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Abstract. Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of
importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional
neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimen-
sional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit
(SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical
imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent,
which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients
during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a
leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an inter-
quartile range of 0.08, with equivalent performance to the three operators (with a Williams’ index of 1.03), and
outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully
automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a
previous semiautomatic approach. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.

Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI
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1 Introduction
Pelvic organ prolapse (POP) is the abnormal downward descent
of pelvic organs, including the bladder, uterus, and/or the rectum
or small bowel, through the genital hiatus, resulting in a protru-
sion through the vagina. In a previous study, 27,342 women
between the age of 50 and 79 years were examined and
found that about 41% showed some degree of prolapsed.1

Ultrasound is at present the most widely used imaging modality
to assess the anatomical integrity and function of pelvic floor
because of availability and noninvasiveness. Since the levator
hiatus is the portal through which POP must occur, its dimen-
sions and appearance are measured and recorded during an ultra-
sound exam. The hiatal dimensions have also been correlated
with severity of prolapse, levator muscle avulsion, and even pro-
lapse recurrence after surgery.2–4

During a transperineal ultrasound examination, three-dimen-
sional (3-D) volumes are acquired during Valsalva maneuver
(act of expiration while closing the airways after a full inspira-
tion), at pelvic floor muscle contraction, and during rest. The
hiatal dimensions and its area are then recorded by manually
outlining the levator hiatus in the oblique axial two-dimensional

(2-D) plane at the level of minimal anterioposterior hiatal
dimensions (referred to as the C-plane hereinafter).2

The main limitation of this technique is the high variability
between operators in assessing the images and the operator time
required. Sindhwani et al.5 earlier proposed a semiautomatic
method to segment the levator hiatus in a predefined C-plane.
To define the C-plane, their approach requires first the identifi-
cation of two 3-D anatomical landmarks within the 3-D volume,
the posterior aspect of the symphysis pubis (SP), and the ante-
rior border of the pubovisceral muscle (PM), which are labeled
manually. Then, the SP and PM are manually defined on the
selected C-plane, and the system performs the outlining auto-
matically. Although it is true that most of the times the SP
and PM defined in the 3-D volume may correspond in the 2-D
image, this is not always the case and may need to be corrected
in the axial view. Therefore, Sindhwani et al.’s5 method requires
identification of the two points in both images. Additionally, the
contours in the C-plane rely on the manual addition of a third
point and may require some additional manual adjustments.
This method was shown to reduce interoperator variability in
comparison to manual segmentation. Overall, despite interesting
results, the procedure still lacks automation, limiting its repro-
ducibility, and requires operator inputs and, consequently, time.

Recently, convolutional neural networks (CNNs) have been
shown to be able to successfully perform several tasks, such as*Address all correspondence to: Ester Bonmati, E-mail: e.bonmati@ucl.ac.uk
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classify, detect, or segment objects in the context of medical
image analysis.6 Litjens et al.7 provide a good review on
deep learning in medical image analysis. To segment medical
images, different deep-learning approaches have been proposed
in 2-D (e.g., left and right ventricles8 and liver9) and 3-D (e.
g., brain tumour10 and liver11) and have recently been extended
to support interactive segmentation in both 2-D and 3-D.12,13 In
particular, using 2-D ultrasound images, CNN has been
employed to successfully segment deep brain regions,14 the
foetal abdomen,15 thyroid nodule,16 foetal left ventricle,17 and
vessels18 providing a fully automatic approach.

In this work, we propose a fully automatic method to seg-
ment, in manually defined 2-D C-planes, the levator hiatus
from ultrasound volumes thereby further automating the process
of outlining the pelvic floor. In particular, we employ a self-nor-
malizing neural network (SNN) using a recently developed
scaled exponential linear unit (SELU) as a nonlinear activation
function, with and without SELU-dropout,19 showing competi-
tive results compared to the equivalent network not using SELU.
To the best of our knowledge, our work is the first attempt to
combine SELU with CNN. SNNs have clear benefits in many
medical imaging applications. These include the parameter-free
and mini-batch independence nature of SNNs. In deep learning
for medical imaging applications, memory constraints are fre-
quently reached during training. Having opportunities to reduce
the complexity of the network and being able to use a smaller
mini-batch size (in contrast to batch normalization), without sac-
rificing the generalization performance, are both crucial for
many applications.

