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Abstract. Deformable image registration, a key component of motion correction in medical imaging, needs to be
efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex
human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization
for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex
organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which
provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace
Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive
regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding
motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic
contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regulari-
zation improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing.
Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset. © The
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1 Introduction
Deformable image registration (DIR) of medical image volumes
is an essential component of many biomedical image analysis
applications.1 For example, computed tomography (CT)
volumes are typically acquired several times over the course of
radiotherapy, and DIR can help monitor changes to anatomy
and pathology.2 Similarly, DIR can improve the quality assess-
ment of dose delivery during radiotherapy.3,4 Furthermore, DIR
can also increase the efficiency of CT data annotation by propa-
gating an expert’s annotation from one volume (e.g., radio-
therapy planning or an atlas)5 to follow-up image volumes.
Likewise, quantitative analysis of temporal functional imaging,
e.g., dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI), is often challenged by the substantial motions
among consecutive scans, in particular sliding motions at the
lung and liver interface.6 Estimation of plausible organ motion
is an ill-posed, high-dimensional, numerical optimization prob-
lem typically associated with millions of possible solutions.7

It follows that the transformations computed by an algorithm
depend upon the chosen regularization model, and so DIR for
medical applications remains a challenging task.8

1.1 Related Work

A convolution-based regularization model for DIR was first
reported by Thirion,9 in which the so-called “Demons” registra-
tion algorithm was introduced. In the Demons registration
algorithm, optimization is decomposed into two alternating
subproblems: minimizing the similarity measure and followed
by regularization of the displacement field by Gaussian smooth-
ing of the currently estimated displacement field.10 However,
such an intrinsically isotropic motion (regularization) model is
inadequate for complex thoracic or abdominal motions, where
locally discontinuous motions (sliding) are typical.

To address this limitation, a number of alternative regulari-
zation methods have been reported. For example, in Ref. 11,
locally adaptive regularization was proposed to “shape” the
Gaussian kernels according to a local stiffness parameter.
Similarly, adaptive anisotropic filtering12,13 and local affine
adaptive regularization14 have been proposed. However, each
of these approaches yields deformations that smooth over
sliding interfaces. Other developments of Demons registration
applied to specific biomedical problems include constraining
the transformation to be one-to-one, differentiable, that is to
say a diffeomorphism.15 Filtering the displacement field was
also proposed in Ref. 16, where local averaging based on initial
bone segmentation ensures a rigidity constraint appropriate to
the application. Similarly, biologically relevant tissue
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papiez@eng.ox.ac.uk

Journal of Medical Imaging 024001-1 Apr–Jun 2018 • Vol. 5(2)

Journal of Medical Imaging 5(2), 024001 (Apr–Jun 2018)

https://doi.org/10.1117/1.JMI.5.2.024001
https://doi.org/10.1117/1.JMI.5.2.024001
https://doi.org/10.1117/1.JMI.5.2.024001
https://doi.org/10.1117/1.JMI.5.2.024001
https://doi.org/10.1117/1.JMI.5.2.024001
https://doi.org/10.1117/1.JMI.5.2.024001
mailto:bartlomiej.papiez@eng.ox.ac.uk
mailto:bartlomiej.papiez@eng.ox.ac.uk
mailto:bartlomiej.papiez@eng.ox.ac.uk
mailto:bartlomiej.papiez@eng.ox.ac.uk
mailto:bartlomiej.papiez@eng.ox.ac.uk
mailto:bartlomiej.papiez@eng.ox.ac.uk


characteristics for cardiac motion estimation led to the incom-
pressible Demons (iLogDemons) using the Helmholtz decompo-
sition of deformations.17 Aside from Demons registration, other
approaches have been proposed for DIR that use locally adaptive
regularization. These include, for example, a variational approach
to image registration with locally varying regularization.18 A sum-
mary of joint flow- and image-driven anisotropic regularization
models for variational image registration is presented in
Ref. 19. While such methods report promising results, they pro-
duce smooth transformations that fundamentally set limits on
their application to abdominal imaging.

More recently, DIR algorithms with discontinuity preserving
properties at lung interfaces have been reported.20–28 However,
such algorithms generally require prior knowledge about the
locations of discontinuities in deformations to be included into
the optimization process. Such prior information may be incor-
porated in the form of segmentation of sliding surfaces using
either a “motion mask”29 or an automatically detected mask.22

Another approach to improve accuracy of DIR algorithms is to
perform registration separately for lungs and other anatomical
regions.30,31 Unlike the liver, automated lung segmentation from
CT is relatively straightforward due, primarily, to the fact that
there is a large difference in attenuation between normal lung
parenchyma and the surrounding tissue.32 Liver motion is also
far more complex than that of the lungs, as the liver exhibits
not only sliding motions against thoracic cage but also moves
against other surrounding organs in the abdomen and the
abdominal wall.33 Furthermore, the low contrast of liver tissue
in CT makes accurate (and fast) segmentation of sliding surfaces
in the abdomen challenging,34 so a DIR method that does not
require explicit segmentation of the liver surface remains an
attractive option.

1.2 Contributions

In this work, we present an approach to regularization that
implicitly incorporates prior knowledge about the medical vol-
umes to be registered in a natural manner. Our method is related
to Demons registration, but we replace Gaussian regularization
by a guided image filtering technique,35 a method we call
GIFTed Demons. Guided image filtering is able to incorporate
additional (e.g., anatomical) information from so-called “guid-
ance” images in a computationally efficient manner (unlike
time-consuming bilateral filtering).27 For example, instead of
performing an accurate liver segmentation to guide the discon-
tinuities of deformation, in this paper, we use a more straight-
forward pseudosegmentation generated by performing “simple
linear iterative clustering” (SLIC) algorithm.36 In our previous
work,37 such a locally adaptive regularization model was based
on the SLIC algorithm, which had been initialized multiple
times in a random fashion. This enabled the propagation of dis-
continuities to the estimated displacement field corresponding to
image edges and details, while at the same time preserving the
smoothness of homogeneous areas. In this paper, we show in
addition that locally adaptive regularization can also be achieved
using several layers of SLICs with different sizes (volumes)
simultaneously, leading to multiscale SLIC regularization that
is able to model piecewise smooth motions. Both models per-
form locally adaptive regularization, which can effectively deal
with highly complex motions. We have performed extensive
quantitative evaluation of our method using two clinical four-
dimensional (4-D) datasets consisting of: (i) a set of publicly
available CT liver scans24 and (ii) in-house DCE-MRI liver

sequences of patients with cancer.37 Our results demonstrate
that our registration method significantly improves registration
accuracy as compared to state-of-the-art isotropic diffusion
registration. Furthermore, for the benchmark CT liver dataset,24

a DIR using our regularization model yields results that are com-
petitive with the state-of-the-art. In summary, SLIC improves
propagation of discontinuities in the estimated transforma-
tions (either via random multichannel image guidance or
via multiscale image guidance). Our method offers promising
results while avoiding computationally intensive and poten-
tially error-prone prior segmentation to model sliding bounda-
ries explicitly.

