was followed when performing this meta-
analysis.43 A comprehensive literature search was performed
to identify studies reporting the sensitivity and specificity
of DCE- and DW-MRI for predicting pCR in breast cancer
patients receiving NAT as a component of their clinical
care. The Pubmed and Cochrane library databases were
searched from January 2001 through May 2017 using the
following search terms: neoadjuvant and “breast cancer”
and “contrast-enhanced” and MRI, preoperative and “breast
cancer” and “contrast-enhanced” and MRI, neoadjuvant and
“breast cancer” and diffusion and MRI, preoperative and
“breast cancer” and diffusion and MRI. This search yielded
a total of 325 studies eligible for meta-analysis. Duplicate
studies were removed to yield 260 studies. From this list
of 260 eligible studies, two reviewers (A.G.S. and J.V.) inde-
pendently reviewed all studies according to the following
inclusion criteria: must be reported in the English language,
must report on human subjects, must include 10 or more sub-
jects, peer-reviewed original article (no reviews, brief commu-
nications, or letters to the editor), sufficient data to determine
specificity and sensitivity, the outcome measure must be pCR,
MRI must be performed as a “predictive” measure (i.e., MRI
must occur during the course of NAT, not after completion of
NAT). Three studies met all inclusion criteria but included
a receiver operative characteristic curve rather than providing
sensitivity and specificity.44–46 For these studies, the corre-
sponding author was contacted who then provided the sensi-
tivity and specificity. Among reports with overlapping patient
data, only the most recent publication was included in the
meta-analysis. Studies were assessed for potential eligibility
by first applying inclusion criteria on the abstract, followed
by the full text if the abstract was deemed eligible or incon-
clusive. Data from eligible studies were extracted by two
independent reviewers (A.G.S. and J.V.) with arbitration by
a third reviewer (S.L.B.) in the case of disagreement. An over-
view of the study selection process is shown in Fig. 4. Ten
studies met the stringent inclusion criteria of which three stud-
ies performed quantitative DCE-MRI, three studies performed
semiquantitative DCE-MRI, two studies performed DWI-MRI,
and two multiparametric studies reported MRI metrics, which
combined results from both DCE-MRI and DWI-MRI.

3.2 Data Extraction

For each report, the following data were extracted into a stand-
ardized entry form: first author, journal, year of publication,
number of cases, patient age (mean and range), initial clinical
stage, histological subtype, receptor subtype [estrogen receptor
positive (ER+), progesterone receptor positive (PR+), human
epidermal growth factor receptor 2-positive (HER2+), triple
negative], preoperative therapeutic regimen, MRI time points
used for prediction, pCR rate, magnetic field strength, contrast
agent, contrast agent dose, DCE-MRI temporal resolution,

Fig. 3 An example of DW-MRI data from a patient achieving pCR (top
row) and a patient not achieving pCR (bottom row). ADC maps from
the tumor region are overlaid on a high resolution anatomical image
before (left column) and after the first cycle of NAT (right column). The
patient who ultimately achieved pCR exhibits increased at ADC early
time points within therapy, whereas the patient who did not achieve
pCR does not.
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b-values for DW-MRI acquisition, and either sensitivity/
specificity or sufficient data to construct a 2 × 2 contingency
table. Additionally, the MRI type was categorized as either semi-
quantitative DCE-MRI (in which the MRI parameter does not
have direct physiological units), quantitative DCE-MRI (MRI
parameter has physiological units), DW-MRI, or multipara-
metric (combination of DCE-MRI and DW-MRI). The MRI
parameter used to define the sensitivity and specificity was also
extracted. A summary of these parameters for studies included
in this meta-analysis is given in Table 1.

The methodological quality of each study in this meta-analy-
sis was assessed using the quality assessment of diagnostic
accuracy studies (QUADAS) tool.52 Using the QUADAS tool,
an overall quality score was calculated (maximum 14). The
average number of patients in the studies in the meta-analysis
was 64, and the minimum number of patients was 22.

