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Abstract. Distance correlation is a measure that can detect both linear and nonlinear associations. However,
applying distance correlation to imaging genetic studies often needs multiple testing correction due to the large
number of multiple inferences. As a result, the sensitivity of its detection may be low. We propose a new model,
distance canonical correlation analysis (DCCA), which overcomes this problem by searching a combination of
features with the highest distance correlation. This is achieved by constructing a distance kernel function fol-
lowed by solving a subsequent optimization problem. The ability to detect both linear and nonlinear associations
makes DCCA suitable for analyzing complex multimodal and imaging-genetic associations. When applied to a
brain imaging-genetic study from the Philadelphia Neurodevelopmental Cohort (PNC), DCCA detected several
mental disorder-related gene pathways and brain networks. Experiments on brain connectivity found that the
default mode network had strong nonlinear connections with other brain networks. When applied to the study of
age effects, DCCA revealed that the connections of brain networks were relatively weak in younger groups but
became stronger at older age stages. It indicates that adolescence is a vital stage for brain development. DCCA
thus reveals a number of interesting findings and demonstrates a powerful new approach for analyzing multi-
modal brain imaging data. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.6.2.026501]
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1 Introduction
The brain is a complex organ and investigating its development
and relationship with genomics is of great interest. Advances
in neuroimaging, e.g., functional magnetic resonance imaging
(fMRI), and sequencing of genetic variations, e.g., singular
nucleotide polymorphism (SNP), have facilitated the analysis
of the relationship between brain regions and genetic variations.
FMRI detects changes in functional brain activity at each voxel,
which can be clustered into regions of interest (ROI). SNPs are
important genetic factors underlying differences in phenotypes
among human beings. Association analyses, e.g., canonical cor-
relation analysis (CCA),1 have been conducted to study brain
connectivity and how genetic factors and endophenotypes
interact.2 However, these methods typically use Pearson corre-
lation which only captures linear relationships while nonlinear
correlations may exist among brain regions.3

To address the limitation of Pearson correlation-based meth-
ods, Székely et al.4 proposed a correlation measurement, dis-
tance correlation, which evaluates the dependence between two
single variables or two sets of variables. The property that
distance correlation equals 0 if and only if two variables are in-
dependent enables it to detect both linear and nonlinear associ-
ations. Besides the ability to detect nonlinear correlations, the
flexibility to detect both single-single feature correlations and
set–set feature correlations also help distance correlation find
many applications in imaging genetic and brain connectivity
study. Geerligs et al.5 investigated the dependence between dif-
ferent ROIs using multivariate distance correlation and the
results tended to be more robust than using Pearson correlation.

Fang et al.6 investigated complex imaging genetics associations
using projected distance correlation, which was more accurate
and fast.

Székely and Rizzo7 constructed a statistic to evaluate the
statistical significance of the distance correlation between two
single or two sets of variables. Despite the well-constructed
theoretical work, a challenge for applying distance correlation
exists in multiple testing correction. Large-scale simultaneous
inference testing, e.g., genome wide association study (GWAS),
needs multiple testing correction, e.g., Bonferroni correction,8 in
order to prevent erroneous inferences. For distance correlation,
the scale of simultaneous inference is p × q (p, q are variable
sizes of two datasets), which is much larger than that of GWAS,
i.e., p. As a result, it might be difficult to detect significant var-
iable–variable distance correlations due to the harsher testing
correction. For testing the distance correlation between two sub-
sets of variables, the scale of multiple inference testing is even
larger, i.e., 2pþq, and consequently the detection of significant
associations becomes even more difficult.

To address the challenge, we propose a new framework, dis-
tance canonical correlation analysis (DCCA), which overcomes
the problem by searching a combination of original features with
the highest distance correlation. It is achieved by first construct-
ing a distance kernel function and then solving a subsequent
optimization problem. In this way, DCCA can detect both linear
and nonlinear correlations and can identify a subset of features
that are significantly correlated.