We train and evaluate the network using 91 C-plane ultra-
sound images, from 35 patients, in a leave-one-patient-out
cross validation. The dataset contains images at three different
stages: full Valsalva, contraction, and rest. For each image, three
labels from three different operators are available and are used
for training and evaluation within the cross-validation experi-
ment. Furthermore, we directly compare the results using
U-Net-based architectures,20,21 a ResNet approach,22 and the
proposed network with and without SELU-dropout.

2 Method

2.1 Self-Normalizing Neural Networks for
Ultrasound Segmentation

In this work, segmenting anatomical regions of interest in medi-
cal images are posed as a joint classification problem for all
image pixels using a CNN. Ultrasound images, which contain
relatively sparse features that are depth- and orientation-depen-
dent representation of the anatomy, pose a challenging task for
traditional CNNs. Therefore, the appropriate regularization and
robustness of the training may be important to successfully seg-
ment ultrasound images. In recent years, rectified linear units
(ReLU) have become the de facto standard nonlinear activation
function for many CNN architectures due to its simplicity and
provide partially constant, nonsaturating gradient, whereas
batch normalization retains a similar importance by effectively
reducing the internal variate shift and, therefore, regularizes and
accelerates the network training.23 However, the stochastic gra-
dient descent with relatively small data and mini-batch sizes
(commonly found in medical image analysis applications)
may significantly perturb the training so that the variance of
the training error becomes large. This has also been reported
by the training error curves from previous work.24 This work

explores an alternative construction of the nonlinear activation
function used in an SNN, a recent development suggesting to
use a SELU function.19 The proposed SELU constructs a par-
ticular form of parameter-free SELU so that the mapped vari-
ance can be effectively normalized, i.e., by dampening the
larger variances and accelerate the smaller ones. As a result,
batch-dependent normalization may not be needed, which
means that there is no mini-batch size limitation and networks
should be able to obtain equivalent results with reduced memory
constraints. The SELU activation function is defined as

EQ-TARGET;temp:intralink-;e001;326;642SELUðxÞ ¼ λ

�
x if x > 0

αex − α if x ≤ 0
; (1)

where scale λ ¼ 1.0507 and α ¼ 1.6733 (see Klambauer et al.19

for details on the derivation of these two parameters). This spe-
cific form in Eq. (1) ensures the mapped variance by the SELU
activation is effectively bounded19 thereby leading to a self-nor-
malizing property.

2.2 Network Architecture

We adapt a U-Net architecture20,25 as a baseline CNN to assess
the segmentation algorithms. We refer to the proposed self-nor-
malizing U-Net-based network as SU-Net hereinafter. The
detailed network architecture is shown in Fig. 1. Each block
consists of two convolutions, with a kernel size of 2 × 2, each
followed by a SELU activation. Downsampling is achieved with
a max-pooling with a kernel size of 2 × 2 and stride 2 × 2, which
halves the sizes of the feature maps preserving the number of
channels, whereas upsampling doubles the feature map sizes
and also preserving the number of channels. Upsampling is per-
formed by a transposed convolution with a 2 × 2 stride. After
each upsampling, the feature maps are concatenated with the
last feature maps of the same size (before pooling). The last
block contains an extra convolution and the corresponding
SELU activation. As shown in Fig. 2, all the batch normalization
with ReLU blocks are replaced by a single SELU activation
(described in Sec. 2.1). For the case of SU-Net with SELU-drop-
out, the dropout was applied after each convolution. SELU-
dropout works with SELUs by randomly setting activations
to the negative saturation value (in contrast to zero variance
in ReLU), to keep the mean and variance. The weighted sum
of an L2 regularization loss with of the probabilistic Dice
score using label smoothing is used as a loss function.26,27

