You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 March 2019Impact of prior information on material decomposition in dual- and multienergy computed tomography
Prior information is often included in the basis material decomposition to solve the quantification problem of three-material mixtures in dual-energy computed tomography (DECT). Multienergy computed tomography (MECT) with more than two energy bins can provide a sufficient solution to this problem without invoking additional prior information. However, a question remains as to whether the prior information should still be included in the material decomposition process using MECT to improve the quantification accuracy and control noise amplification. This study aims to evaluate the impact of the prior information on noise and quantification bias in both DECT and MECT. The material decomposition tasks we used in this study are to quantify water/iodine, water/iodine/gadolinium, and water/ iodine/calcium in two- and three-material decompositions, under the assumption that the object to be decomposed consists of the basis materials and their mixtures. We performed phantom simulation and experimental studies using a clinical DECT system and a research photon-counting-detector-based MECT system. Results in the current phantom studies show that the prior information can still improve the noise performance without substantially affecting the basis material quantitative accuracy during the material decomposition process, even when the number of x-ray energy beams/bins is equal or greater than the number of basis materials.
The alert did not successfully save. Please try again later.
Liqiang Ren, Shengzhen Tao, Kishore Rajendran, Cynthia H. McCollough, Lifeng Yu, "Impact of prior information on material decomposition in dual- and multienergy computed tomography," J. Med. Imag. 6(1) 013503 (14 March 2019) https://doi.org/10.1117/1.JMI.6.1.013503