This work is an expansion of a preliminary work, “A hybrid
correlation analysis with application to imaging genetics,”9

which was published in the proceedings of SPIE Medical
Imaging 2018. This work refines the conference paper by
adding more detailed procedures about the method and more
applications on both the fusion of imaging genetics data and*Address all correspondence to Yu-Ping Wang, E-mail: wyp@tulane.edu
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the fusion of multiple brain imaging data. The rest of this paper
is organized as follows. Section 2 first introduces distance cor-
relation with pros and cons and then discusses how the proposed
model, DCCA, can overcome the limitation. Section 3 presents a
simulation experiment test to verify the performance of DCCA.
Section 4 presents the collection and preprocessing of data as
well as the experiments of applying DCCA to detecting imaging
genetic associations and brain connectivity study. Discussion
and conclusions are in Sec. 5.

2 Methods

2.1 Distance Correlation

Distance correlation, proposed by Székely et al.,4 measures the
dependence between two single variables or two sets of varia-
bles. Suppose we have two sets of random variables x ∈ Rp and
y ∈ Rq (where p, q represent the feature sizes of x, y, respec-
tively) with characteristic functions fx and fy. Variable dimen-
sionality p, q can either be 1 (two single variable case) or greater
than 1 (two sets of variables case). The distance covariance
between x and y is defined as

EQ-TARGET;temp:intralink-;e001;63;517

dCov2ðx;yÞ

≔
Z
Rpþq

jfx;yðt; sÞ−fxðtÞfyðsÞj2ðjtjpþ1
p jsjqþ1

q Þ−1dtds; (1)

where j � jp, j � jq denote the Euclidean norm in space Rp and
Rq, respectively; and fx;y denotes the joint characteristic func-
tion of x and y.

The distance correlation between x and y is defined as

EQ-TARGET;temp:intralink-;e002;63;411dCorðx; yÞ≔

8><
>:

�
dCov2ðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dCov2ðx;xÞdCov2ðy;yÞ
p

�1
2

; if dCov2ðx; yÞ> 0

0; otherwise

:

(2)

It has been proved that distance correlation gets 0 iff x and y
are independent, i.e.,

EQ-TARGET;temp:intralink-;e003;63;311dCorðx; yÞ ¼ 0 ⇔ x⫫y: (3)

Distance correlation outperforms conventional Pearson
correlation in that it can detect both linear and nonlinear asso-
ciations due to Eq. (3).

For sample data X ∈ Rn×p and Y ∈ Rn×q, where n denotes
sample size, the empirical distance covariance between X and Y
can be estimated as follows. First, we calculate the Euclidean
distance between each sample pair

EQ-TARGET;temp:intralink-;sec2.1;63;203

ai;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
k¼1

ðXik − XjkÞ2
s

; i; j ¼ 1;2; · · · ; n;

bi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq
k¼1

ðYik − YjkÞ2
s

; i; j ¼ 1;2; · · · ; n:

Second, U-centering is applied to the Euclidean distance ai;j
as

EQ-TARGET;temp:intralink-;e004;326;752Ai;j ¼

8><
>:

ai;j − 1
n−2

P
n
l¼1 ai;l − 1

n−2
P

n
k¼1 ak;j

þ 1
ðn−1Þðn−2Þ

P
n
k;l¼1 ak;l; i ≠ j

0; i ¼ j

: (4)

The U-centered Bi;j can be calculated similarly, i.e., applying
U-centering to Euclidean distance bi;j. Then, the empirical
distance correlation can be calculated as

EQ-TARGET;temp:intralink-;e005;326;663dCov2ðx; yÞ ¼ 1

nðn − 3Þ
Xn
i;j¼1

Ai;jBi;j: (5)

A statistic following a t-distribution provided by Székely
and Rizzo7 is used to evaluate the significance of distance
correlation as

EQ-TARGET;temp:intralink-;e006;326;580

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 3Þ

2
− 1

r
dCor2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − dCor4

p → t

�
nðn − 3Þ

2
− 1

�
;

p; q → ∞:

(6)

2.2 Kernel Methods

Kernel methods are also widely used when data have nonlinear
relationships. Kernel methods map original variable space Rp to
a higher dimensional space RP (P can be either ∞ or a number
greater than p) via a mapping function ϕ as