3.3 Statistical Analysis

All analyses were performed using Stata version 14.1
(StataCorp, College Station, Texas) and R version 3.3.3
(R Foundation for Statistical Computing, Vienna, Austria). The
sensitivity, specificity, and log diagnostic odds ratios were cal-
culated along with the associated 95% confidence intervals and
overall adjusted estimates were pooled across all studies. The
amount of heterogeneity across the studies was evaluated via
the I2 statistic, which represents the percentage of total variation
in meta-analysis that can be attributed to between-study hetero-
geneity. This heterogeneity was taken into account in the evalu-
ation of test performance with a hierarchical summary receiver
operator curve (HSROC).53 The estimation of the HSROC uses a
Bayesian hierarchical approach to account for both within- and
between-study heterogeneity. Publication bias was examined
graphically via a funnel plot in which the diagnostic odds
ratio is plotted versus the inverse root of the effective sample

size and was tested using Deek’s method. Also, note that any
empty cells in the 2 × 2 table setup were replaced with 0.1 to
align with requirements of statistical programming software
as well as to allow for calculation of diagnostic odds ratios.

The large degree of heterogeneity in this meta-analysis
implies that the data should not be pooled in a fixed-effect
model. As a result, a random effects logistic regression model
was fit to model sensitivity and specificity while accounting
for differences between individual studies that are not due to
study characteristics. The meta-regression analysis is given by
the following equation:

EQ-TARGET;temp:intralink-;sec3.3;326;331logit½PrðMRIij ¼ 1jXijÞ� ¼ ðβ0 þ b0iÞ þ β1 · pCRij þ β2

· ERi þ β3 · PRi þ β4 · HER2i þ β5 · Agei þ β6

· Temporal Resolutioni þ β7 · MRITypeþ β8

· NAT cycleþ β9 · pCRij · HER2i þ β10 · pCRij · Agei;

where i denotes the study ði ¼ 1; : : : ; 10Þ and j denotes the indi-
vidual within study i. MRIij represents the MRI prediction of
pCR for the j’th patient within study i; MRIij ¼ 1 represents
an MRI prediction of pCR; and MRIij ¼ 0 represents an
MRI prediction of a non-pCR (i.e., residual tumor remaining
at time of surgery after NAT). Similarly, a patient with pCRij ¼
1 achieved a pCR and pCRij ¼ 0 indicates non-pCR. ER, PR,
and HER2 are percentages of each study population that exhib-
ited overexpression of each receptor, respectively. Age is mean
age within each study. Temporal resolution and the number of
NAT cycles (NATcycle) between start of NAT and MRI were
constant within each study. MRI type was constant within
each study and took values of either quantitative DCE, semi-
quantitative DCE, multiparametric, or DWI. Note that the inclu-
sion of pCRij in the model in combination with the outcome of

Fig. 4 Overview of study selection. A total of 325 studies are identified from the Pubmed and Cochrane
library databases. After removal of duplicates, 260 records were assessed for eligibility in this meta-
analysis. After exclusion of 250 studies for reasons detailed in the flow chart, the remaining 10 studies
were analyzed.
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MRIij allows for our calculation of sensitivity, specificity, and
diagnostic odds ratio.

To fit the regression model, an expanded dataset was gener-
ated, as previously described.54 In the expanded dataset, each
study was given a row for each study subject, where each subject
was classified as true positive, false positive, false negative, or
true negative. Study-level covariates remained constant for all
subjects while MRI test result (i.e., positive or negative) and
pCR status were pseudoindividual specific. This expanded data-
set allows for analysis to be conducted at the pseudoindividual
level. Individual study characteristics included in the regression
included: percent of the study population that were ER+, percent
of the study population that were PR+, percent of the study
population that were HER2+, mean age, number of NAT cycles
between start of NAT and MRI, DCE temporal resolution, and
magnetic field strength (1.5T or 3T). MRI type was highly
correlated with magnetic field strength (1.5T or 3T) and mag-
netic field strength was thus dropped from the final model.
Interactions between each variable and pCR status were consid-
ered and included if deemed of scientific interest; i.e., the effect
of HER2 status on the association between MRI test result and
pCR status. We also assessed interactions between pCR and the
other hormone status, but as these were not statistically signifi-
cant, they were not included in our model. The interaction terms
were assessed for their effects on both sensitivity and specificity
by likelihood ratio tests while adjusting for the effects of other
variables in the model. Not all studies reported temporal reso-
lution, ER, PR, and HER2 rates for their individual study pop-
ulations, thus, multiple imputation with chained equations was
utilized to allow for the inclusion of these studies without loss of
information that would result from a complete-case analysis.55

