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Abstract. The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning.
Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its vari-
ability in shape and low contrast to surrounding structures, segmenting the parotid gland is challenging.
Motivated by the recent success of deep learning, we study the use of two-dimensional (2-D), 2-D ensemble,
and three-dimensional (3-D) U-Nets for segmentation. The mean Dice similarity to ground truth is ∼0.83 for all
three models. A patch-based approach for class balancing seems promising for false-positive reduction. The 2-D
ensemble and 3-D U-Net are applied to the test data of the 2015 MICCAI challenge on head and neck auto-
segmentation. Both deep learning methods generalize well onto independent data (Dice 0.865 and 0.88) and are
superior to a selection of model- and atlas-based methods with respect to the Dice coefficient. Since appropriate
reference annotations are essential for training but often difficult and expensive to obtain, it is important to know
how many samples are needed for training. We evaluate the performance after training with different-sized train-
ing sets and observe no significant increase in the Dice coefficient for more than 250 training cases. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.6.1.011005]
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1 Introduction
High radiation dose on organs at risk (OAR) during radiotherapy
(RT) treatment can have severe side effects. An important set of
OAR during treatment of head and neck cancer are the parotid
glands, which are a type of salivary glands that are very sensitive
to radiation. The most common radiation-induced side effect on
the parotid glands is xerostomia (dry mouth), which can signifi-
cantly decrease life quality.1 Therefore, modern radiotherapy
planning requires accurate segmentation of target structures
and OAR for precise and highly localized dose planning.2 As
manual segmentation of the planning images is very time-con-
suming and user-dependent, radiotherapy planning could highly
benefit from automatic methods for contouring. However, fully
automatic segmentation of the parotid glands from computed
tomography (CT) images is difficult due to their high variability
in shape and appearance and often low soft-tissue contrast to
surrounding structures. Because of their anatomical location,
they are also prone to be affected by dental metal artifacts.

Various methods other than deep learning have been pro-
posed for automatic segmentation of OAR in the head and
neck region. The approaches include, among others, (multi)
atlas-based methods,3–6 model-based methods,7–10 or their
combinations.11,12 Some of the methods6,8–11 have been evalu-
ated in the 2015 MICCAI challenge on head and neck autoseg-
mentation, where the best mean Dice score on the parotid glands
was 0.84.13

Since about 2012, deep learning methods have been exten-
sively used for medical image processing problems, with a

remarkable proportion of published papers on segmentation
applications.14,15 Some of the most popular deep neural net-
work architectures for segmentation include the U-Net,16,17

V-Net,18 and multiresolution architectures such as DeepMedic19

and F-Net.20 Some approaches have also been made with recur-
rent neural networks,21 generative adversarial networks,22 and
other neural network architectures proposed by the computer
vision community. Moreover, deep neural networks have proven
to be powerful in several recent segmentation challenges such
as brain tumor segmentation,23 liver tumor segmentation,24 and
ischemic stroke lesion segmentation.25

Deep learning methods have also already been applied to
various steps in the RT workflow, including but not limited
to automatic contouring.26,27 In first clinical validations, deep
learning segmentation methods have shown to decrease the
total time required for OAR contouring in comparison to manual
and atlas-based contouring.28 Head and neck segmentation from
CT images has also been previously addressed using deep
learning.29,30 However, while Ibragimov and Xing30 could
observe superior performance on many OAR to previously
reported results using their neural network, the performance
on parotid gland segmentation only was comparable to previ-
ously reported Dice coefficients in the literature. Fritscher
et al.29 also reported on the promising results of using deep
learning methods for head and neck segmentation. All of
these recent successes of deep learning in various medical
domains motivate us to further explore deep learning for parotid
gland segmentation from CT images.