1.3 Overview

The registration model is presented in Sec. 2. Since the approach
is based on a registration algorithm that uses isotropic regulari-
zation, this aspect is briefly presented in Sec. 2.1. In Sec. 2.2, we
present a general convolution-based regularization model, and
then Sec. 2.3 introduces guided filters and their application
for displacement filtering. Section 2.4 discusses a number of
modified guidance images generated using supervoxels, which
can deal effectively with sliding motions and exploit the com-
putationally attractive guided image filtering technique pre-
sented in Sec. 2.3. Section 4 presents results of using the datasets
described in Sec. 3. These results are compared against state-
of-the-art diffusion registration frameworks. Results show-
ing our approach to accurately align liver volumes, while pre-
serving naturally occurring sliding motions, are discussed in
Sec. 5.

2 Methods

2.1 Deformable Image Registration with Isotropic
Diffusion Regularization

In a typical approach to motion correction,7 DIR is applied
between two three-dimensional (3-D) volumes [from a spa-
tio-temporal (4-D) dataset] containing either an anatomical or
a functional representation of a patient’s region of interest.
The primary aim of DIR is to estimate a plausible transformation
ϕð~xÞ ¼ ~xþ ~uð~xÞ (which is defined with respect to a displace-
ment field ~u) that maps each point of a source image IM to
the most similar point in the reference image IF. Generally,
DIR can be defined as an optimization problem, minimizing
an energy function Eð~uÞ
EQ-TARGET;temp:intralink-;e001;326;257 arg min

~u
½Eð~uÞ ¼ ESIMðIF; IM; ~uÞ þ αEREGð~uÞ�; (1)

where ESIM estimates image data similarity and EREG regular-
izes (the “plausibility” of) the estimated displacement field.
The weighting parameter α balances the influence of similarity
and regularization.

Minimization of the energy function Eð~uÞ [given by Eq. (1)]
can be solved via the corresponding Euler–Lagrange equation
(see e.g., Ref. 7)

EQ-TARGET;temp:intralink-;e002;326;147fSIMðIF; IM; ~uÞ − αAREGð~uÞ ¼ ~0; (2)

where fSIM is the force term that corresponds to the similarity
measure ESIM and AREG is the partial differential operator
used to regularize the displacement field according to the regu-
larization term EREG. In the simplest case, when a one-to-one
intensity mapping among the input images can be assumed
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(e.g., for CTs), we can consider the symmetric Demons force
fSIM related to a normalized version of the sum of squared
differences (SSD) (for details see Ref. 15)

EQ-TARGET;temp:intralink-;e003;63;719fSIM½~uð~xÞ� ¼
IFð~xÞ − IM½~xþ ~uð~xÞ�
k∇Ið~xÞk2 þ λκ2ð~xÞ ∇Ið~xÞ; (3)

where ∇Ið~xÞ ¼ 1
2
f∇IFð~xÞ þ ∇IM½~xþ ~uð~xÞ�g is a symmetric

gradient, κð~xÞ ¼ IFð~xÞ − IM½~xþ ~uð~xÞ� is a local estimate of
noise, and λ is a weighting parameter that controls the maximum
step length. Other similarity measures for multimodal registra-
tion can also be applied (see e.g., Ref. 38 for a local correlation
coefficient or Ref. 39 for the correlation ratio and mutual infor-
mation). A frequently chosen regularization term EREG is iso-
tropic diffusion (see e.g., Ref. 7)

EQ-TARGET;temp:intralink-;e004;63;586EREGð~uÞ ¼
1

2

Z
Ω

Xn
j¼1

k∇~uið~xÞÞk2d~x; (4)

with the corresponding partial differential operator

EQ-TARGET;temp:intralink-;e005;63;525AREG½~uð~xÞ� ¼ −Δ~uð~xÞ; (5)

where Δ denotes the Laplace operator. Diffusion regularization
penalizes large gradients in the displacement field.7

2.2 Convolution-Based Regularization Model

Diffusion regularization [Eq. (4)] can be achieved by smoothing
the displacement field ~u with an isotropic Gaussian kernel, as
originally proposed by Thirion.9 Similarly, it has been suggested
that the diffusion process exploits the fact that the Gaussian
kernel is the Green’s function of the diffusion equation.12,40

It follows that the solution is approximated via iteratively
repeated convolution with a Gaussian kernel G on the displace-
ment field

EQ-TARGET;temp:intralink-;e006;63;359~ukþ1ð~xÞ ¼ G � ½~ukð~xÞ ∘ fSIMð~xÞ�; (6)

where ~uk is the displacement field estimated at iteration k and ∘
is the composition operator.15

However, diffusion regularization is homogeneous and iso-
tropic and, so, constrains the estimated deformations to be
smooth, independent of location or direction. First, if the amount
of regularization (given by the standard deviation of the
Gaussian filter) is excessive, fine details of the displacement
field are not well preserved. Second, if the standard deviation
of the Gaussian filter is too small, the estimated deformation
field is highly sensitive to image noise.11 Third, in the case
of a sliding motion among objects, the smoothness constraint
assumption is often violated at object boundaries resulting in
inaccurate estimation of the deformation field close to such
boundaries.27 Fortunately, the Gaussian kernel can be replaced
by more powerful regularization, for example, nonstationary
Gaussian kernels,11 anisotropic diffusion,13 bilateral filtering
to counter occlusions,40 or to enable sliding motion,27 or locally
adaptive image-driven curvature regularization12 to ensure
physiologically more realistic deformations. In the following
sections, we will show how to enforce the plausibility of the
estimated displacement field, e.g., preservation of sliding
motion between the liver and the lung boundaries while not
requiring prior liver segmentation.

2.3 Regularization via Filtering with Guidance

In addition to the ease and options of replacing a Gaussian ker-
nel by a more powerful filtering technique, such a substitution
also offers the opportunity to design regularization kernels that
can provide a more plausible solution to DIR regularization.
Inspired by the idea of spatial adaptive filtering of the deforma-
tion field, as well as the guided image filtering technique devel-
oped for computer vision applications,35 we introduce a “generic
approach” for accurate and fast locally adaptive regularization.