In this process, 10 imputed datasets were created, where pCR
rate for each study was used to predict the temporal resolution,
ER, PR, and HER2 rates that were missing in the original data.
These imputed datasets are used to calculate parameter values
and variances for temporal resolution, ER, PR, and HER2 in
the metaregression analysis.

The logistic regression model provides adjusted estimates of
sensitivity and specificity for each study that can be averaged to
calculate average adjusted estimates for both sensitivity and
specificity. Subgroup analysis was performed according to
the type of MRI performed (semiquantitative versus quantitative
DCE-MRI). In this process, information was pooled across
semiquantitative studies and quantitative studies, respectively,
resulting in two independent 2 × 2 tables. A simple test of
the difference between two independent means was conducted
for each of the three outcomes of interest: log diagnostic odds
ratio, sensitivity, and specificity.

4 Results

4.1 Meta-analysis Outcome Measures

The funnel plot of diagnostic odds ratio versus the inverse
root of the effective sample size revealed indicated a lack of
asymmetry and, consequently, no evidence of publication bias
(p ¼ 0.34). The selection of only 10 studies reveals possible
publication bias, though the small sample size prevents a
clear conclusion. The high I2 statistic calculated in this meta-
analysis (90%) suggests a high degree of heterogeneity present
among studies. Additionally, the unadjusted pooled analysis
revealed a significant degree of heterogeneity among the 10
included studies in both sensitivity (78.8%) and specificity

(99.5%). Pooled, unadjusted estimates of sensitivity and speci-
ficity for MRI in predicting pCR are given in Table 2. Due to the
high amount of heterogeneity, we chose to fit a random effects
metaregression model to help account for differences between
individual studies.

Test performance of the MRI methodologies across all stud-
ies is summarized in the HSROC, where individual studies are
shown alongside the pooled estimate (Fig. 5). This figure was
created via the hierarchical model from Rutter and Gatsonis.53

The area under the HSROC curve was 0.92 (95% CI, 0.89–
0.94). The width of the 95% confidence contour demonstrates
the amount of heterogeneity present between the 10 studies. Of
note, 4 of the 10 studies cluster closely to this receiver operating
curve. The two largest studies are seen to have considerable in-
fluence over the width of the prediction contour. The width of

Table 2 Pooled sensitivity, specificity, and diagnostic odds ratios for
the 10 studies in this meta-analysis. The unadjusted values were cal-
culated without adjusting for covariates, while the adjusted values
were adjusted for covariates according to the logistic regression
model. Both sets of values take into account possible heterogeneity
between studies via a random effects model. These values, along with
the individual sensitivities, specificities, and diagnostic odds ratios for
individual studies, are displayed visually in the forest plots in Fig. 6.

Unadjusted-
mean (95% CI)

Adjusted-mean
(95% CI)

Sensitivity 0.85 (0.70, 0.93) 0.91 (0.80, 0.96)

Specificity 0.86 (0.72, 0.94) 0.81 (0.68, 0.89)

Diagnostic
odds ratio

35 (11, 107) 42.81 (13.67, 134.06)

Fig. 5 The HSROC curve displays test performance of individual
studies as well as the pooled average estimate. The summary oper-
ating point and large area under the curve demonstrate that DCE- and
DW-MRI can achieve high sensitivity and specificity for predicting
pCR in the neoadjuvant setting for breast cancer. The width of the
confidence contour demonstrates the high amount of heterogeneity
present in the included selection of studies. Each circle represents
a study and the size of the circle refers to the size of the study.
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the prediction contour demonstrates the uncertainty with which
we may predict the results of a future study. The variation
among studies included in this meta-analysis does not allow
for a targeted prediction of the performance of an unobserved
future study.