In this contribution, we study parotid gland segmentation
using deep learning, focusing on the U-Net architecture16,17

that we apply in two-dimensional (2-D), three-dimensional
(3-D), and in a 2-D ensemble mode. We also evaluate the
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performance of the trained neural networks on the publicly
available test dataset of the 2015 MICCAI challenge on head
and neck autosegmentation and compare to the model and
atlas-based methods that competed in the challenge. We
show that the deep learning approaches yield superior results
based on the obtained Dice coefficients, which are statistically
significant for all but one compared method. Another important
aspect of deep learning is the availability of a large, annotated
training dataset that ideally captures most of the anatomical vari-
ability. In practice, medical datasets are often rather small com-
pared to the typical datasets used in the computer vision
community such as the ImageNet dataset.31 We investigate
the influence of the number of training samples on the resulting
Dice coefficients on a validation set.

2 Methods

2.1 Data

The image data used in the study consisted of 254 head and neck
CT scans from two different clinical sites. For each CT scan,
clinical routine level, uncurated reference segmentations of
the left and right parotid glands, created by a single physician
per image, were available. As the contours come from clinical
routine, several doctors were involved in the contour creation at
both clinical sites. The axial in-plane resolution was either 0.977
or 1.172 mm for all but two images, for which it was 1.219 mm.
The slice spacing was either 2 or 3 mm. Due to the clinical
uncurated nature of the contours, inconsistencies in the contour-
ing of different scans are to be expected.

To simplify the segmentation problem, we decided to
focus on a binary segmentation task (see Sec. 2.3). Therefore,
all neural networks were trained to segment the left parotid
gland only. The image data and reference segmentations of
the right parotid gland were used for data augmentation by mir-
roring it and thus included into the training and validation. In
total, 507 reference segmentations (253 left side, 254 right
side mirrored, 1 left parotid gland was resected) were used
and divided into 467 examples for training and 40 examples
for validation.

In addition, for testing on an independent and publicly avail-
able test set, the 10 off-site and 5 on-site test cases of the 2015
MICCAI challenge on head and neck autosegmentation13 were
used. The test data, including image data and carefully drawn
segmentations based on best practices and scientific literature,
are available at the Public Domain Database for Computational
Anatomy.32

2.2 Preprocessing

The axial in-plane resolution of the training and validation data
was close to 1 × 1 mm2 for all images but the slice spacing was
either 2 mm or 3 mm. Therefore, in order to preserve details in
the axial plane but unify the resolution along the transverse axis,
the data were resampled along the transverse axis only to 2 mm
slice spacing using a Lanczos kernel with support size 3. For
inference, the independent MICCAI challenge test data were
resampled to 1 × 1 × 2 mm3 to match the resolution used during
training of the neural networks. Furthermore, the data were pre-
processed by automatically removing the treatment couch via
masking of the patient volume.

2.3 Neural Networks

We chose the U-Net architecture16,17 as the basis of all experi-
ments. Three different U-Net models were implemented: a 2-D
U-Net trained on axial slices, a 3-D U-Net, and a 2-D U-Net
ensemble, as schematically shown in Fig. 1. The 2-D U-Net
ensemble consisted of three 2-D U-Nets trained on axial, coro-
nal, and sagittal reformatted slices, respectively, whose predic-
tions were combined via a majority voting. This ensemble
approach for combining orthogonal view directions is an alter-
native to 2.5-D networks, where multiple slices from orthogonal
image planes are simultaneously fed into one neural network.33

All neural networks were trained to solve the binary segmenta-
tion task of segmenting the left parotid gland only. As a conse-
quence, they had two output channels for foreground and
background, followed by a softmax layer. All neural networks
were implemented in-house in accordance with the architecture
descriptions by Ronneberger et al.16 and Ciçek et al.,17 using the
deep learning framework Lasagne.34 However, in contrast to the
U-Net originally described in Ref. 16, batch normalization35 was
also used for the 2-D U-Nets and only three of the U-Net’s inter-
nal resolution levels were implemented. The resulting U-Net has
a maximum receptive field size of 44 × 44 voxels in the 2-D case
and 44 × 44 × 44 voxels in the 3-D case, which contribute to the
classification of a single voxel. For an image resolution of
1 × 1 × 2 mm3, this corresponds to a receptive field size of
44 × 44 × 88 mm3, as visualized in Fig. 2. The receptive
field depends on the order and number of convolutional and
pooling layers and their kernel sizes and should not be confused
with the patch size used for training.36 From Fig. 2, the receptive
field size seems sufficient as the parotid gland is almost com-
pletely inside the receptive field for a voxel chosen at the gland’s
center. Moreover, the resulting U-Nets have fewer parameters