The guided image filter technique is a fast, nonapproximate,
edge-preserving filter and gives good results in a wide variety of
computer vision applications. The filtered image Io is defined to
be a locally linear model of the guidance image Ig

EQ-TARGET;temp:intralink-;e007;326;602Ioð~xÞ ¼ γN Igð~xÞ þ βN ; (7)

where γN and βN are the coefficients to be estimated within
the local neighborhood N (e.g., a square window of size r).
The coefficients γN and βN can be estimated, for example,
by minimizing the difference between the input Ii and output
image Io, as follows:

EQ-TARGET;temp:intralink-;e008;326;516γN ¼ μðIgIiÞ þ μIgμIi
σ2Ig þ ε

βN ¼ μIi þ γN μIg ; (8)

where μIg , μIi , and μðIgIiÞ are the intensity means of the guidance

image Ig, input image Ii, and IgIi, respectively, and σ2Ig is the

intensity variance of the guidance image Ig estimated in the local
neighborhood N . The degree of smoothing (or edge-preserving
properties) for guided image filtering may be adjusted using the
parameter ε > 0. The filtered image Io can be also considered to
be a weighted average of the guidance image Ig, and so it can be
expressed in the explicit form of kernel weights WGIFðIgÞ oper-
ating at spatial location ð~xÞ

EQ-TARGET;temp:intralink-;e009;326;362WGIFðIg; ~x; ~yÞ ¼ 1þ ½Igð~xÞ − μIg �½Igð~yÞ − μIg �
σ2Ig þ ε

; (9)

where ~y is a spatial location within the local neighborhood N
(centered on the position ~x). For grayscale images, the guided
image filtering is defined in the following way:

EQ-TARGET;temp:intralink-;e010;326;281Ioð~xÞ ¼
X
~y∈N

WGIFðIg; ~x; ~yÞIið~yÞ: (10)

We propose using the guided image filter [Eq. (9)] as a
weighted averaging operator on the displacement field ~u, replac-
ing convolution by the Gaussian kernel G [Eq. (6)]. Finally,
the estimated displacement field can be spatially filtered by
considering the context of the guidance information Ig

EQ-TARGET;temp:intralink-;e011;326;183~ukþ1ð~xÞ ¼
X
~y∈N

WGIFðIg; ~x; ~yÞ~ukð~yÞ: (11)

The guided filter offers substantially more benefits than
merely smoothing. For example, considered as a linear model
[Eq. (7)], the guided image filter “scales” and “shifts” the guid-
ance image to the filtered output. We exploit this property to
transfer the structures of any guidance image Ig to the
output displacement field, enabling accurate estimation of the
displacement field. In our clinical applications, we employ
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the structure-transferring features to propagate information
about sliding surfaces to the estimated displacement field
while preserving smoothness inside organs of interest. In the
simplest case, such information about sliding surfaces could
come directly from the input images (so-called “self-guidance”);
in practice, we have found that this leads to several artificial
discontinuities at the estimated displacement.27 If the initial seg-
mentation of sliding organs (surfaces) is available,29–31 then such
a segmentation mask can be considered as an auxiliary image to
guide filtering of the displacement field. Considering a binary
image as the guidance image for filtering the estimated displace-
ment field, two classes of the kernel weights are generated. The
first class consists of the voxels in regions close to the segmen-
tation boundary, where the kernels will be shaped to get a strong
edge-preserving response and so generating a discontinuity in
the estimated displacement field. For the second class, voxels
inside the segmentation mask are considered, and, for them,
the kernel will provide a good approximation to a Gaussian,
resulting in a smooth displacement field (similar to result of iso-
tropic diffusive regularization). Additionally, using a segmenta-
tion of the structures where sliding may occur as a guidance
image for a DIR algorithm provides a computationally attractive
framework to merge displacement fields estimated for each
segmented region (instead of performing registration for each
region separately).25,31 However, as noted in Sec. 1.1, reliably
generating such a segmentation for the liver is nontrivial, and
nonaccurate segmentation may lead to estimation of implausible
transformations, affecting the overall accuracy of the DIR. For
this reason, in Sec. 2.4, we present an alternative approach to
generate an appropriate guidance image for a particular DIR
application based on pseudosegmentation using an SLIC
method.

2.4 Choice of Guidance Image

An additional motivation for using guided filters for DIR is that
it enables flexible incorporation of supplementary knowledge
for displacement field regularization.

2.4.1 Regularization with random supervoxels

In this section, we consider an alternative guidance image,
which is built based on the concept of sparse image representa-
tion based on supervoxel clustering. In our previous work,37 we
used the SLIC algorithm36 to generate a regular and compact
clustering. SLIC supervoxel clustering yields image pseudoseg-
mentations that correspond to spatial proximity (compactness)
d~xw and maintain image boundaries (appearance similarity) dI .
The Euclidean distance between a spatial position ~x¼½x1;x2;x3�T
and a cluster center ~w ¼ ½w1; w2; w3� is calculated to ensure
compactness of a 3-D medical image

EQ-TARGET;temp:intralink-;e012;63;198d~xw ¼ ½ðx1 − w1Þ2 þ ðx2 − w2Þ2 þ ðx3 − w3Þ2�1∕2: (12)

The distance measuring the gray-level intensity (typical for
medical images) proximity is given by

EQ-TARGET;temp:intralink-;e013;63;144dI ¼ f½Ið~xÞ − Ið~wÞ�2g1∕2: (13)

The combination of the two normalized distances d~xw and dI
is defined as follows:

EQ-TARGET;temp:intralink-;e014;326;752D ¼
��

d~xw
S

�
2

þ
�
dI
m

�
2
�
1∕2

: (14)

The SLIC algorithm is designed to generate approximately K

equal-sized supervoxels. The parameter S ¼
ffiffiffi
N
K

3

q
corresponds to

the sampling interval of the initial spacing of the cluster centers,
and N is the number of voxels in the image to be clustered. The
parameter m is a weight determining a relative importance
between color and spatial proximity. A larger value of m results
in supervoxels with more compact shapes; conversely, when m
is smaller, the resulting clusters have less regular shapes and
sizes; however, they are more adapted to image details and
intensity edges. The algorithm starts from a set of equally spaced
cluster centers ~w0, specified by the user. After each iteration, the
cluster centers ~wi are recomputed, and the algorithm is iterated
until the clusters no longer change (or the algorithm reaches a
preset maximum number of iterations imax). For implementation
details of SLIC algorithm, we refer the reader to the seminal
paper.36

Because SLIC performs image clustering that corresponds to
spatial and intensity proximity, it greatly reduces redundant
intensity information of voxels in essentially homogeneous
areas. However, such a clustering also tends to give quite incon-
sistent results in large homogeneous image regions since in such
regions noise dominates signal in determining the behavior of
the algorithm. In the context of filtering the displacement field
during registration, this is a major drawback, because filtering
with respect to the clustered image would introduce artificial
discontinuities in such homogeneous areas (similar to using
self-guidance). Such oversegmentation is a common problem
for image-driven regularization models.19 In our previous
work,37 we proposed using multiple channels (layers) of super-
voxels to obtain a piecewise smooth displacement model. To
generate such different channels of supervoxels, the SLIC algo-
rithm is run several times with randomly perturbed initial cluster
centers: ~w0 þ Z ∼N ðμz; σ2zÞ, where μz, σ2z are the mean and
variance of the normal (Gaussian) distribution Z, respectively.
In homogeneous areas, each layer S of image clustering will
result in slightly different clusters, whereas image areas with
sufficient structural content will be hardly, if at all, affected
by random perturbation of SLIC cluster centers. We use each
layer of supervoxels S as a separate channel of our guidance
image Ig ¼ ½S1; S2; · · · ; SM� and then perform a guided image
filtering of the displacement field with respect to such a multi-
channel guidance image. Since the guidance image Ig now con-
sists of multiple channels, we need to extend the linear model
[Eq. (7)] to its multichannel counterpart as follows:

EQ-TARGET;temp:intralink-;e015;326;224Ioð~xÞ ¼ ΓT
N Igð~xÞ þ βN ; (15)

where ΓT
N is now M × 1 coefficient vector [compare with

Eq. (7)]. Similar to the case of single-channel filtering, the coef-
ficients ΓN and βN may be estimated as follows:
EQ-TARGET;temp:intralink-;e016;326;158

ΓN ¼ ðΣIg þ εUÞ−1
(X

~x∈N

½Igð~xÞIið~xÞ − μIgμIi �
)

βN ¼ μIi þ ΓT
N μIg ; (16)

where μIg and μIi are the mean of the guidance image Ig and the
input image Ii, respectively, and ΣIg is the covariance of the
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guidance image Ig in the local neighborhood N . U denotes the
identity matrix. Similarly, for a given multichannel guidance
image Ig, the weights WGIF of the guided filter can be explicitly
expressed in the following way:

EQ-TARGET;temp:intralink-;e017;63;708WGIFð~x; ~yÞ ¼ 1þ ½Igð~xÞ − μIg �T ½ΣIg þ εU�−1½Igð~yÞ − μIg �:
(17)

It has been shown35 that in the case that the guidance image
Ig is a multichannel image, the weights of the guided filter
[defined in Eq. (17)] can be computed without a significant
increase of computational complexity as compared to single-
channel image guidance. (Through for M channels, it requires
inverting an M ×M matrix for each pixel.) Example of sparse
image representation using SLIC is shown in Fig. 1.

The concept of image clustering for DIR has been investi-
gated previously. For example, in Refs. 41 and 42, supervoxels
were used to reduce the dimensionality of DIR solutions for dis-
crete optimization, significantly improving the computational
complexity, while increasing registration accuracy. Instead of
estimating the optimal solution for each voxel, similar voxels
were grouped into supervoxels, and optimal transformations
were found for these supervoxels. Then, to derive the final,
dense displacement field, the displacement fields obtained for
each set of supervoxels were averaged. Here, we use this
concept for DIR with a continuous optimizer; in addition, aver-
aging the displacement field is done implicitly during guided
image filtering; so, the estimated displacement field is dense.
However, we note that the method could also be seamlessly inte-
grated into other DIR frameworks that can be formulated as
an energy minimization, e.g., to extend the standard free-form
deformation (FFD) approach.43

2.4.2 Regularization with multiscale supervoxels

Using a single supervoxel channel for volume clustering is at
best challenging, at worst inappropriate, due to the different
amounts and patterns of motion that are apparent in the abdo-
men. Larger supervoxels (lower values of the parameter K) tend
to spill over anatomical or functional structures, so larger super-
voxels give poorer registration accuracy at sliding organ inter-
faces. In contrast, smaller supervoxels (higher values of the
parameter K) produce clusters that better respect the boundaries
between the different structures, enabling estimation of local
motion patterns. However, for large structures, such as the
liver, such small-size-clustering may introduce artificial local
discontinuities, which runs counter to estimating larger scale
smooth displacement fields.

In this work, we introduce multiscale supervoxel-based regu-
larization for DIR, where the “scale” of the estimated motion is
encoded by the size of supervoxels used for regularization.
To obtain a multiscale representation of volumes, the SLIC algo-
rithm is run a number of times, in each case with a different
value of the parameter K. As in the case of random supervoxel
regularization, regions with adequate structural content are con-
sistently well clustered. Similarly, clustering of large structures
with homogeneous intensity values produces results analogous
to (manual or automatic) organ segmentation and, so, is likely to
contribute to improving the estimation of more global motions.
The multiscale regularization that we have developed for DIR is
an elegant way to incorporate prior knowledge. Unlike other
approaches to multiscale regularization,44,45 our method can
take into account several scales to produce locally discontinuous

displacement fields. To visualize the key differences between
local kernels used for filtering of displacement field, exemplar
kernels for the Gaussian model,9 and the proposed model are
shown in Fig. 2.

2.5 Efficient Implementation

DIR is often used for the analysis of large 3-D medical volumes,
where the registration technique needs to be efficient. To illus-
trate our approach, we focus here on an extension to Thirion’s
Demons algorithm,9 which is a popular choice due to its linear
complexity with respect to the number of image voxels.

A major advantage of the guided filtering technique is that it
also has linear complexity with respect to the number of image
voxels. It has been shown35 that the weights of the guided filter
[given by Eq. (9) for single-channel images and by Eq. (17) for
multichannel images] can be implemented efficiently as a
sequence of box filters using either a moving sum method or
the integral imaging technique.35 Further speed-up using the
same technique can be achieved via a more efficient GPU
implementation. Unlike the bilateral filters used in previous
work,27,40,46 which achieve speed-ups through domain subsam-
pling, the guided filtering technique is a nonapproximate algo-
rithm and can be applied to high-dimensional bilateral kernels.

The SLIC36 algorithm is reported to have linear complexity
with respect to the number of image voxels, and so it can be
applied to large medical datasets. It is also important to note
that the SLIC algorithm is memory efficient when dealing
with large volumes (for more details, see Ref. 36).

To further improve the robustness of the algorithm as well as
computation time, a four-level multiresolution framework is
applied (with resampling by a factor of 2 between each level
of the original image resolution).

3 Experimental Setup
The methods described in this paper have been evaluated to esti-
mate liver motion, in which there are motion discontinuities,

Algorithm 1 GIFTed Demons DIR

Require: Volumes to register: I f and Im

Require: Registration parameters: r and ε

Require: Guidance image parameters: K

Ensure: Displacement field ~u

1: ~uk¼0 ¼ ~0

2: repeat

3: Compute the Demons force: fSIM [e.g., Eq. (3)]

4: Update the deformation field: ~ukþ1 ¼ ~uk ∘ fSIM

5: Generate selected guidance: Ig

6: Update ~ukþ1 by filtering ~uk with respect to a guidance image
Ig [e.g., Eq. (11)]

7: k ¼ k þ 1

8: until (convergence of k~unew − ~uoldk2) or (k ≥ IterMax )

9: return ~u
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Papież et al.: GIFTed Demons: deformable image registration with local structure-preserving. . .



e.g., at the lung–liver interface. The benefits of using a guided
image filtering technique with two multichannel guidance
images are presented, showing that the SLIC-based component
to model piecewise smooth, edge-preserving displacement fields
can be applied to clinical data. We implement our proposed
locally adaptive regularization within a Demons framework,
specifically the Demons algorithm with a composition scheme
for displacement field updates.15 Pseudocode of the overall
structure of the GIFTed Demons algorithm is presented in
Algorithm 1. For quantitative comparison of the regularization
methods, we performed an evaluation using three different ker-
nels for filtering the deformation field: (1) spatially isotropic
Gaussian (iso-dem) denoted as Demons,9,15 and the proposed
Demons methods using guided image filtering with (2) random
(rdn-gif) or (3) multiscale image clustering (mls-gif).