2.3 Networks Evaluation

Manually labeled ultrasound images, each of which are labeled
by three individual operators, are available to train the networks.
Our benchmark includes the proposed SU-Net using SELU
(SU-Net), the SU-Net also using SELU-dropout (SU-Net +
dropout), and a baseline U-Net using batch normalization and
ReLU (U-Net) sharing the same architecture as the SU-Net
(Fig. 1). Other hyperparameters are kept fixed for all these archi-
tectures. Additionally, similar to Vigneault et al.,25 we also com-
pare the results with a U-Net in which the last layer convolutions
are replaced by dilated convolutions (U-Net + DC) and with
a ResNet architecture.22 Hyperparameters used in the implemen-
tation of the U-Net + DC and ResNet networks are described in
Sec. 3.2. Evaluation is performed in a leave-one-patient-out
cross validation, in which the networks are trained 35 times
using data from 34 patients while the contours from the different
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images of the left-out patient are used in testing. As a result, 91
automatic segmentations are obtained from the 35-fold valida-
tion, corresponding to the size of the original dataset.

2.4 Metrics

Results are evaluated using two region-based measures, Dice
similarity coefficient28 and Jaccard coefficient,29 and two dis-
tance-based measures, symmetric Hausdorff distance and mean
absolute distance (MAD). The choice of this comprehensive set
of metrics aims to allow direct comparison with the results from
a previous study using the same dataset.5 Additionally, we
include two more region-based measures, the false positive
Dice (FPD) and the false negative Dice (FND),30 and one dis-
tance-based measure, the symmetric mean absolute distance
(SMAD), which is the symmetric version of MAD.

Let A and B be the two binary images which correspond to
two labeled levator hiatus, in our evaluation, A corresponds to
an automatic segmentation and B to a manual segmentation
(ground truth), the Dice similarity coefficient DðA; BÞ ¼ 2jA ∩
Bj∕ðjAj þ jBjÞ expresses the overlap or similarity between label
A and B. The Jaccard coefficient JðA; BÞ ¼ jA ∩ Bj∕jA ∪ Bj
provides an alternative, more conservative overlap measure
between A and B. FPD ¼ 2jA ∩ B̄j∕ðjAj þ jBjÞ and FND ¼
2jĀ ∩ Bj∕ðjAj þ jBjÞ, where Ā refers to the complement of A

and B̄ to the complement of B, and can be used to quantify
if the method is over- or undersegmenting, respectively.

Let X ¼ fx1; x2; : : : ; xng and Y ¼ fy1; y2; : : : ; yng be two
finite 2-D point sets sufficiently sampled from the contours
or boundaries of binary images A and B with sizes nx and
ny, respectively, the symmetric Hausdorff distance (H) finds
the maximum distance between each point of a set to the
closest point of the other set as follows: HðX;YÞ ¼
max fmaxfjdðx;YÞjg;max jdðy;XÞjg;∀ x ∈ X;∀ y ∈ Y, where
dðx; YÞ ¼ minfkx − yikg; i ¼ f1: : : nyg and kx − yik is the
Euclidean distance between the 2-D point x and the i’th
point of Y. This measure quantifies the maximum level of dis-
agreement between two labels. The mean absolute distance,
MADðX; YÞ ¼ Pnx

i¼1 jdðxi; YÞj∕nx, quantifies the averaged
level of agreement between contours X and Y by finding the
averaged distance between all points of a set to the closest
point of the other set. Note that, as previously mentioned,
MAD is asymmetric; therefore, we also include the symmetric
mean absolute distance SMADðX; YÞ ¼ 1

nxþny
ðPnx

i¼1 jdðxi; Yj þPny
i¼1 jdðyi; XÞjÞ.

2.5 Statistical Comparative Analysis

Performance is quantified and compared by evaluating the com-
puter-to-observer differences (COD) to determine the agreement
between the automatic segmentation and the manual segmenta-
tions. A pairwise comparison approach between each label
obtained with the automatic method and the three labels avail-
able for each image is performed by considering all the metrics
described in Sec. 2.4. Performance quantification is presented
for all network architectures described. Furthermore, statistical
analysis employing a paired two-sample student’s t-test is used
to test whether the differences in performance between SU-Net
and U-Net, U-Net + DC, ResNet and SU-Net + dropout are sta-
tistically significant different.Fig. 2 (a) SU-Net architecture versus (b) U-Net architecture.