EQ-TARGET;temp:intralink-;e007;326;451ϕ∶x ∈ Rp ↦ ϕðxÞ ∈ RP: (7)

In order to reduce computational complexity and to avoid
computing in R∞, kernel trick is used to compute with a kernel
function instead of an explicit mapping function. A kernel func-
tion is defined as

EQ-TARGET;temp:intralink-;e008;326;383kðx1; x2Þ ¼ hϕðx1Þ;ϕðx2ÞiRP ; (8)

where x1, x2 ∈ Rp are two samples and h·; ·iRP denotes the inner
product in RP space.

2.3 Distance Canonical Correlation Analysis

Distance correlation provides a way to evaluate the dependence
between two single variables or two sets of variables. Given two
datasets X ∈ Rn×p and Y ∈ Rn×q, it is of interest to identify
which two single variables x1 ∈ Rn×1 and y1 ∈ Rn×1 are signifi-
cantly dependent by computing their distance correlation.
However, it may be difficult to detect significant distance cor-
relations due to multiple testing correction. Multiple testing cor-
rection, e.g., Bonferroni correction,8 is used to counteract the
problem of multiple comparisons when conducting a large
scale of statistical inference simultaneously, e.g., GWAS. For
GWAS study, the scale of simultaneous inference is the varia-
ble/feature size p. For univariate distance correlation (distance
correlation between two single variables), the scale of simulta-
neous inference is p × q, which is much larger than that of
GWAS, i.e., p.

In data application, it is usually of interest to study groups of
variables rather than a single feature. For examples, complex
phenotypes and diseases may be regulated by a group of
genes and pathways. For brain imaging data, different brain
regions function and harmonize in a connected network when
performing a specific brain function.10 Therefore, it is of interest
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to identify two subsets/groups of variables Xsub ∈ Rn×r

ð1 ≤ r ≤ pÞ and Ysub ∈ Rn×s ð1 ≤ s ≤ qÞ which are signifi-
cantly dependent. However, the scale of simultaneous inference
in this case is very large, i.e., 2pþq, making it more difficult to
detect significantly dependent subsets.

Motivated by the problem in detecting significant distance
correlation, we develop a multivariate approach, namely
DCCA, to seek the optimal combination of original variables
with the highest distance correlations. Given two datasets X ∈
Rn×p and Y ∈ Rn×q, distance CCA first projects original sam-
ples to a higher dimensional space as in the following procedure.

For any two single features x1, x2 ∈ Rn×1 from data X, a dis-
tance kernel is defined as

EQ-TARGET;temp:intralink-;e009;63;609kðx1; x2Þ ≔
Xn
i;j¼1

jx1;i − x1;jjjx2;i − x2;jj; (9)

where x�;i, x�;j denote the i’th and j’th elements of x�ð� ¼ 1;2Þ,
respectively; and the corresponding mapping function is

EQ-TARGET;temp:intralink-;e010;63;536ϕ∶x1 ↦ ϕðx1Þ ¼ ½ϕ1ðx1Þ;ϕ2ðx1Þ; · · · ;ϕn2ðx1Þ�; (10)

where ϕmðx1Þ ¼ jx1;i − x1;jj, (i ¼ m∕n, j ¼ m mod n).
It is easy to check that Eq. (9) is a well-defined inner product

in a reproducing kernel Hilbert space. With distance kernel
constructed, a multivariate method is used to find the optimal
combination of original features/variables with the highest
distance correlation by solving the optimization problem as

EQ-TARGET;temp:intralink-;e011;63;438

ðβ̂1; β̂2Þ ¼ argmax
β1;β2

"
β 0
1kðX; YÞβ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β 0
1kðX; XÞβ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β 0
2kðY; YÞβ2

p
#1

2

;

¼ argmax
β1;β2

β 0
1kðX; YÞβ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β 0
1kðX; XÞβ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β 0
2kðY; YÞβ2

p ; (11)

where X ∈ Rn×p, Y ∈ Rn×q, β1 ∈ Rp×1, β2 ∈ Rq×1,
KðX; YÞi;j ≔ Kðxi; yjÞ; KðX; YÞi;j denotes the ði; jÞ’th element
of KðX; YÞ; and xi, yi denote the i’th column of X, Y,
respectively.