3.1 Materials

3.1.1 CT liver data

For the quantitative evaluation of liver motion, the methods
described above for DIR have been tested on publicly available
volumes of abdominal 4D CT datasets. Four inhale and
exhale abdominal CT image pairs were provided by the
Stanford School of Medicine, Stanford, California (MIDAS
Community: 4D CT Liver with segmentations)47 that were pre-
viously released with additional manually selected landmarks
for validation purposes.24 Following the preprocessing steps
suggested in Ref. 24, the volumes were cropped, thresholded,
intensity-normalized, and then linearly resampled to isotropic
spacing of 2 mm3. The original volume resolution was 0.98 ×
0.98 × 2.5 mm3. The resulting dimensions of volumes are
between 230 × 166 × 200 and 250 × 162 × 170.

To quantify registration accuracy, the target registration error
(TRE) was calculated for the well-distributed set of landmarks,
which are provided with this dataset (∼50 landmarks per case
for lungs and∼20 landmarks per case for the abdomen including
liver). In all cases, the end-of-inspiration volume was chosen as
the reference image and the end-of-expiration volume as the
source image. The initial average TRE is 7.04� 4.3 mm for
lung landmarks and 6.44� 3.4 mm for abdominal landmarks.

3.1.2 DCE-MRI liver data

Our registration method has also been applied to four abdominal
DCE-MRI sequences acquired at the Churchill Hospital, Oxford
as a part of an ongoing clinical trial exploring the feasibility of
imaging techniques to assess the biology of colorectal liver
metastases.48 The DCE-MRI data were acquired with a variable
acquisition time, yielding between 21 and 25 volumes with the
original volume resolution varying between 0.78 × 0.78 ×
2.5 mm3 and 0.83 × 0.83 × 2.5 mm3 (all volumes were linearly
resampled to isotropic spacing of 2.5 mm3 for evaluation). The
resulting acquisition period is at least 7 min, and the exact num-
ber of volumes (and thus acquisition) depends on patient’s res-
piratory rate. Following the acquisition protocol, the patient is
instructed to maintain a breath-hold during end expiration for
7 s, repeating this process for around 7 min to collect at least
20 volumes. Misalignment among the acquired volumes derives
primarily from the patient’s breath-hold variability over time,
causing misalignments that in turn can increase errors in the esti-
mation of pharmacokinetic parameters (e.g., Ktrans: the volume

transfer coefficient reflecting vascular permeability), especially
in the first phase of contrast uptake.

The initial average TRE is 7.83� 8.5 mm for the manually
annotated landmarks corresponding to distinctive anatomical
features within the liver region, including focal liver lesions,
vascular bifurcations, and distinctive points on the liver surface.
Accurate manual annotation of temporal functional imaging,
such as DCE-MRI, is labor-intensive and, furthermore, chal-
lenging due to intensity changes caused by contrast wash-
in/-out. We decided to annotate only DCE-MRI from four
patients representing different levels of breathing motion during
acquisition. Furthermore, we annotated each volume in the
DCE-MRI sequence (contrary to the publicly available CT data-
set, where only inspiration and expiration volumes were anno-
tated), resulting in more than 100 landmarks per sequence. In all
cases, the first (baseline) volume was chosen as the reference
image and follow-up volumes as the moving image.

4 Results

4.1 CT Liver Data

We performed DIR using the SSD as the similarity measure
since the CT liver dataset was preprocessed as suggested in
Ref. 24, thus removing possible intensity inconsistencies (e.g.,
due to tissue compression during breathing). We used the fol-
lowing parameter settings for the optimization to achieve the
results reported in Tables 1 and 2: three multiresolution levels
with a maximum number of iterations equal to 50. We deter-
mined empirically that a filter neighborhood size of 5 and a
regularization parameter ε ¼ 0.1 yield the best results for the
GIFTed Demons. For clustering, the weighting parameter m ¼
24 and the number of supervoxels K ¼ 3750 were selected
empirically, and we found that using more than three channels
of the SLIC guidance image did not improve the overall TRE
significantly. The detailed optimization of parameter selection is
presented in Fig. 3.

The average TRE between landmarks before and after regis-
tration was calculated, and the results are shown in Tables 1 and
2 for the lungs and abdomen, respectively. Example registration
outcomes for the inhale–exhale case #P0 using classic SSD
Demons, and then using our method, consisting of SSD-
based Demons and guided image filtering procedure along
with the magnitudes and vector representation of the deforma-
tion fields, are shown in Figs. 4 and 5, respectively. All methods
produce a statistically significant improvement (p-value <0.05)
in terms of TRE compared to before registration. We found that
our methods, using both random (rdn-gif) and multiscale (mls-
gif) clustering, achieve a lower TRE than using Gaussian filter-
ing alone. In particular, an improvement of 1.4 mm is observed
for the landmarks within the lungs (Table 1) and 0.29 mm for the
landmarks in the abdomen (Table 2). This greater improvement
of TRE for the lungs relative to the liver is consistent with
the results reported previously,24 stressing the importance of
a locally adaptive regularization model for lung applications.
Finally, the TRE obtained for our two methods (rdn-gif and
mls-gif) are essentially the same.

Furthermore, the quantitative results reported in Tables 1 and
2 are consistent with visual assessment of the registration results
presented in Figs. 4 and 5. Registration with Gaussian regulari-
zation does not preserve the sliding motion at the lung and liver
interfaces, and the resulting displacement fields vary smoothly
across such boundaries (see the regions depicted by the red and

Journal of Medical Imaging 024001-6 Apr–Jun 2018 • Vol. 5(2)
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green arrows in Fig. 5). Correspondingly, after registration, the
CT volumes are not well aligned in such regions. In contrast,
the resulting displacement field obtained by our method
(rdn-gif) indicates its properties, i.e., discontinuities at the lung
boundaries (depicted by red arrows) and smoothness at lung–
liver interface (depicted by green arrows).

4.2 Comparison with State-of-the-Art

We assessed registration accuracy in terms of TRE for the pub-
licly available CT liver dataset, as reported to date in the liter-
ature. For fair comparison, we quote the results presented in
publications not by our direct evaluation of these methods.
At the time of submission, to the best of our knowledge, the
best TRE on these data has been achieved by the multiresolution
extended free-form deformation49 (XFFD) where the TRE was
reduced to 1.94� 1.01 mm for all landmarks (the separate
TREs for lung and abdominal landmarks are not reported). In
our earlier work, we reported a TRE of 2.08 mm for lungs and

2.19 mm for abdominal landmarks, which were achieved for
the GIFTed Demons with random multichannel regularization.37

Minor improvements to the current results, as compared to our
previous work,37 are due to implementation upgrades introduced
into our software. The first proposed method,24 which required
an accurate segmentation of liver to enable discontinuous
motion estimation, reported a TRE of 2.15� 1.42 mm for lungs
and 2.56� 1.62 mm for abdomen.