1) 2-D U-Net (axial)                              3)  2-D U-Net ensemble

2) 3-D U-Net

2-D U-Net

2-D U-Net

2-D U-Net3-D U-Net

ax

sag

cor

2-D U-Net

Reformat

Reformat

Majority 
Vote

Fig. 1 Schematic drawing of the different neural network architec-
tures used: (1) 2-D U-Net working on 2-D patches, (2) 3-D U-Net work-
ing on 3-D patches, and (3) ensemble of three 2-D U-Nets working on
axial, coronal, and sagittal patches, respectively. The individual pre-
dictions of the ensemble are combined to a single prediction via
a majority vote.

Fig. 2 Receptive field visualization of a 3-D U-Net with three resolu-
tion levels: for the classification of the voxel marked with a cross hair in
(a), the context that the neural network can use for classification is
a cuboid of size 44 × 44 × 44 voxels or 44 × 44 × 88 mm3. The central
planes through the cuboid in axial, sagittal and coronal view are visu-
alized in (b).
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than a U-Net with more resolution levels, hence they are easier
to train on a GPU with limited memory.

2.4 Training

All training of neural networks was performed on a desktop
computer with an NVIDIA GeForce GTX 1080 graphics card
with 8 GB graphical memory. Batch sizes, number of epochs,
and learning rates were adapted to the memory consumption and
training convergence of each individual neural network.

As the structure to be segmented is small compared to the full
volume, a strategy for increasing the foreground percentage dur-
ing training is necessary. Otherwise, the network will mostly see
background and not learn the segmentation task. The problem is
addressed to some extent by using a soft Dice loss for training of
all U-Nets, which accounts for low foreground percentage dur-
ing the loss calculation.18 Furthermore, two different strategies
to actually increase the foreground percentage during training
were applied for the 2-D and 3-D U-Nets, respectively.

2.4.1 Training in a region of interest

For the 2-D U-Nets, a region of interest (ROI)-based training
strategy was applied. During training, slices to be presented
to the neural network were drawn only from within the ROI.
It was defined by any slices (axial, sagittal, or coronal reformat-
ted depending on the view direction of the neural network) con-
taining the left or mirrored right parotid gland. Additionally, the
U-Net should learn not to segment anything on slices directly
neighboring the organ. Therefore, an additional margin of
five slices in view direction was included into the ROI. As
the scan range of head and neck scans can be large, a margin
of 25 voxels above and below the reference segmentation was
additionally applied to sagittal and coronal reformatted slices in
order to further increase the foreground percentage.

2.4.2 Patch-based training with controlled batch
composition

For the 3-D U-Net, the ROI training strategy could not be
applied as the 3-D ROI did not fit into GPU memory together
with the neural network. Therefore, a patch-based training with
controlled batch composition was implemented. Patches of size
72 × 72 × 56 voxels were extracted from the full volume instead
of an ROI. From these patches, the center 32 × 32 × 16 voxels
were classified and the remainder was padding, which was
needed for the U-Net’s specific architecture with unpadded con-
volutions, where the image size shrinks with each convolutional
layer. The padding also serves to provide context for the output
neurons toward the borders of the unpadded patch. Class balanc-
ing of foreground and background was performed by composing
each minibatch during training so that 50% of the patches over-
lapped with the parotid gland.

In addition to training on the full training dataset with 467
cases, the 2-D and 3-D U-Nets were trained on subsets of 50,
150, 250, 350, and 450 training cases in order to investigate the
impact of training data quantity on the segmentation results.

2.5 Postprocessing

The U-Nets’ predictions were binarized by thresholding at 0.5.
A connected component (CC) analysis was performed and the
largest component was taken as the final segmentation result
with the aim to eliminate small false-positive findings. In our

application, this basic postprocessing seems to be sufficient,
as we expect to find a single left parotid gland inside each
image volume as the largest segmented structure. Furthermore,
the use of the Dice loss for training produces a raw neural net-
work output, which is already close to binary with values either
very close to 0 or 1. Therefore, no complex algorithm for con-
verting soft predictions to hard labels is necessary in this case. In
more complex detection tasks such as brain lesion segmentation,
where the number of structures to be detected is unknown and
prediction maps may be soft, additional advanced postprocess-
ing using conditional random fields or other machine learning
algorithms can be necessary.19

Finally, all segmentation results were resampled to the origi-
nal image resolution using nearest-neighbor interpolation, in
order to be able to compare to the original reference contours.