The studies had QUADAS scores ranging from 10 to 12. Due
to the nature of the MRI being performed early in all studies, the
time between the MRI and pathological evaluation was not short
enough to be reasonably sure that the target condition did not
change between MRI and pathology. Furthermore, it was not
clear that the MRI result was evaluated without knowledge

of the pathology results. Some studies did not explain study
withdrawals or uninterpretable test results sufficiently.

4.2 Metaregression Analysis

The random effects model described in Sec. 3.3 was fit to
account for possible heterogeneity between studies. In this tech-
nique, each study has allowed its own unique baseline effect
while the covariate effects were assumed to be similar across
studies. This regression model allows for estimates of both sen-
sitivity and specificity to be adjusted for study-specific covariate

Sensitivity (95% CI), %
0 0.25 0.5 0.75 1

Overall

Minarikova

Wu

Yang

Ah−See

Fangberget

Tateishi

Rigter

Parikh

Li

Tudorica

Specificity (95% CI), %
0 0.25 0.5 0.75 1

�

log(DOR) (95% CI)
−2 0 2 4 6 8

�

Individual Studies Pooled Average

Fig. 6 Individual study estimates for sensitivity, specificity, and log diagnostic odds ratio are displayed in
the forest plot along with the overall average adjusted estimates (from the random effects model) and
95% confidence intervals for each. The pooled average demonstrates that DCE- and DW-MRI have high
sensitivity, specificity, and log diagnostic odds ratio for predicting response to NAT in breast cancer.
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values. These adjusted estimates are shown in Table 2 along
with similar estimates that have not been adjusted for covariates.
Note that adjusting for covariates resulted in a small decrease in
estimated specificity (0.81 adjusted versus 0.86 unadjusted),
whereas the sensitivity (0.91 adjusted versus 0.85 unadjusted)
and diagnostic odds ratio (42.81 adjusted versus 35 unadjusted)
were increased by adjustment for covariates. A forest plot of
individual study estimates of sensitivity, specificity, and log
diagnostic odds as well as overall average adjusted estimates
is given by Fig. 6. The forest plot visual demonstrates the hetero-
geneity among studies as well as the variation that is present
within each individual study.

Using our random effects model, we found that both MRI
type and the number of cycles of NAT before the MRI had sig-
nificant effects on the sensitivity and specificity simultaneously,
at a 95% confidence level. MRI performed earlier after the start
of NAT (fewer NAT cycles prior to MRI) led to increased speci-
ficity but decreased sensitivity compared with MRI performed
later in the course of treatment. For both analyses, the models
took into account the effect of other covariates in the model;
i.e., ER, PR, temporal resolution, and magnetic field strength.
The parameter estimates as well as standard errors and p-values
for the metaregression analysis are shown in Table 3.

4.3 Subgroup Analysis

A subgroup analysis was performed to determine if semiquan-
titative and quantitative DCE-MRI were statistically different in
terms of sensitivity, specificity, and diagnostic odds ratios. Three
quantitative DCE-MRI (199 total subjects) and three semiquan-
titative DCE-MRI (304 total subjects) studies were included in
this subgroup analysis. T-test analysis indicates that quantitative
techniques resulted in higher specificity and log diagnostic odds

ratio (p < 0.001 and p ¼ 0.014, respectively) at a 5% signifi-
cance level. Semiquantitative techniques resulted in higher
sensitivity than quantitative techniques, though this difference is
not statistically significant at a 5% level (p ¼ 0.13).