Handling discontinuities in the estimated displacement fields
is challenging, particularly for complex human organ motions.
Locally adaptive regularization24 is tailored to a specific discon-
tinuous motion, namely the sliding motion at the liver\lung inter-
face. In turn, the multiresolution XFFD method49 is not limited
to sliding motion only and improves DIR performance on so-
called free discontinuous motion (i.e., two or more organs can
touch and separate each other freely, e.g., organs in the abdo-
men). By way of comparison, the regularization in our method
is driven by a generic guidance image, and so any type of

Table 1 Average TRE and standard deviation obtained for CT liver dataset24 for landmarks in the lungs, using three different regularization methods:
isotropic Gaussian filtering (iso-dem), and image-guided filtering with random (rnd-gif) and multiscale (mls-gif) clustering. The proposed methods
(rnd-gif and mls-gif) achieve the lowest average TRE (marked in bold) for landmarks in the lungs comparing to the isotropic regularization (with
p-value <0.01), and at the same time, the results obtained by regularization with random and multiscale clustering are not statistically significant.

Method

TRE (avg:� std) (mm)

#P0 #P1 #P2 #P4 Average

Without 10.88� 3.8 6.82� 2.6 5.10� 3.1 5.61� 4.8 7.04� 4.3

iso-dem15 5.01� 3.7 1.81� 1.0 2.19� 1.2 2.81� 3.2 2.96� 1.4

rnd-gif 1.77� 1.4 1.35� 0.5 1.63� 0.6 1.47� 0.7 1.56� 1.0

mls-gif 1.76� 1.5 1.36� 0.5 1.63� 0.6 1.46� 0.7 1.56� 1.0

Pace et al.24 2.89� 2.0 1.64� 0.7 2.12� 1.0 1.99� 1.4 2.15� 1.4

XFFD49,a 1.54� 0.9a 1.56� 0.9a 2.25� 1.3a 2.41� 1.0a 1.94� 1.0a

aThe TRE for all landmarks in the 4D CT liver dataset because the separate TREs for lung and abdominal landmarks are not reported.49

Table 2 Average TRE and standard deviation obtained for CT liver dataset24 for landmarks in the abdomen, using three different regularization
methods: isotropic Gaussian filtering (iso-dem), and image guided filtering with random (rnd-gif) and multiscale (mls-gif) clustering. The proposed
methods (rnd-gif and mls-gif) achieve the lowest average TRE (marked in bold) for landmarks in the abdomen comparing to the isotropic
regularization (with p-value <0.01); however, it is less prominent than in the case of the lungs. Similarly, as in the case of landmarks in the lungs,
the differences of results obtained by regularization with random and multiscale clustering are not statistically significant.

Method

TRE (avg:� std) (mm)

#P0 #P1 #P2 #P4 Average

Without 9.08� 2.9 5.90� 3.1 6.31� 2.8 4.42� 3.3 6.44� 3.4

iso-dem15 2.13� 1.4 1.50� 0.8 1.93� 1.0 2.52� 1.7 2.02� 1.4

rnd-gif 1.60� 1.1 1.25� 0.6 1.76� 1.0 2.30� 1.1 1.73� 1.0

mls-gif 1.61� 1.1 1.25� 0.6 1.77� 1.0 2.30� 1.1 1.73� 1.0

Pace et al.24 2.27� 1.2 2.38� 1.6 2.79� 1.8 2.80� 1.9 2.56� 1.6

XFFD49,a 1.54� 0.9a 1.56� 0.9a 2.25� 1.3a 2.41� 1.0a 1.94� 1.0a

aThe TRE for all landmarks in the 4D CT liver dataset because the separate TREs for lung and abdominal landmarks are not reported.49
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discontinuous motion can be enforced as long as it is encoded
in the guidance image. Furthermore, both locally adaptive
regularization24 and an extended B-spline transformation49

require segmentation of the reference volume, which does not

fully address the practical requirements of automated motion
correction for medical imaging. Therefore, our method using
efficient image clustering compares favorably with other com-
peting methods for medical applications.

Fig. 2 Comparison between different local kernels used for filtering of displacement field: (a) coronal
view of the reference image with the corresponding contour shown for visual guidance (dashed magenta
line), (b) isotropic Gaussian kernels (classic method),9 and the presented guided image filtering kernels
incorporating, (c) single channel of clusters for guidance, and (d) multiple channels of clusters for
guidance. The proposed guidance image based on image clustering produces kernels, which visually
better correspond to the underlying anatomical structures.

Fig. 1 Example of sparse image representation using SLIC: (a) coronal view of 3-D CT lung and liver
volume, (b) projection through 3-D supervoxel representation with supervoxel boundaries and (c) with
assignment of mean intensity. The SLIC algorithm with different values of the parameter K ¼ 11;000
(top) and K ¼ 5500 (bottom) shows that clustering is consistent in image regions with sufficient structural
information (close to edges, e.g., the sliding surfaces of lungs), while different clusters are generated in
homogeneous image regions.
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In summary, despite the complexity of the motion apparent in
CT volumes, our methods (rnd-gif and mls-gif) achieve state-of-
the-art results (TRE ¼ 1.56 mm for lungs and 1.73 mm for
abdominal landmarks) for the public CT liver dataset,24 showing
a considerable improvement to both accuracy and computational
complexity. Moreover, the average TRE ¼ 1.61 mm for all
landmarks is lower than the data resolution (2.00 mm) and
well in line with clinical needs in radiotherapy (a margin of plan-
ning target volume for central and mediastinal tumors usually
is 5 mm).

4.3 DCE-MRI Liver Data

For the DCE-MRI liver dataset, we performed DIR using the
local correlation coefficient (LCC) as similarity measure38 to

compensate for local intensity changes resulting from contrast
uptake between consecutive volumes. For registration of DCE-
MRI, we employ a neighborhood size of 4 to calculate the LCC,
whereas all other regularization and the optimization parameters
remain the same.

For each DCE-MRI sequence, we report the average TRE
between manually annotated landmarks before and after regis-
tration; the results are shown in Table 3 for Demons based on the
standard regularization and for our methods. An example of
registration outcomes for the most challenging case #F0002
from the clinical dataset using our method is shown in Fig. 6.
This case exhibits significant breath-hold irregularity over the
duration of acquisition, resulting in the average TRE ¼ 16.47�
8.1 mm. Figure 6 shows time-cuts for a selected spatial position

Fig. 3 Influence of registration parameters on registration accuracy (TRE averaged for all cases from
liver CT dataset).24 The registration accuracy with increasing: (a) number of channels (M) for regulari-
zation, (b) radius of local patch (K ) for regularization, (c) value of guided image filtering parameter (ε) for
regularization, and (d) number of iterations for registration. Using more than three channels of the SLIC
guidance, image does not improve the overall TRE significantly.

Fig. 4 Main anatomical views of 3-D CT registration results for case #P0 of the liver dataset: (a) coronal,
(b) axial, and (c) sagittal views for the color-coded (red-cyan) intensity differences between volume
pair before registration (left), after registration using Demons with isotropic Gaussian kernel, iso-dem,
(middle), and guided image filtering with random SLIC clustering, rdn-gif, (right). Registration using
our method (right) improves registration accuracy especially close to the lung and liver surfaces (depicted
by corresponding red dotted and green solid arrows, respectively).
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before and after registration using our method. It shows
improvements of registration in a liver DCE-MRI time-series,
particularly in the locations indicated by the green and red
dashed lines. In general, our method reduced the average
TRE in most cases (3.28� 0.4 mm versus 3.53� 0.7 mm,
respectively). However, only in the most challenging case,
#F0002 was the resulting improvement significant (3.77�
0.9 mm versus 4.50� 1.0 mm, respectively) as compared to
isotropic Demons. In the remaining cases, the improvement in
terms of registration accuracy was limited when compared to
state-of-the-art Demons registration.