2.6 Evaluation

The quantitative evaluation was mainly based on the Dice
coefficient.37 For two sets of voxels X and Y, which represent
segmentation result and reference segmentation, it is given by

EQ-TARGET;temp:intralink-;e001;326;524DSCðX; YÞ ¼ 2jX ∩ Yj
jXj þ jYj : (1)

To evaluate the overall over- versus underestimation in Sec. 3.2,
we further compute an average signed surface distance (ASSD)
integrated into the development platform MeVisLab.38 For sets
of voxels X and Y, it is given as

EQ-TARGET;temp:intralink-;e002;326;436ASSDðX; YÞ ¼ 1

j∂Xj þ j∂Yj
�X
x∈∂X

dðx; YÞ −
X
y∈∂Y

dðy; XÞ
�
;

(2)

where j∂Xj denotes the border voxels of X and

EQ-TARGET;temp:intralink-;e003;326;363dðx; YÞ ¼
�
infy∈∂Ykx − yk2; if x ∈ YC

−infy∈∂Ykx − yk2; if x ∈ Y
; (3)

is the signed Euclidean distance of a voxel x to the set Y.
The distance measure is derived from the average or mean sur-
face distance often used for segmentation evaluation and
challenges.13,39 However, instead of calculating absolute
differences, signed distances are used. This way, the distance
measure is positive outside of the reference mask and negative
inside it, therefore it can be used to distinguish over- and under-
estimation. For statistical evaluation, we used the Wilcoxon-
signed rank test at significance level 0.05 to compare the per-
formance of different neural networks.

3 Results
The results are presented in four parts. First, the 2-D U-Net, 2-D
U-Net ensemble, and 3-D U-Net are evaluated on the validation
data and the effect of the training strategies is described. Second,
the performance of the 2-D ensemble and 3-D U-Net on vali-
dation versus MICCAI test data is examined. Then, the deep
learning results are compared to the quantitative results of
the 2015 MICCAI challenge. Finally, the impact of the number
of training samples on the 2-D ensemble and 3-D U-Net perfor-
mance is presented.
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3.1 Comparison of 2-D, 2-D Ensemble, and 3-D
U-Net Performance and Training Strategies

Figure 3 shows the impact of the ROI-based training strategy
onto the axial 2-D U-Net’s segmentation performance. The
Dice coefficient was calculated on all 40 validation cases
once on an ROI around the target structure (extracted the
same way as during training) and once on the full volume.
Additionally, it was computed before and after the postprocess-
ing step of automatically selecting the largest CC. Within the
ROI, the 2-D U-Net achieves a median Dice coefficient of
0.830 before and 0.831 after CC selection. The difference
between the two median Dice scores is very small, as there are
very few false positives next to the segmented parotid gland
within the ROI. However, when evaluated on the full volume,
the median Dice coefficient drops significantly to 0.542 before
and 0.725 after CC selection, with 18 cases with a Dice coef-
ficient of 0 for the latter. This means that within the ROI, the 2-D
U-Net can on average accurately segment the parotid gland, but
there are many outliers in distant body regions that are also large
in volume. This could have been expected, as with the ROI-
based training strategy, the U-Net never saw patches from out-
side the ROI.