5 Discussion
This meta-analysis identified 10 studies performing DCE- or
DW-MRI during the course of NAT for breast cancer that
reported the sensitivity and specificity for predicting pathologi-
cal response. The pooled sensitivity, specificity, and diagnostic
odds demonstrate the potential of MRI for early prediction of
response to NAT. However, there was a high degree of hetero-
geneity between these studies, as expected, given the variation in
MRI methods and patient populations. A random effects model
examining differences between studies in terms of patient pop-
ulation (patient age, percent of ER, PR, and HER2+) and im-
aging protocol (magnetic field strength, temporal resolution
of DCE-MRI, cycle of NAT) found that the type of MRI per-
formed and the time between the start of NAT and MRI signifi-
cantly influence sensitivity and specificity simultaneously. MRI
performed earlier after the start of NAT had increased specificity
but decreased sensitivity for predicting pCR. This highlights the
need to identify the best time point for predicting response.
While this study may be underpowered to detect the influence
of other covariates due to the small number of studies, it sug-
gests that accuracy of prediction of response is not influenced by
differences in patient populations or other imaging parameters
included in the random effects model.

Although this study sought to compare quantitative DCE-
MRI, semiquantitative DCE-MRI, DW-MRI, and multiparamet-
ric approaches incorporating both DCE- and DW-MRI, the
limited number of studies reduced our ability to compare
these groups. There were only two multiparametric studies and
two DW-MRI studies, which met the inclusion criteria for
this meta-analysis. Subgroup analysis comparing quantitative
and semiquantitative DCE-MRI indicated that quantitative tech-
niques had a higher specificity and log diagnostic odds ratio.
Further studies are needed to validate whether the added rigor
of quantitative DCE-MRI translates into improved predictive
power for MRI in the neoadjuvant setting. Studies comparing
quantitative and semiquantitative DCE-MRI performed on the
same data would be especially useful for this evaluation.

The number of studies included in this meta-analysis was
limited by heterogeneity in the reported metrics on patient out-
come. The success of NAT for breast cancer is commonly mea-
sured either in terms of patient survival or pathological response
at resection. We confined this meta-analysis to studies reporting
patient outcome as pCR, indicating a lack of positive tumor mar-
gins or nodal involvement at the time of resection. However, our
study design excluded a number of excellent studies, which
reported NAT success in terms of patient survival.30,31,56–60

Survival and pCR correlate, as demonstrated by pooled analysis
of nearly 12,000 women with breast cancer; however, this study
noted heterogeneity in this relationship as a function of receptor
subtype.61 The correlation between recurrence free survival and
pCR is demonstrably improved when stratified by receptor
subtype.62 Given this dependence on receptor subtype, we
were unable to combine studies reporting pCR and survival
in this meta-analysis. Even among studies reporting outcome
in terms of survival, some outcomes were reported as overall
survival whereas others were given as disease-free survival.
Similarly, studies reporting pathological response commonly

Table 3 The parameter estimates as well as standard errors and
p-values for the meta-regression analysis are shown. In this analysis,
MRI type and MRI time were both statistically significant at a 95%
confidence level. Note that, while pCR has a statistically significant
coefficient, this parameter is used in the calculation of sensitivity,
specificity, and diagnostic odds ratio, rather than having an interpre-
tation of its own.

Coefficient Standard error p-value

Log (ER) −1.25 17.75 0.945

Log (PR) 0.97 7.53 0.899

Log (HER2) 1.61 9.27 0.863

pCR 8.90 4.40 0.043

pCR*log (HER2) −1.96 2.04 0.336

Mean (age) −0.12 0.08 0.130

pCR*mean (age) −0.09 0.10 0.375

Temporal resolution 0.02 0.08 0.757

MRI type 1.59 0.56 0.005

NAT cycle 1.65 0.54 0.002

Intercept −3.12 4.29 0.467
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grouped complete and partial responses.34,63 The lack of stand-
ardization in outcome metrics confounds meta-analyses and
hampers direct comparison of different imaging techniques.