Despite the average TRE decrease for the landmarks in the
region of interest, the overall impact on registration accuracy

appears to be less evident for the liver DCE-MRI dataset com-
pared to the liver CT dataset from Sec. 4.1. It is, however, worth
noting that for the liver CT dataset, more landmarks were
available for registration accuracy assessment (≈70 versus 4 per
pair of volumes). Moreover, manual annotation of any medical
volumes is prone to observer error and, so, providing reliable
landmarks for contrast-enhanced dynamic data is even more
challenging. For example, the case #F0004, in clinical setup,
could be labeled as “no motion/a little motion,” and it would be
possible to analyze it without prior motion correction while still
having a TRE of 3.34� 0.5 mm.

5 Discussion and Conclusions
In this paper, we have presented an approach to automated,
locally adaptive regularization for DIR that enables estimation
of physiologically plausible deformations. Diffusion regulariza-
tion based on Gaussian smoothing was replaced by a fast,
guided image filtering technique that filters the estimated dis-
placement field with respect to the anatomical tissue properties
derived directly from the guidance image. Our approach
involves spatially adaptive regularization that is, in addition,
capable of accurately preserving discontinuities that occur nat-
urally between the lungs and the pleura. We demonstrated the
robustness of our method on a publicly available CT liver data-
set,24 for which the quantitative results clearly demonstrated its
advantages in terms of accuracy and computational efficiency
when compared to the state-of-the-art methods. The results of
quantitative analysis using the TRE among landmarks on patient
CT liver scans show a statistically significant improvement
(with p-value <0.01) over the state-of-the-art Demons approach.

Table 3 Average TRE and standard deviation obtained for DCE-MRI
liver dataset for landmarks in the liver, using three different regulari-
zation methods: isotropic Gaussian filtering (iso-dem), and image
guided filtering with random (rnd-gif) clustering. The proposed method
(rnd-gif) achieves the lowest average TRE for landmarks in the liver
comparing to the isotropic regularization.

Method

TRE (avg:� std) (mm)

#F001 #F002 #F003 #F004 Average

Without 5.71� 1.9 16.47� 8.1 5.81� 5.3 3.34� 0.5 7.83� 8.5

iso-dem 2.80� 1.3 4.50� 1.0 3.71� 0.7 3.12� 0.4 3.53� 0.7

rnd-gif 2.80� 1.3 3.77� 0.9 3.57� 1.1 2.99� 0.4 3.28� 0.4

Fig. 5 Main anatomical views of resulting 3-D displacement fields for case #P0 of the liver CT dataset:
(a) coronal, (b) axial, and (c) sagittal views for the color-coded magnitude of the displacement field esti-
mated using Demons with isotropic Gaussian kernel, iso-dem, (middle) and guided image filtering with
random SLIC clustering, rdn-gif, (right). (left) The reference image with the corresponding blue contour is
shown for a guidance to the displacement field. Registration using our method (right) produces a visually
smooth displacement field inside the lungs and liver, and at the same, estimates sliding motion at the lung
and liver interface [depicted by corresponding red dotted (for lungs) and green solid (for liver) arrows].
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The proposed framework also produces visually more realistic
displacement fields preserving sliding motion than the diffusion
regularization. Most importantly, such improvements do not
require manually or automatically detected sliding surfaces as
it is the case for the majority of recently proposed methods.
We have also shown that pseudosegmentations generated by
SLIC clustering can implicitly distinguish different regions for
motion regularization.

The computation time per registration using the presented
framework is ≈3 min per 3-D pair (on a standard CPU, running
nonoptimized C++ code, MATLAB™ mex compiler) and is
several times faster than our previous bilateral filtering pro-
cedure (≈60 min)27 or the locally adaptive anisotropic regulari-
zation (several hours).24 Naturally, the current implementation
can be substantially improved in terms of computational perfor-
mance, since it is well-suited to parallel implementation.
Therefore, our method may decrease overall radiotherapy plan-
ning time and help to estimate dose delivery distribution in
patients by propagating the anatomy from one 3-D volume to
another. Furthermore, the improved computational performance
is particularly important for long temporal acquisitions, such as
DCE-MRI, which consists of several volumes. Such quantitative
imaging is used to extract tumor-specific parameters, and
motion-free imaging could improve treatment response assess-
ment in clinical practice.

In terms of motion correction for liver DCE-MRI sequences,
our method compares favorably to competing approaches. It
requires neither a complex physics model to capture contrast
wash-in and wash-out50 nor does it make explicit assumptions
about motion smoothness and temporal repeatability (which are
difficult to set up in a clinical environment).51 The work reported
here focuses on improving registration accuracy, whereas
pharmacokinetic models require conversion of signal intensities
to contrast agent concentration, we have not explored this
so far. Since pharmacokinetic parameter maps (estimated in

a voxelwise manner) are attracting increasing interest, e.g., in
tumor heterogeneity assessment, it is expected that reducing
the TRE in regions of interest should also improve estimation
of contrast agent concentration curves. Therefore, it is reason-
able to assume that more accurate DIR produces more accurate
intensity curves, in turn, leading to more accurate pharmacoki-
netic parameter estimation.52 Quantification of the impact of our
motion correction on pharmacokinetic parameter estimation,
including comparison with a postoperative histological gold-
standard, will be the subject of further study. Furthermore, in
this work, our method was used to compensate for misalignment
between consecutive DCE-MRI volumes caused by patient-spe-
cific breath-hold variability. However, our method could also be
applied to other DCE-MRI acquisition protocols, including
acquisition with both periodic and nonperiodic free-breathing
patients, which could deliver better monitoring of tissue contrast
enhancement curves. Considering the results for the DCE-MRI
liver dataset, our method reduces the TRE relative to diffusion
regularization. Our method appears to be well-suited to the auto-
mated image analysis of large clinical studies since it performs
well on cases with or without large breath-hold variability, and
so it removes the need of manual data prescreening for large
clinical cohort studies.

From a methodological point of view, the key advantage of
our formulation is its generalization and extensibility. We have
introduced two concepts of multichannel regularization using:
(i) random and (ii) multiscale volume clustering; both can
carry complementary information from images to regularize
the estimated displacement field. Surprisingly, multiscale clus-
tering for adaptive regularization did not significantly improve
the results for the applications reported here, when compared to
regularization based on random clustering. This may suggest
that randomly perturbed clustering already adequately extends
locally adaptive regularization to its semilocal counterpart (or
nonlocal model that was shown to capture nonlocal motion

Fig. 6 (a) Axial and (b, c) two coronal views for reference volume with (d) red and (e) green dashed
line indicating the locations of their corresponding time-cuts for DCE-MRI in the most challenging
case #F0002 before and after registration using the GIFTed Demons with random image clustering
(rnd-gif). Our method shows considerable improvements in temporal alignment of liver.
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by implicitly using a range of spatial scales),53 and thus models
closely observed motion patterns in the thoracic cage and abdo-
men. While our results already demonstrate excellent perfor-
mance for liver registration using simple features such as
image clusters, further improvements may be possible if a more
specific motion representation is used. Recently, our framework
was also evaluated for a biological application to model tumor
growth.54 Instead of supervoxel image representation, biologi-
cally relevant tissue descriptors formed various multichannel
guidance images, showing potential in longitudinal preclinical
tumor analysis.