The detailed algorithm for the proposed model, DCCA, and
the detailed procedures of solving the optimization problem
[Eq. (11)] are described in Algorithm 1.

The framework of distance CCA is similar to that of kernel
CCA, which is another nonlinear methods, and therefore we call
the constructed Gram matrix [Eqs. (9) and (10)] “distance ker-
nel.” However, it is noteworthy that distance CCA differs from
conventional kernel CCA and cannot be regarded as kernel CCA
with a newly defined kernel function. For kernel CCA, there are
a number of options for kernel functions, e.g., Gaussian radial
basis function kernel, polynomial kernel, etc. The choice of ker-
nel function depends on data distributions and the hidden rela-
tionship pattern within the data. Distance kernel function
[Eqs. (9) and (10)] differs from conventional kernel function
in that distance kernel retains the original feature information
[for X ∈ Rn×p, distance kernel operation KðX;XÞ ∈ Rp×p]
while conventional kernel function breaks the original feature
structure [for X ∈ Rn×p, kernel operation KðX;XÞ ∈ Rn×n].
The retaining of original feature structure enables distance
CCA to perform feature selection which can facilitate sub-
sequent result interpretation. In comparison, it is difficult to

interpret the result of kernel CCA since the original feature
information is lost after kernel mapping.

3 Simulation Test
To illustrate the strengths and limitations of our method, namely
DCCA, we conducted a simulation study and compared the per-
formances of DCCA to that of linear CCA. For performance
comparison, two aspects were considered: correlation detection
and feature selection.

3.1 Synthetic Data

We employed a latent variable model,11 also used in works,12,13

to simulate two correlated data X ∈ Rn×p, Y ∈ Rn×q, where n
represents sample/subject size, and p, q represent feature
size. Suppose we have two latent variables u1 ∈ Rn×1,
u2 ∈ Rn×1, and u1, u2 are correlated. The correlation between
data X and Y can be generated by loading u1 and u2 as follows:

EQ-TARGET;temp:intralink-;e012;326;278X ¼ EX þ u1α 0
1; Y ¼ EY þ u2α 0

2; (12)

where EX ∈ Rn×p and EY ∈ Rn×q are background Gaussian
noise, and α1 ∈ Rp×1 and α2 ∈ Rq×1 are loading vectors of
latent variables.

3.2 Three Types of Data Dependence Scenarios

In order to perform a comprehensive comparison, three types of
data dependence scenarios were considered, including inde-
pendence, linear dependence, and nonlinear dependence, as
shown in Figs. 1(a)–1(c). The correlation between data X and
Y originates from the correlation between latent variables u1,
u2. Therefore, the three types of correlation scenarios can be
generated by enforcing different relationship patterns on u1,
u2. Three relation patterns were used, i.e., independence, sine
function, and linear function, as shown in Figs. 1(a)–1(c),
respectively.

Algorithm 1 Algorithm for DCCA.

1: Input X ∈ Rn×p , Y ∈ Rn×q , initial loading vectors
β01 ∈ Rp×1, β02 ∈ Rq×1

2: Output Optimal loading vectors û1, û2

3: Construct distance kernel Gram matrices

4: K ðX;Y Þi ;j←
Pn

c;d¼1 jx i;c − xi;d jjyj;c − y j;d j

5: K ðX;X Þi ;j←
Pn

c;d¼1 jx i;c − xi;d jjxj;c − x j;d j

6: K ðY ;Y Þi ;j←
Pn

c;d¼1 jx i;c − x i;d jjx j;c − xj;d j

7: U-centering: K i;j←K i;j − n
n−2K i;· − n

n−2K ·;j þ n2

ðn−1Þðn−2ÞK ·;·

8: Solve optimization problem [Eq. (11)]