In Fig. 4, the 2-D U-Net performance is compared to the
2-D ensemble and the 3-D U-Net. With the idea to provide
an automatic ROI detection in the future, the 2-D U-Net
performance is shown on the ROI only as discussed before,
whereas the other two neural networks models are evaluated
on the full volume of all validation cases. All Dice coefficients

in the plot were computed after the CC selection step. The
median Dice coefficients of the 2-D ensemble (0.835) and
the 3-D U-Net (0.830) are comparable to the 2-D U-Net
(0.831) and the differences shown in Fig. 4 are not significant
(p > 0.05). The main observation is that both 2-D ensemble
and 3-D U-Net segmentations contain only small false posi-
tives, which can be eliminated via CC selection so that the
Dice coefficient on the full volume is comparable to that of
the 2-D U-Net on the ROI. In the case of the 2-D ensemble,
the combination of three individual predictions in orthogonal
view directions can eliminate false positives of each single pre-
diction. In the 3-D case, the patch-based training strategy helps
to eliminate large false positives outside the ROI, as during the
training, background patches from the whole training volumes
are presented to the neural network.

Figure 5 contains reference segmentations and deep learn-
ing results on selected exemplary validation cases that high-
light typical observations. First of all, the segmentations by
the three different neural networks are in general very similar,
as also reflected in the Dice coefficients in Fig. 4. Most
differences can be observed at the elongated lateral part of
the parotid gland (first row), which is challenging for all neural
networks. One common inconsistency between reference and
autogenerated contour that can be observed in the second row
is the inclusion of vessels at the medial part, which is consis-
tent among all neural networks. This might be due to incon-
sistent annotations in the reference set. All trained neural
networks are robust to dental metal artifacts (third row). In
the exemplary case, they generate contours that even seem
superior to the reference contours especially at the lateral ante-
rior part. The fourth row shows contours of the third case in a
sagittal plane. All neural networks, also the pure 2-D axial net-
work, produce smooth contours in contrast to the reference
segmentation, which often has an anatomically inconsistent
shape in sagittal and coronal reformatted views. This might
partially be due to resampling of the contours to the original
image grid, which takes the segmentation from neighboring
slices into account.

3.2 Comparison of Results on Validation and
Independent Test Data

Both the 2-D ensemble and the 3-D U-Net were evaluated on the
15 test cases of the 2015 MICCAI challenge on head and neck
autosegmentation. The axial 2-D U-Net was omitted due to the
inability to compute the correct segmentation on the full volume
after CC selection as seen in Sec. 3.1. Figure 6(a) shows the
resulting Dice coefficients on the MICCAI test data compared
to the results on the validation data from Sec. 3.1. The median
Dice coefficient on the MICCAI data (0.865/0.880 for 2-D
ensemble/3-D U-Net) is higher than on the validation data
(0.835/0.830) and the variance is lower. This might be because
uncurated data from clinical routine was used for validation (and
training) that may contain errors that lead to lower Dice coef-
ficients even for correct segmentations by the deep neural net-
work. In Fig. 6(b), the average signed surface distance of the
segmentation results to the reference is plotted. On the valida-
tion data, the median is close to zero for both 2-D ensemble
(0.172 mm) and 3-D U-Net (0.239 mm), which means there
is little bias toward under- or overestimation. The 2-D ensemble
underestimates (negative ASSD) all but one MICCAI test case,
the 3-D ensemble underestimates 21 of the 30 test cases. One
common mistake of both neural network models is the

Fig. 3 Dice coefficients of contours generated on the validation data
by the axial 2-D U-Net when evaluated on an ROI versus the full vol-
ume. Dice scores were calculated once before and once after auto-
matic selection of the largest CC in the binarized result mask.

Fig. 4 Dice coefficients of results generated by the axial 2-D U-Net
(on an ROI only), the 2-D U-Net ensemble, and the 3-D U-Net on the
validation data.
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underestimation of the medial part of the parotid gland that can
be observed in Fig. 7. This might be due to the use of different
contouring guidelines for the creation of the training versus
MICCAI test contours, which leads to a systematic error during
inference and Dice computation.

3.3 Comparison to Results of the 2015 MICCAI
Challenge on Head and Neck
Autosegmentation

In Fig. 8, the Dice coefficients computed from the segmenta-
tions by the 2-D ensemble and the 3-D U-Net are plotted

(a) (b)

Fig. 6 (a) Dice coefficients and (b) ASSD of segmentation results generated by the 2-D ensemble and
the 3-D U-Net on the validation data and on the independent MICCAI test data.