Fig. 1 Network architecture, where S1 and S2 correspond to the spatial dimension and nc to the number
of channels. For the U-Net, the SELU unit is replaced by batch normalization and ReLU, and for the U-Net
with dilated convolution (U-Net + DC), the last layer is also replaced by a dilated convolution.
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Using a similar pairwise approach, interobserver differences
(IOD) are quantified to determine the agreement between
manual segmentations from the three operators and to allow
a further comparison with the automatic methods.

The extended Williams’ index (WI) is a statistical test for
numeric multivariate data to test the null hypothesis that the
automatic method agrees with the three operators and that
the three operators agree with each other.31,32 This index quan-
tifies the ratio of agreement by calculating the number of times
that the automatic boundaries are within the observer bounda-
ries. If the 95% confidence interval (CI) of the WI contains the
value 1.0, it implies that the test fails in rejecting the null
hypothesis that the agreement between the automatic method
and the three operators is not significantly different. We test
the level of agreement between the automatic and manual seg-
mentations based on the metrics defined in Sec. 2.4.

2.6 Clinical Impact

The dimension of the levator hiatus on ultrasound is a biometric
measurement used to assess the status of the levator hiatus and is
associated both with symptoms and signs of prolapse as well as
with recurrence after surgical treatment.2 Therefore, we extend
the analysis to include the area measurement from the manual
and automatic segmentations, to provide further clinical rel-
evance in assessing the segmentation algorithms. Evaluation is
performed by grouping the images in the three different stages:
during rest, Valsalva, and contraction. WI is again used to test
the level of agreement between the automatic and manual labels.

3 Experiments

3.1 Imaging

A dataset containing 91 ultrasound images, corresponding to the
oblique axial plane at the level of minimal anteroposterior hiatal
(C-plane), from 35 patients was used for validation.5 All
C-planes were selected by the same operator. The dataset had
35 images acquired during Valsalva, 20 images during contrac-
tion, and 36 images at rest to cover all the stages during a stan-
dard diagnosis with some extreme cases and large anatomical
variability. Images had a mean pixel size and standard devia-
tion (SD) of 0.54� 0.07 mm, with variable image sizes
[ð199 − 286Þ × ð176 − 223Þ pixels, for width and length,
respectively]. All 91 images were manually segmented by 3 dif-
ferent operators with at least 6 months of experience in

evaluating pelvic floor 3-D ultrasound images. Each operator
segmented each image only once. More details on the dataset
can be found in the work of Sindhwani et al.5

3.2 Implementation Details

For the purpose of this study, all original US images were auto-
matically cropped or padded to 214 × 262 pixels primarily for
normalization and removing unnecessary background. In train-
ing, for the SU-Net and U-Net, we used a mini-batch size of 32
images, and we linearly resized the data to 107 × 131 pixels and
used a data augmentation strategy by applying an affine trans-
formation with 6 degrees-of-freedom. The number of channels
was fixed to 64. For the SU-Net with SELU-dropout, a dropout
rate of 0.5 was used. During training, the images and labels from
the three operators were both shuffled before feeding into
respective mini-batches. The networks were implemented in
TensorFlow33 and trained with an Adam optimizer34 with a
learning rate of 0.0001, on a desktop with a 24-GB NVIDIA
Quadro P6000. For each automatic segmentation obtained, post-
processing morphological operators to fill holes (i.e., flood fill
of pixels that cannot be reached from the boundary of the image)
and remove unconnected regions by selecting the region with
the largest area were also applied. For the U-Net + DC and
ResNet, we used a mini-batch size of 10, 128 initial channels,
and a learning rate of 0.001 (all the rest of hyperparameters, pre-
and postprocessing were kept the same).