9: û1←the eigenvector ofK ðX;X Þ−1
2K ðX;Y ÞK ðY ;Y Þ−1K ðY ; X Þ

K ðX;X Þ−1
2

10: û2←the eigenvector ofK ðY ;Y Þ−1
2K ðY ;X ÞK ðX;X Þ−1K ðX;Y Þ

K ðY ;Y Þ−1
2

11: return û1, û2
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3.3 Results of Simulation Test

In each scenario, we implemented both CCA and our model,
DCCA, to detect both correlation and true correlated features
between two datasets. Note that loading vectors α1, α2 were
sparse vectors in our experiment setting, i.e., most of the ele-
ments were zeros. The numbers of features, i.e., p, q, were
100 in our setting, among which only 20 features were set as
true correlated features. That is to say, the length of loading vec-
tors α1 ∈ Rp×1 and α2 ∈ Rq×1 was 100, and only 20 of their
elements were nonzeros, as shown at the top of Fig. 2. An
ideal method should be able to accurately detect the cross-
data correlation and also the 20 true correlated features.

The results are shown in Figs. 2, 3, 4, for the three scenarios,
respectively. In each figure, the top two subfigures represent the
ground truth of the true correlated features, and the bottom four
subfigures represent the identified features by CCA and DCCA,
respectively. From Fig. 2, when two data are independent, both
CCA and DCCA detect a weak correlation (CCA: 0.0739 versus
DCCA: 0.1019) and neither method can identify true correlated
features. From Fig. 4, when two data follow a linear relation-
ship, both CCA and DCCA can detect a strong correlation
(CCA: 0.9807 versus DCCA: 0.9525) and both methods can
accurately identify the true correlated features. From Fig. 3,
when two data follow a nonlinear relationship, CCA cannot
detect the correlation (CCA: 0.0886) and cannot identify the
true correlated features. In comparison, DCCA can detect the
nonlinear correlation (DCCA: 0.6772) and also the true corre-
lated features. The results in the three scenarios, i.e., Figs. 1–4,
verified the superior performance of DCCA over conventional
CCA in terms of detecting both complex correlations and true
correlated features.

4 Application to Brain Imaging Data

4.1 Brain Imaging Data and Brain Connectivity

The DCCA was then applied to a brain development study
focused on two experiments. One experiment is to study the im-
aging-genetic associations (Sec. 4.3) and the other one is to
study the connections between different brain subnetworks or
subdomains, e.g., default mode network (DMN), and how the
connections change across different age stages (Sec. 4.5).
Imaging-genetic study analyzes the correlation between fMRI
data, which detects the change of the brain functional activity
at voxel level and SNPs data. SNPs are important genetic factors

underlying differences in phenotypes among human beings.
Genetic factors may function as a complicated group, e.g., pro-
tein–protein interaction network, gene pathway, when regulat-
ing a certain phenotype or disease. Similarly, neurons and
brain regions also function and harmonize in a connected net-
work when performing a specific brain function.10 Therefore,
distance CCA, which seeks the optimal combinations of features
with the strongest cross-data associations, might be superior in
detecting group–group nonlinear associations between brain im-
aging scans and genetic factors.

4.2 Data Collection and Preprocessing

The Philadelphia Neurodevelopmental Cohort (PNC)15 is a
large-scale collaborative study between the Brain Behavior
Laboratory at the University of Pennsylvania and the Children’s
Hospital of Philadelphia. The data include fMRI and SNPs data
of adolescents aged from 8 to 21 years. The fMRI data were
collected during a resting state from 857 subjects. After the col-
lection of raw fMRI data, SPM1216 was used to conduct motion
correction, spatial normalization, spatial smoothing with a
3×3-mm Gaussian kernel, and multiple regression to mitigate
the influence of motion. Finally, 264 ROIs (containing 21,384
voxels) were extracted based on the power coordinates17 with
a sphere radius parameter of 5 mm. SNPs data were collected
from 7863 subjects based on four platforms, Illumina
Human610Quadv1, HumanHap550v1, HumanHap550v3, and
HumanOmniExpress. SNPs with >5% missing values were
deleted and the rest missing values were further imputed
using Plink.18,19 Then, the SNPs within gene bodies were
kept, resulting in 95,639 SNPs.