Lack of standardization is similarly of concern in both image
acquisition and processing. There are a number of parameters
that can be adjusted in MRI acquisition, and there is currently
no consensus on the optimal settings for acquiring images. To
the best of our knowledge, there are no multisite, multivendor
studies validating the quantitative MRI techniques currently in
use.64 The quantitative imaging network (QIN) is attempting to
address this shortcoming by standardizing methods for image
acquisition, analysis, and sharing.65 Additionally, the QIN
seeks to cross-calibrate imaging results obtained at different cen-
ters and build reference datasets for development and validation
of new quantitative imaging methods. There is also a paucity of
clinical results assessing the repeatability through test–retest
studies and reproducibility, through multisite trials, of quantita-
tive MRI metrics performed in the breast.66,67 In order to be
adopted as routine biomarkers, the repeatability of quantitative
MRI metrics must be established and validated with multisite
studies.

Image processing of quantitative and semiquantitative MRI
is an area of active research. One burgeoning field, known as
radiomics, uses computer-aided image processing to extract
a large number of quantitative parameters from each image.
Radiomics has recently been applied to imaging in breast cancer
NAT. Indeed, one of the studies included in this meta-analysis
employs a radiomic approach to describe the irregularity of
contrast-enhanced MRI.47 Texture analysis of breast cancer
DCE-MRI demonstrates differences between responders and
nonresponders.68 Radiomic analysis can be performed on both
quantitative and semiquantitative DCE-MRI and comparisons
of these approaches are needed. There are also a number of
predictive models under development that integrate multiple
parameters extracted from quantitativeMRI. For example, math-
ematical models based on tissue mechanical properties and con-
strained by DW-MRI data may be useful for predicting pCR.69

Alternately, predictive models incorporating DCE- and DW-
MRI to estimate tumor cell proliferation can be used to predict
pCR.70

There are a number of other imaging techniques being
applied to image the breast, which were not included in this
meta-analysis. One such technique is the use of MRS to char-
acterize the concentration of certain tumor metabolites. For in-
stance, MRS can detect choline, a marker of high cellular
turnover, which is elevated in certain tumors and inflammatory
processes. MRS following NAT demonstrates a decline in chol-
ine concentration, although this may not predict pCR as well as
DW-MRI.71 Alternately, MRS has been used to measure
the ratio of water signal to fat signal early in the course of
NAT and found that this ratio may have predictive power.72

Positron emission tomography (PET) is another promising
method for detecting molecular changes in tumors in response
to therapy. A multimodal study combining DCE-MRI and
fluorodeoxyglucose (FDG)-PET found that both techniques
were able to independently predict disease free survival, but
that the combination of MRI and PET gave the best prognostic
value.57 A similar result was found when combining DW-MRI
and FDG-PET after the completion of NAT, wherein the combi-
nation of MRI and PET metrics improved the specificity of
predicting response.73 The fusion of quantitative multimodal
imaging techniques, such as MRI and PET, can provide a more

complete characterization of the tumor and provide a voxel-level
fusion of complementary imaging data74 that can be coregistered
longitudinally over the course of NAT.75 A third imaging
technique, currently in its early stages, is the application of
near-infrared light to perform diffuse optical tomography of
the breast.76 A pilot study of diffuse optical tomography dem-
onstrates that the technique can detect vascular alterations in
breast cancer early in the course of NAT.77 A direct comparison
between DCE-MRI and diffuse optical tomography demon-
strated that optical tomography differentiates responders and
nonresponders as early as the first cycle of treatment and is
equally effective in predicting response as DCE-MRI.78

6 Conclusion
This comprehensive meta-analysis demonstrates that DCE- and
DW-MRI performed during breast cancer NAT can predict
pathological response across a range of studies, an exciting
and important finding with potential clinical implications.
However, the present study also highlights a high degree of
heterogeneity (both in patient population and image acquisi-
tion/analysis) in the field. Moreover, it reveals a lack of studies
that have simultaneously investigated DCE-MRI and DW-MRI
as predictive methods to evaluate response to treatment early in
the course of NAT. Further development and evaluation of new
and established MRI techniques in breast cancer NAT would
benefit from standardization in study design, patient population,
and reported metrics of prediction accuracy. Additionally,
the type of MRI analysis performed may also influence predic-
tive accuracy, as suggested by the improved specificity of
quantitative dynamic contrast-enhanced versus semiquantitative
techniques.
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