4 Results
First, using the three manual labels available for each image as
a ground truth, we evaluated the performance of the proposed
network using the pairwise comparison strategy defined in
Sec. 2.5 with the metrics described in Sec. 2.4. For comparison
purposes, we also report the results obtained with the baseline
U-Net architecture, and the U-Net + DC and ResNet architec-
tures. Median values and interquartile ranges for each metric are
shown in Table 1. Statistical analysis comparing the mean values
for each image (average of the operators) obtained with the U-
Net and the SU-Net showed a statistically significant difference
for the Dice, Jaccard, Hausdorff, SMAD, and FPD metrics
(p-values ¼ 0.030, 0.022, 0.004, 0.027, and 0.031, respec-
tively) and no significant difference for MAD and FND metrics
(p-values ¼ 0.064 and 0.183, respectively). However, when
comparing the values of all metrics using SELU-dropout and
without SELU-dropout, no statistically significant difference

Table 1 Performance of the SU-Net, SU-Net + dropout, U-Net, U-Net + DC, and ResNet networks by employing a pairwise comparison with the
three manual labels available for each ultrasound image. This table also contains results from a previous study (Sindhwani et al.5). Results are
reported using median (interquartile range).

Method Dice Jaccard Hausdorff (in mm) MAD (in mm) SMAD (in mm) FPD FND

SU-Net 0.90 (0.08) 0.82 (0.12) 4.21 (3.92) 1.19 (1.15) 1.16 (1.02) 0.07 (0.13) 0.09 (0.16)

SU-Net + dropout 0.90 (0.08) 0.81 (0.13) 3.90 (3.83) 1.21 (1.16) 1.23 (1.09) 0.07 (0.13) 0.09 (0.16)

U-Net 0.89 (0.11) 0.80 (0.18) 4.49 (5.67) 1.31 (1.42) 1.34 (1.41) 0.07 (0.16) 0.08 (0.16)

U-Net + DC 0.90 (0.08) 0.82 (0.13) 3.97 (3.87) 1.18 (3.86) 1.17 (1.23) 0.05 (0.13) 0.11 (0.15)

ResNet 0.91 (0.08) 0.83 (0.14) 3.59 (4.22) 1.13 (1.14) 1.10 (1.07) 0.06 (0.14) 0.07 (0.13)

Sindhwani et al.5 0.92 (0.05) 0.85 (0.09) 5.73 (3.90) 2.10 (1.54) — — —
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was found (all p-values > 0.37). Furthermore, no statistically
significant difference was found when comparing the SU-Net
and U-Net + DC (all p-values > 0.30) or when comparing
the SU-Net with ResNet (all p-values > 0.08). Differences
between the three operators (i.e., interoperator differences), not

considering the automatic segmentations, are reported using the
same metrics and shown in Table 2. WIs are reported in Table 3
to compare the agreement between automatic and manual seg-
mentations with the agreement among manual segmentations
using the metrics described in Sec. 2.4.

Table 4 shows the mean differences in area of the segmented
regions in terms of computer-to-operator differences and inter-
operator differences during the three different stages and with
the corresponding WIs testing the performances.

Figure 3 shows examples of original images with the corre-
sponding segmentation results obtained with the automatic
method together with the three manual labels used as a ground
truth, and Fig. 4 shows examples at the three different stages:
rest, Valsalva, and during contraction.

Figure 5 shows the histogram of the values obtained after the
last SELU at different iterations. Figure 6 shows how the dice
coefficient converges using the U-Net and SU-Net architectures,
and Fig. 7 shows the learning curves of the training loss for the
U-Net and SU-Net methods.

Table 2 Differences between the manual labels from the three operators (i.e., IOD). Results are reported using median (interquartile range).

Dice Jaccard Hausdorff (in mm) MAD (in mm) SMAD (in mm) FPD FND

0.92 (0.06) 0.85 (0.10) 3.05 (2.33) 1.01 (0.85) 1.01 (0.81) 0.03 (0.08) 0.08 (0.15)

Table 3 WIs (95% CI) for the SU-Net, SU-Net + dropout, U-Net, U-Net + DC, and ResNet architectures for each evaluation metric. A CI containing
the value 1.0 indicates a good agreement between the automatic method and the three operators.