4.3 Imaging-Genetic Associations

In order to implement distance CCA, the subjects having both
fMRI and SNP data are further extracted, resulting in 855 sub-
jects. For fMRI data, the stimulus-on versus stimulus-off con-
trast was obtained from the raw resting-state time series data.
To find the interactions that are more related to mental disorders,
SNPs located in genes associated with brain disorders were kept,
where the brain disorders included schizophrenia, bipolar disor-
der, depression, attention-deficit/hyperactivity disorder, and
post-traumatic stress disorder. Finally, 736 genes containing
21,487 SNPs were left for further analysis.

When applied to detect the group associations between
fMRI and SNPs, distance CCA identified a subset of 45

Fig. 1 Three scenarios of data dependence: (a) independence, (b) nonlinear dependence, and (c) linear
dependence.
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genes and a subset of 15 ROIs that were strongly correlated.
The distance correlation between the identified ROIs and
genes was 0.2047 with p-value of 6.58e − 30 (calculated based
on Eq. 6). In comparison, the largest single ROI–gene distance
correlation is 0.1759 with p-value of 1.29e − 18. This demon-
strated that distance covariance-based CCA can find a pair of
variable groups with an enhanced distance correlation and sig-
nificance level. The lists of the identified genes and ROIs are in
Tables 1 and 2, respectively. The locations of the identified ROIs
are further visualized in Fig. 5 using the BrainNet Viewer
toolbox.14,20

After that, gene enrichment analysis was conducted to reveal
the underlying biological functions of the identified genes. Ten
pathways were selected with a screening of q-value <0.05 (q-

value represents the multiple testing corrected p-value), and the
pathways together with their corresponding q-values were listed
in Table 3. P-values are calculated using the hypergeometric test
based on the numbers of genes in the particular biological path-
way and the identified gene set. The q-values are then calculated
by correcting the p-values using multiple testing correction,
e.g., Bonferroni correction,8 based on the false discovery rate
method. Among the identified pathways, pathways “neurode-
generative diseases,” “oxidative damage,” and “deregulated
CDK5 triggers multiple neurodegenerative pathways in
Alzheimer’s disease models” have been reported to be related
to neuron activities and brain development. Pathway “neurode-
genrative diseases” is related to the death of neurons and cortico-
basal degeneration, which might further lead to the progressive

Fig. 2 Performance comparison between CCA and DCCA [independence scenario: Fig. 1(a)].
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dysfunction in the brain and a number of mental disorders.21

Pathway “oxidative damage,” which is related to cell signaling,
may lead to damage of cell and the death of neurons.22 It may be
related to the pathogenesis of several neural degenerative dis-
eases, including Parkinson’s disease,23 depression,24 and
Alzheimer’s disease.25 For pathway “deregulated CDK5 triggers
multiple neurodegenerative pathways in Alzheimer’s disease
models,” abnormal CDK5 may result in unregulated activation
of the cycle of cell,26 which might further lead to the death of
neurons.27 Mental disorders, such as Alzheimer’s disease, may
occur if CDK5 is deregulated.28 The interactions of pathway
“neurodegenerative diseases” and “deregulated CDK5 triggers
multiple neurodegenerative pathways in Alzheimer’s disease
models” are visualized in Figs. 6 and 7, respectively.

Figure 6 was plotted using Cytoscape software,29 which was
an open source platform for visualizing complex networks.
Figure 7 was generated using reactome pathway database.30

For brain imaging data, as shown in Table 2, the majority (13/
15) of the detected ROIs are from three brain subdomains: sen-
sorimotor network (SM), DMN, and visual network (VIS). SM
is related to the coordination of the body when performing
motor tasks.31 DMN is the dominant network when subjects
are in resting state, mind-wandering, or not involved in a spe-
cific task. Dysfunction within the DMN has been associated
with several mental disorders,32,33 e.g., schizophrenia, depres-
sion, autism, etc. Associations between DMN and genetic fac-
tors exist according to a multivariate study of schizophrenia
subjects scanned during the resting state.34

Fig. 3 Performance comparison between CCA and DCCA [nonlinear dependence scenario: Fig. 1(b)].
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Fig. 4 Performance comparison between CCA and DCCA [linear dependence scenario: Fig. 1(c)].