Original Reference 2-D U-Net 2-D ensemble 3-D U-Net

Fig. 5 Reference contours and segmentation results by the axial 2-D U-Net, the 2-D U-Net ensemble,
and the 3-D U-Net for a selection of validation cases (one case per row).
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together with the results of the MICCAI challenge on head and
neck autosegmentation held in 2015. The original challenge
results were published by Raudaschl et al.13 and kindly provided
to us for comparison to our deep learning results. Results are
plotted for the challenge’s on-site, off-site, and combined
(on- and off-site) test cases separately, as some of the methods
differ significantly for the on-site and off-site test cases. The two
neural networks, however, yield similar quantitative results on
each subset (see Table 1), which implies that the test cases in the
two subsets are of similar difficulty. On the combined test set,
the 3-D U-Net segmentations result in significantly (p < 0.05)
higher Dice coefficients than all methods in the challenge.
For the 2-D ensemble, all differences are significant except
for the comparison to Mannion-Haworth et al. (p ¼ 0.786).
One has to keep in mind that in contrast to the methods in
the challenge, our neural network models were trained on a

completely independent training dataset. These results are prom-
ising as they demonstrate that deep learning methods can out-
perform other methods and are robust even when applied to
independent data.

3.4 Impact of Training Data Quantity

Figure 9 shows the results of the training of the 2-D ensemble
and 3-D U-Net on increasing amounts of training data. Dice
scores are reported on the validation data only. Even though
the differences in the Dice coefficients on the validation data
are small, the median Dice coefficient increases significantly
(p < 0.05) from 50 to 150 to 250 training cases and for both
models. When adding more training cases, the median Dice
coefficient for the 3-D U-Net still increases, but the differences
are not significant for either neural network.

Original Reference 2-D ensemble 3-D U-Net

Fig. 7 Reference contours and segmentation results by the 2-D U-Net ensemble and the 3-D U-Net for
three MICCAI test cases (one case per row).

Fig. 8 Dice coefficients of contours produced by the 2-D ensemble and the 3-D U-Net on the 2015
MICCAI challenge test data in comparison to the methods that competed in the challenge. For the chal-
lenge, the test data were split into off-site and on-site test cases, which is reflected in the plot.
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4 Discussion
While the results for all investigated neural network models
were similar throughout our experiments, the 3-D U-Net
seems most promising with respect to contour quality and
also model simplicity compared to an ensemble approach
with three distinct models. Moreover, the ensemble sometimes
produces artifacts at the contour borders due to the majority vot-
ing, which will require further postprocessing such as smooth-
ing. An important aspect to keep in mind when comparing the
different approaches are the different numbers of parameters in
the 2-D and 3-D U-Nets. With more parameters, the 3-D U-Net
has a higher learning capacity than the 2-D U-Net and the
ensemble, which may also partially explain the observed
differences in performance. An option would be to use a deeper
2-D U-Net with one more resolution level, so that more param-
eters are available to the 2-D neural network. However, this
would automatically increase the receptive field size of the 2-D
U-Net compared to the 3-D U-Net (with respect to the axial
plane), so that again no fair comparison could be granted.

In general, fair comparison of different neural network archi-
tectures with different numbers of parameters is difficult, in the
sense that changing one parameter such as network depth
directly impacts other network properties (such as receptive
field). Hence, while comparing to other popular architectures
different from the U-Net may yield interesting results, it
would not be evident why one method outperforms the other
and which conclusions to draw. Therefore, comparison of differ-
ent architectures and training strategies as we have done in this

work may give first directions toward which network architec-
ture or sampling strategy should be investigated in more detail.
The chosen parameters should then be optimized in a hyperpara-
meter search, in which only minimal changes are made to the
training. That way, the impact of single parameters can be ana-
lyzed in a fair comparison. For example, future work could focus
on binary versus nonbinary segmentation with the 3-D U-Net,
such as simultaneous segmentation of right and left parotid
gland or inclusion of further OAR in the head and neck region.
Such a neural network would have only slightly more parame-
ters due to the increased number of output channels but produce
multiple segmentations in only slightly increased amount of
time. It should then be investigated how the generalization
capacity of a neural network changes, when it has to segment
several distinct anatomical structures instead of a single one.