Method WI Dice WI Jaccard
WI Hausdorff

(in mm) WI MAD (in mm) WI SMAD (in mm) WI FPD WI FND

SU-Net 1.032 (1.03, 1.03) 1.052 (1.05, 1.06) 0.677 (0.67, 0.69) 0.738 (0.73, 0.75) 0.776 (0.77, 0.79) 0.425 (0.40, 0.45) 0.588 (0.57, 0.61)

SU-Net +
dropout

1.032 (1.03, 1.03) 1.051 (1.05, 1.05) 0.701 (0.69, 0.71) 0.751 (0.74, 0.76) 0.784 (0.77, 0.80) 0.420 (0.40, 0.44) 0.591 (0.57, 0.62)

U-Net 1.085 (1.08, 1.09) 1.111 (1.10, 1.12) 0.530 (0.52, 0.54) 0.577 (0.56, 0.59) 0.538 (0.52, 0.56) 0.281 (0.26, 0.30) 0.439 (0.42, 0.46)

U-Net +
DC

1.033 (1.03, 1.04) 1.053 (1.05, 1.06) 0.712 (0.70, 0.72) 0.723 (0.71, 0.74) 0.756 (0.74, 0.77) 0.395 (0.37, 0.42) 0.706 (0.69, 0.72)

ResNet 1.037 (1.03, 1.04) 1.061 (1.06, 1.07) 0.717 (0.71, 0.73) 0.726 (0.71, 0.74) 0.731 (0.72, 0.74) 0.533 (0.50, 0.57) 0.52 (0.5, 0.54)

Table 4 COD and IOD using SU-Net with the corresponding WIs and
the 95% CI. Results are reported using mean (�SD).

Stage Contraction Valsalva Rest

COD 0.62� 0.91 0.86� 1.89 0.60� 1.22

IOD 0.52� 0.70 0.62� 1.03 0.61� 0.92

WI 0.80 0.72 0.85

(95% CI) (0.72, 0.89) (0.68, 0.76) (0.80, 0.90)

Fig. 3 Segmentation of the levator hiatus using with the SU-Net architecture (blue) compared with the
three manual labels (red) for the following percentiles of the Dice coefficient: (a) 0th, (b) 25th, (c) 50th,
(d) 75th, and (e) 100th.
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5 Discussion
The task of segmenting ultrasound images can be challenging
and often results in high variability between operators. In this
work, we have presented a fully automatic method, using
a CNN, to segment the pelvic floor levator hiatus on a 2-D
image plane extracted from a 3-D ultrasound volume. A large

number of female patients may potentially benefit globally from
this approach. We have adopted a recently proposed SNN,
which for the first time has been applied in medical imaging
to tackle a clinically important application, obtaining either
superior or equivalent segmentation results compared to a num-
ber of state-of the-art network architectures with clear additional
benefits in terms of complexity and memory requirements.
Furthermore, based on a set of rigorous statistical tests with
real clinical image data, the proposed fully automatic method
achieved an equivalent accurate segmentation result compared

Fig. 4 Segmentation examples of the levator hiatus at the three different stages (contraction, Valsalva,
and rest) using the proposed method (blue) compared to the outlines provided by the operators (red).
Cases were chosen at the 75th percentile of the mean Dice coefficient considering the three operators.

Fig. 5 Histogram of the SELU activations at the last block after (a) 500, (b) 1000, (c) 1500, (d) 2000,
(e) 2500, and (f) 3000 iterations.

Fig. 6 Overlap at different iterations (0 to 3000) for the U-Net (blue)
and SU-Net (orange) architectures during testing for the first fold and
for the three operators.

Fig. 7 Learning curves of the training loss for the U-Net (blue) and
SU-Net (orange) architectures averaged for all folds at different iter-
ations (0 to 3000).
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to the only previous (semiautomated) study presented by
Sindhwani et al.5

The state-of-the-art deep-learning architectures have been
shown to perform well in the task of segmentation. To the
best of our knowledge, this is the first work in medical imaging
to replace the batch normalization with a SELU unit. SNN net-
works are able to retain many layers with stable training, par-
ticularly with a strong regularization that is advantageous for
ultrasound image segmentation. Furthermore, using SELU
has the opportunity of reducing the GPU memory requirement
and relaxes the dependency of mini-batch.