Fig. 5 The sagittal, coronal, and axial views of the identified brain ROIs. Figures were drawn using the
BrainNet viewer toolbox.14
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4.4 Functional Connectivity Between Brain
Subnetworks

For brain FC study, we selected five brain subnetworks or sub-
domains and then applied distance CCA to investigate the con-
nections between each subnetwork pair and to study the age

effects on the connections. Resting-state fMRI was used in this
experiment and data were preprocessed using group ICA of fMRI
toolbox35 for independent component analysis (ICA).36 The five
brain subnetworks include SM, VIS, cognitive control network
(CCN), auditory network (AUD), and DMN, and the correspond-
ing locations in the brain are shown in Fig. 8.

In order to investigate both linear and nonlinear connections
of the brain, we applied both linear CCA and distance CCA to
the PNC data and the results are shown in Fig. 9. The results
were based on a 10-fold cross-validation, in which each time
five folds were used as training data and the rest five folds
were used as testing data. It is noteworthy that the metric of dis-
tance correlation is different from that of linear Pearson corre-
lation, e.g., distance correlation ¼0.4 ⇎ Pearson correlation
¼0.4. Nevertheless, distance correlation reflects the relative

Table 1 The genes identified by DCCA.

Gene Gene Gene Gene Gene

RERE OPRD1 FAF1 MIR137HG CADM3

AKT3 LOC101929452 CYP26B1 SLC4A5 INPP4A

HAT1 CIR1 ZNF330 CLCN3 CTC-
436P18.1

LOC102467655 MEF2C-AS1 CDC25C CAP2 SP4

FAM126A ATP6V1B2 BNIP3L LETM2 C8orf87

NAPRT1 NT5C2 EIF3F MARK2 TRPT1

ZNF202 SIAE NRGN PAWR C12orf76

MAP3K9 TRAF3 CALB2 YWHAE SRR

PRRG2 DNMT3B ARHGAP40 KCNS1 YPEL1

Table 2 The identified brain ROIs. X , Y , Z represent ROI coordi-
nates in the Montreal Neurological Institute (MNI) space.

X Y Z ROI name Suggested system

13 −33 75 Postcentral gyrus Sensory/somatomotor
hand

29 −17 71 Precentral gyrus Sensory/somatomotor
hand

44 −8 57 Precentral gyrus Sensory/somatomotor
hand

−13 −17 75 Precentral gyrus Sensory/somatomotor
hand

66 −8 25 Precentral gyrus Sensory/somatomotor
mouth

65 −33 20 Superior temporal gyrus Auditory

13 55 38 Superior frontal gyrus Default mode

−10 55 39 Superior frontal gyrus Default mode

6 64 22 Medial frontal gyrus Default mode

65 −31 −9 Middle temporal gyrus Default mode

52 7 −30 Middle temporal gyrus Default mode

18 −47 −10 Parahippocampa gyrus Visual

20 −66 2 Lingual gyrus Visual

26 −79 −16 Lingual gyrus Visual

−39 51 17 Superior frontal gyrus Salience

Table 3 Gene enrichment analysis of the identified genes. Q-values
represent multiple testing corrected p-value.