From a mathematical point of view, a limitation of our
approach is that replacing a Gaussian filter by a guided
image filter does not enable us to define explicitly the cost func-
tion to be minimized for DIR [Eq. (1)]. Replacing a Gaussian
filter by a guided image filter could be considered as directional
anisotropic diffusion that preserves image discontinuities, and
therefore, in practice, we observe the convergence of our
method.

Future work will focus on an extension to include temporal
displacement field regularization using temporal clustering of
4-D sequences to model motion of periodic, free-breathing
patients. Currently, temporal regularization of displacement
fields has high computational requirements, which practically
limits its applications in a clinical setup. Therefore, sparse 4-D
sequence representation (based on the presented clustering) will
be even more important.

Finally, from a biological point of view, an application of our
approach seems to be promising to include joint pharmacoki-
netic parameter and motion estimation using multidimensional
clustering based on temporal contrast agent concentration
curves derived directly from statistical decomposition of inten-
sity curves from DCE-MRI.51 Another interesting direction
could be to investigate broader applicability of our method to
abdominal organs with different physiological motion character-
istics, e.g., peristaltic movement55 or a large bowel deformation
in DCE-MRI of patients with Crohn’s disease.56

Disclosures
The authors have no relevant financial interests in the paper and
no other potential conflicts of interest to disclose.

Acknowledgments
The authors acknowledge funding from the Cancer Research
UK/Engineering and Physical Sciences Research Council
Cancer Imaging Centre at Oxford. B.W.P. would like to
thank D.F. Pace (MIT Computer Science & Artificial Intelli-
gence Lab) for providing the additional 4-D liver CT patient
annotations.

References
1. A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image

registration: a survey,” IEEE Trans. Med. Imaging 32(7), 1153–1190
(2013).

2. K. K. Brock et al., “Improving image-guided target localization through
deformable registration,” Acta Oncol. 47(7), 1279–1285 (2008).

3. J. Seco et al., “Dosimetric impact of motion in free-breathing and gated
lung radiotherapy: a 4D Monte Carlo study of intrafraction and inter-
fraction effects,” Med. Phys. 35(1), 356–366 (2008).

4. M. L. Kessler, “Image registration and data fusion in radiation therapy,”
Br. J. Radiol. 79(Spec No. 1), S99–S108 (2014).

5. T. Okada et al., “Automated segmentation of the liver from 3D CT
images using probabilistic atlas and multilevel statistical shape model,”
Acad. Radiol. 15(11), 1390–1403 (2008).

6. A. Melbourne et al., “The effect of motion correction on pharmacoki-
netic parameter estimation in dynamic-contrast-enhanced MRI,” Phys.
Med. Biol. 56(24), 7693–7708 (2011).

7. J. Modersitzki, Numerical Methods for Image Registration, Oxford
University Press, New York (2004).

8. J. A. Schnabel et al., “Advances and challenges in deformable image
registration: from image fusion to complex motion modelling,” Med.
Image Anal. 33, 145–148 (2016).

9. J.-P. Thirion, “Image matching as a diffusion process: an analogy with
Maxwell’s demons,” Med. Image Anal. 2, 243–260 (1998).

10. X. Pennec, P. Cachier, and N. Ayache, “Understanding the ‘Demon’s
algorithm’: 3D non-rigid registration by gradient descent,” Lect.
Notes Comput. Sci. 1679, 597–605 (1999).

11. R. Stefanescu, X. Pennec, and N. Ayache, “Grid powered nonlinear
image registration with locally adaptive regularization,” Med. Image
Anal. 8, 325–342 (2004).

12. N. D. Cahill, J. A. Noble, and D. J. Hawkes, “A Demons algorithm for
image registration with locally adaptive regularization,” Lect. Notes
Comput. Sci. 5761, 574–581 (2009).

13. D. Forsberg, M. Andersson, and H. Knutsson, “Adaptive anisotropic
regularization of deformation fields for non-rigid registration using
the morphon framework,” in IEEE Int. Conf. on Acoustics Speech
and Signal Processing (ICASSP), pp. 473–476, IEEE (2010).

14. M. Freiman, S. D. Voss, and S. K. Warfield, “Demons registration with
local affine adaptive regularization: application to registration of
abdominal structures,” in IEEE Int. Symp. on Biomedical Imaging,
pp. 1219–1222 (2011).

15. T. Vercauteren et al., “Diffeomorphic Demons: efficient non-parametric
image registration,” NeuroImage 45, S61–S72 (2009).

16. M. Staring, S. Klein, and J. P. W. Pluim, “Nonrigid registration with
tissue-dependent filtering of the deformation field,” Phys. Med. Biol.
52, 6879–6892 (2007).

17. T. Mansi et al., “iLogDemons: a demons-based registration algorithm
for tracking incompressible elastic biological tissues,” Int. J. Comput.
Vision 92(1), 92–111 (2011).

18. S. Kabus, A. Franz, and B. Fischer, “Variational image registration with
local properties,” Lect. Notes Comput. Sci. 4057, 92–100 (2006).

19. H. Zimmer, A. Bruhn, and J. Weickert, “Optic flow in harmony,” Int. J.
Comput. Vision 93, 368–388 (2011).

20. Y. Xie, M. Chao, and G. Xiong, “Deformable image registration of liver
with consideration of lung sliding motion,” Med. Phys. 38, 5351–5361
(2011).

21. S. Kiriyanthan, K. Fundana, and P. C. Cattin, “Discontinuity preserving
registration of abdominal MR images with apparent sliding organ
motion,” Lect. Notes Comput. Sci. 7029, 231–239 (2011).

22. A. Schmidt-Richberg et al., “Estimation of slipping organ motion by
registration with direction-dependent regularization,” Med. Image
Anal. 16, 150–159 (2012).

23. A. Schmidt-Richberg et al., “Fast explicit diffusion for registration with
direction-dependent regularization,” Lect. Notes Comput. Sci. 7359,
220–228 (2012).

24. D. Pace, S. Aylward, and M. Niethammer, “A locally adaptive regulari-
zation based on anisotropic diffusion for deformable image registration
of sliding organs,” IEEE Trans. Med. Imaging 32(11), 2114–2126 (2013).

25. L. Risser et al., “Piecewise-diffeomorphic image registration: applica-
tion to the motion estimation between 3D CT lung images with sliding
conditions,” Med. Image Anal. 17(2), 182–193 (2013).

26. V. Delmon et al., “Registration of sliding objects using direction
dependent B-splines decomposition,” Phys. Med. Biol. 58(5), 1303–
1314 (2013).
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