Furthermore, as the results produced by different neural net-
works can be similar as observed in Fig. 5, it would be interest-
ing to compute local, application-specific distance measures
instead of global general ones such as Dice score or surface dis-
tances. For example, one could then focus on the lateral elon-
gated part of the parotid gland and assess model robustness with
respect to this specific anatomical feature.

A limitation of quantitative results on the validation data as
seen in Secs. 3.1 and 3.4 is the fact that they are not completely
reliable as uncurated reference contours from clinical routine
were used. The effect of this could be seen in Fig. 6, where
the variance of the Dice scores on the uncurated validation
data was much higher than on the curated test data.
Assuming that the validation cases are not significantly harder
to segment than the test cases, the increased variance may likely
stem from the uncertainty in the reference masks. For future
work, having a subset of the data for validation with well-cura-
ted reference contours would be highly desirable for quantitative
evaluation. Still, the difference in results between the neural net-
works indicate that a patch-based training strategy with con-
trolled batch composition is to be preferred over an ROI
sampling strategy with respect to false-positive reduction. An
automatic ROI detection, e.g., using a smaller neural network
working on a coarse resolution would, however, still be desir-
able in order to speed up inference.

The use of clinical quality reference contours in Sec. 3.4 also
poses the question whether the amount of available data is suf-
ficient for the problem at hand as one might read from the plots.
Another interpretation is that with the currently available clinical
reference quality, no better results can be achieved no matter
how much more data of similar quality is added to the training.
We have conducted first experiments on training with curated
versus clinical quality reference contours.40 Our results suggest
that the difference in segmentation performance between train-
ing on a large dataset of clinical quality references versus a
smaller dataset of curated quality references is small. After
this rather technical study, an important further step will be
to do a clinical qualitative evaluation of the clinical acceptance
of the contours generated using deep learning. It needs to be
investigated whether contours derived from clinical uncurated
quality data via deep learning can fulfill clinical contouring
guidelines. Another train of thought is that deeper networks
with more parameters may also be able to integrate more infor-
mation and further improve the segmentation performance with
more samples. However, a fair comparison to a deeper neural
network would be difficult due to the problems already
discussed.

Table 1 Median Dice coefficients of the teams in the 2015 MICCAI
challenge and the U-Net approaches for on-site, off-site, and com-
bined test dataset.

Segmentation method/test cases Off-site On-site All

Albrecht et al.11 0.833 0.805 0.827

Chen et al.6 0.825 0.823 0.825

Jung et al.8 0.699 0.687 0.694

Mannion-Haworth et al.9 0.854 0.846 0.852

Orbes-Arteaga et al.10 0.803 0.746 0.795

2-D U-Net ensemble 0.867 0.863 0.865

3-D U-Net 0.880 0.880 0.880

Fig. 9 Dice coefficients of contours produced by the 2-D ensemble
and the 3-D U-Net on the validation data when trained using an
increasing number of training samples.
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Finally, the results of Sec. 3.3 demonstrate the generalization
potential of deep learning methods for autocontouring of CT
data from different sites. We suppose that this is primarily
due to the availability of the image data in well-calibrated
Hounsfield units. Autosegmentation of MR planning images
or cone-beam CT images for adaptive radiotherapy could be
more challenging with respect to homogeneous datasets and
generalization. In that case, training of neural networks for a
specific site and scanner may be necessary. Moreover, the
deep learning methods show a higher robustness or lower vari-
ance in performance compared to the atlas- and model-based
methods in the segmentation challenge. This may be because
the learned features can represent a large anatomical variety
without prior assumptions and have additionally been trained
on a larger dataset than the methods in the challenge.

5 Conclusion
We have presented results on parotid gland segmentation using
deep learning, including an analysis of the amount of training
data. Using the U-Net architecture and using uncurated refer-
ence segmentations from clinical routine for training, we can
achieve results on a publicly available test set that are signifi-
cantly better than those by several model- and atlas-based meth-
ods. This demonstrates the high potential of deep learning-based
autosegmentation methods for radiotherapy planning, where
manual or semiautomatic contouring is still a bottleneck in
the workflow.
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