Pathway name Source p-value q-value

Chk1/Chk2(Cds1)-mediated
inactivation of cyclin B:Cdk1

Reactome 0.00032 0.012

Activation of BAD and
translocation to mitochondria

Reactome 0.00044 0.013

Deregulated CDK5 triggers
multiple neurodegenerative

Reactome 0.00063 0.013

Pathways in Alzheimer’s
disease models

Neurodegenerative diseases Reactome 0.00063 0.013

TNFalpha NetPath 0.0013 0.021

Activation of BH3-only proteins Reactome 0.0018 0.023

Class I PI3K signaling events
mediated by Akt

PID 0.0024 0.027

Oxidative damage Wikipathways 0.0031 0.029

LKB1 signaling events PID 0.0036 0.029

Intrinsic pathway for apoptosis Reactome 0.0036 0.029

Fig. 6 The interaction mechanisms of the pathway “neurodegener-
ative diseases.”
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strength of the dependence between two variables. From Fig. 9,
strong linear connections are detected between each pair of SM,
VIS, CCN, and AUD networks, while the linear connections
between DMN and other networks are weak. Research32 has
shown that DMN may have strong intrinsic connections
while the connections between DMN and the rest networks
are weak in the resting state, which is consistent with the result
of linear CCA. In comparison, distance CCA detected stronger
DMN-SM, DMN-CCN, and DMN-AUD connections, which
might be a new discovery.

4.5 Ages Effects on Brain FC

It is of interest to investigate how brain connectivity changes
during adolescence and how it changes across different age
stages, e.g., children and young adults, which may further con-
tribute to the study of normal and pathological brain develop-
ment. Three age groups, 8 to 11 years, 13 to 16 years, and 18 to
22 years, were selected and then distance CCA was applied to
each age group to analyze brain network connections. Subjects
aged 12 and 17 years were not included in the experiments in
order to get a clear boundary between different age groups. The

connections between brain subnetworks for each age group are
shown in Fig. 10. From Fig. 10, the patterns of the connections
are different between different age groups. For instance, the con-
nections between different brain networks are relatively weaker
at age 8 to 11 but become relatively stronger at age 13 to 16 and
age 18 to 22. It demonstrates that different brain regions become
more and more connected during adolescence, which may be a
result of the training and development of the brain during multi-
ple types of brain activities. Moreover, it seems that the connec-
tions between CCN and SM are weak across all three age
groups, which indicates that the connection between CCN
and SM may be weak at the adolescent stage.

5 Discussion and Conclusion
In this work, we proposed a new model, DCCA, which over-
comes the limitation of distance correlation in detecting signifi-
cant associations when feature size is large. Conventional
distance correlation analysis needs large-scale multiple testing
when testing feature–feature association simultaneously. The
proposed model, DCCA, addresses the problem by searching
a combination of original features with the highest distance cor-
relation. It is achieved by first constructing a distance kernel

Fig. 7 The interaction mechanisms of the pathway “deregulated CDK5 triggers multiple neurodegener-
ative pathways in Alzheimer’s disease models.”
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function and then solving an optimization problem. The ability
to detect nonlinear group–group associations makes DCCA
more suitable for analyzing complex multi-omics and imag-
ing-genetic associations, in which both genetic factors and
brain ROIs may work as groups when regulating a phenotype
or performing a specific brain function.

When applied to imaging-genetic association study, DCCA
detected a strong correlation between a subset of genes and a
subset of brain ROIs with an improved significance level.
Several neuron degeneration and mental disorder related path-
ways were enriched from the identified genes after gene enrich-
ment analysis, which demonstrated the biological significance
of our findings. In addition, DCCA found several mental

disorder-related brain networks which had been reported by
existing literature. Experiments on brain connectivity study
also found several new discoveries using DCCA. Brain network
DMN, which is considered to be distinct from other brain
domains/networks, may have strong nonlinear connections
with other brain networks according to the results of DCCA.
When applied to analyzing each age groups, DCCA reveals
that younger groups (8 to 11 years) exhibit weak connections
of brain networks while the connections become strong at an
older age stage (13 to 16 and 18 to 22) which may a result
of brain development. The discoveries of imaging genetic asso-
ciations and brain connections verified the performance of
DCCA. Besides the examples in this study, it may find more

Fig. 8 The sagittal, coronal, and axial views of brain functional network domains extracted via group
ICA. The names of the brain network domains are: SM, AUD, VIS, DMN, CCN, and salience network
(SAL).

Fig. 9 The heatmap showing the correlations between brain networks. (a) The results by linear CCA and
(b) the results by DCCA. The color bar indicates the value of detected correlations.
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applications in multiimaging and multi-omics studies, where
identifying correlations between multiple datasets is a common
challenge.
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