We show that the method presented outperformed the U-Net-
based architecture by considering region- and contour-based
metrics and confirmed by statistical tests. Although the effective
difference, i.e., effect size, is relatively small and subject to fur-
ther investigation in determining the clinical relevance, SELU
may have provided a faster convergence (Figs. 6 and 7).
Furthermore, although it is difficult to draw quantitative conclu-
sion on the efficacy of the SELU units, the activation output
distributions shown in Fig. 5 illustrate the desirably stable varia-
tion during training.19 On the other hand, no statistical significant
difference was found when SELU-dropout, U-Net + DC, or
ResNet was used. Therefore, SELU can potentially provide equiv-
alent or improved results without the mini-batch size limitation.

Comparing the COD (Table 1) with interoperator differences
(Table 2), we show highly similar results on the median values,
however, WIs CIs show that the automatic method strongly
agrees with the observers in terms of Dice and Jaccard coeffi-
cient with a value very close to 1, but it is not the case for the
distance metrics. This result may be due to a disagreement on
local parts of the boundaries as shown in Fig. 3(c), which gives
a higher Hausdorff distance value, or due to a larger part of
the boundary in disagreement with the operators as shown in
Fig. 3(b), which results in a higher SMAD value.

As a clinically relevant metric, we evaluated the differences
in area at three different stages (contraction, Valsalva, and rest).
In this case, WIs were smaller than 1, showing some level of
disagreement with the operators (Table 4). We believe that
the results can be further improved by increasing the number
of images during training, as the current dataset size is limited
and contains some extreme cases with a high variability.

Compared to a previous study,5 in which at least three ana-
tomical points have to be manually identified on the C-plane, we
proposed a fully automatic segmentation algorithm that is able
to segment the pelvic floor on the C-plane without operator
input of any form, achieving comparable accuracy. Note
that, the previous study already achieved competitive results
obtaining a good agreement with the three operators (Tables 1
and 2) and demonstrated to be clinically useful. Furthermore,
compared to a solution that requires human interaction (i.e.,
manual definition of several anatomical landmarks), fully auto-
matic methods, such as the one proposed in this work, have sig-
nificant advantages, including minimizing subjective factors due
to intra- and interobserver variations, simpler clinical workflow
with minimal uncertainty and quantifiable, repeatable procedure
outcome.

The limitation of this work, from a clinical application per-
spective, is the need to identify the C-plane from a 3-D ultra-
sound volume, which is currently done manually. We have
focused on the task of automatically segmenting the pelvic
floor on the C-plane mainly for three reasons: (1) the levator
hiatus is a mostly flat structure and there is no envisaged clinical

benefit of performing a 3-D segmentation rather than a 2-D one
in the C-plane; (2) validation of 2-D segmentation results in the
same volume but on different C-planes is problematic as it
requires comparison of manual contours on potentially different
images; and (3) the proposed method is meant to be one step of a
minimally interactive workflow for pelvic floor disorder analy-
sis. The current work aims at demonstrating the performance of
the proposed automatic method in a controlled problem domain
(i.e., where the C-plane is provided), before pursuing more end-
to-end solutions. After the successful development reported in
this work, we plan to investigate the feasibility of implementing
the complete analysis pipeline in which (a) the identification of
the C-plane would be automated but potentially refined by the
user; (b) the proposed automated deep-learning-based segmen-
tation could be possibly manually refined using an approach
similar to that of Wang et al.12,13 but requiring less user-time
than that of Sindhwani et al.;5 and (c) an automated prediction
of clinically relevant measurements and decision support infor-
mation would be performed based on the user-validated C-plane
and levator hiatus.

6 Conclusion
In this work, we present a deep-learning method based on an
SNN to automate the process of segmenting the pelvic floor
levator hiatus in a 2-D plane extracted from an ultrasound vol-
ume, which outperforms the equivalent U-Net architecture and
foregoes the need for batch normalization. Compared to pre-
vious work, this method is fully automatic with equivalent oper-
ator performance in terms of Dice metrics.
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